1
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
2
|
Vasović LM, Pavlović-Lažetić GM, Kovačević JJ, Beljanski MV, Uversky VN. Intrinsically disordered proteins and liquid-liquid phase separation in SARS-CoV-2 interactomes. J Cell Biochem 2024; 125:e30502. [PMID: 37992221 DOI: 10.1002/jcb.30502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
This paper discusses the properties of proteins and their relations in the interactomes of the selected subsets of SARS-CoV-2 proteome-the membrane protein, nonstructural proteins, and, finally, full proteome. Protein disorder according to several measures, liquid-liquid phase separation probabilities, and protein node degrees in the interaction networks were singled out as the features of interest. Additionally, viral interactomes were combined with the interactome of human lung tissue so as to examine if the new connections in the resulting viral-host interactome are linked to protein disorder. Correlation analysis shows that there is no clear relationship between raw features of interest, whereas there is a positive correlation between the protein disorder and its neighborhood mean disorder. There are also indications that highly connected viral hubs tend to be on average more ordered than proteins with a small number of connections. This is in contrast to previous similar studies conducted on eukaryotic interactomes and possibly raises new questions in research on viral interactomes.
Collapse
Affiliation(s)
- Lazar M Vasović
- Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
| | | | | | - Miloš V Beljanski
- BioLab, Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Hadži S, Živič Z, Kovačič M, Zavrtanik U, Haesaerts S, Charlier D, Plavec J, Volkov AN, Lah J, Loris R. Fuzzy recognition by the prokaryotic transcription factor HigA2 from Vibrio cholerae. Nat Commun 2024; 15:3105. [PMID: 38600130 PMCID: PMC11006873 DOI: 10.1038/s41467-024-47296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Disordered protein sequences can exhibit different binding modes, ranging from well-ordered folding-upon-binding to highly dynamic fuzzy binding. The primary function of the intrinsically disordered region of the antitoxin HigA2 from Vibrio cholerae is to neutralize HigB2 toxin through ultra-high-affinity folding-upon-binding interaction. Here, we show that the same intrinsically disordered region can also mediate fuzzy interactions with its operator DNA and, through interplay with the folded helix-turn-helix domain, regulates transcription from the higBA2 operon. NMR, SAXS, ITC and in vivo experiments converge towards a consistent picture where a specific set of residues in the intrinsically disordered region mediate electrostatic and hydrophobic interactions while "hovering" over the DNA operator. Sensitivity of the intrinsically disordered region to scrambling the sequence, position-specific contacts and absence of redundant, multivalent interactions, point towards a more specific type of fuzzy binding. Our work demonstrates how a bacterial regulator achieves dual functionality by utilizing two distinct interaction modes within the same disordered sequence.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Zala Živič
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Daniel Charlier
- Research group of Microbiology, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova, 19, 1000, Ljubljana, Slovenia
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
5
|
de Brevern AG. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet. Biomolecules 2020; 10:biom10071080. [PMID: 32698546 PMCID: PMC7408373 DOI: 10.3390/biom10071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsically-disordered protein (IDP) characterization was an amazing change of paradigm in our classical sequence-structure-function theory. Moreover, IDPs are over-represented in major disease pathways and are now often targeted using small molecules for therapeutic purposes. This has had created a complex continuum from order-that encompasses rigid and flexible regions-to disorder regions; the latter being not accessible through classical crystallographic methodologies. In X-ray structures, the notion of order is dictated by access to resolved atom positions, providing rigidity and flexibility information with low and high experimental B-factors, while disorder is associated with the missing (non-resolved) residues. Nonetheless, some rigid regions can be found in disorder regions. Using ensembles of IDPs, their local conformations were analyzed in the light of a structural alphabet. An entropy index derived from this structural alphabet allowed us to propose a continuum of states from rigidity to flexibility and finally disorder. In this study, the analysis was extended to comparing these results to disorder predictions, underlying a limited correlation, and so opening new ideas to characterize and predict disorder.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM, UMR_S 1134, DSIMB, Univ Paris, INTS, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
6
|
Akhila MV, Narwani TJ, Floch A, Maljković M, Bisoo S, Shinada NK, Kranjc A, Gelly JC, Srinivasan N, Mitić N, de Brevern AG. A structural entropy index to analyse local conformations in intrinsically disordered proteins. J Struct Biol 2020; 210:107464. [DOI: 10.1016/j.jsb.2020.107464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
7
|
Melarkode Vattekatte A, Narwani TJ, Floch A, Maljković M, Bisoo S, Shinada NK, Kranjc A, Gelly JC, Srinivasan N, Mitić N, de Brevern AG. Data set of intrinsically disordered proteins analysed at a local protein conformation level. Data Brief 2020; 29:105383. [PMID: 32195305 PMCID: PMC7078294 DOI: 10.1016/j.dib.2020.105383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 10/26/2022] Open
Abstract
Intrinsic Disorder Proteins (IDPs) have become a hot topic since their characterisation in the 90s. The data presented in this article are related to our research entitled "A structural entropy index to analyse local conformations in Intrinsically Disordered Proteins" published in Journal of Structural Biology [1]. In this study, we quantified, for the first time, continuum from rigidity to flexibility and finally disorder. Non-disordered regions were also highlighted in the ensemble of disordered proteins. This work was done using the Protein Ensemble Database (PED), which is a useful database collecting series of protein structures considered as IDPs. The data set consists of a collection of cleaned protein files in classical pdb format that can be readily used as an input with most automatic analysis software. The accompanying data include the coding of all structural information in terms of a structural alphabet, namely Protein Blocks (PBs). An entropy index derived from PBs that allows apprehending the continuum between protein rigidity to flexibility to disorder is included, with information from secondary structure assignment, protein accessibility and prediction of disorder from the sequences. The data may be used for further structural bioinformatics studies of IDPs. It can also be used as a benchmark for evaluating disorder prediction methods.
Collapse
Affiliation(s)
- Akhila Melarkode Vattekatte
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Faculté des Sciences et Technologies, Saint Denis Messag, F-97715 La Réunion, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Tarun Jairaj Narwani
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Aline Floch
- Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Etablissement Français du Sang Ile de France, Créteil, France.,IMRB - INSERM U955 Team 2, Transfusion et maladies du globule rouge, Paris Est- Créteil Univ., Créteil, France.,UPEC, Université Paris Est-Créteil, Créteil, France
| | | | - Soubika Bisoo
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Nicolas K Shinada
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,Discngine, SAS, 75012 Paris, France.,SBX Corp., Tōkyō-to, Shinagawa-ku, Tōkyō, Japan
| | - Agata Kranjc
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Jean-Christophe Gelly
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,IBL, F-75015 Paris, France
| | | | - Nenad Mitić
- University of Belgrade, Faculty of Mathematics, Belgrade, Serbia
| | - Alexandre G de Brevern
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris, Univ. de la Réunion, Univ. des Antilles, F-75739 Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France.,IBL, F-75015 Paris, France
| |
Collapse
|
8
|
Meygret A, Peuchant O, Dordet-Frisoni E, Sirand-Pugnet P, Citti C, Bébéar C, Béven L, Pereyre S. High Prevalence of Integrative and Conjugative Elements Encoding Transcription Activator-Like Effector Repeats in Mycoplasma hominis. Front Microbiol 2019; 10:2385. [PMID: 31681239 PMCID: PMC6813540 DOI: 10.3389/fmicb.2019.02385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are modular mobile genetic elements that can disseminate through excision, circularization, and transfer. Mycoplasma ICEs have recently been found distributed among some mycoplasma species and there is accumulating evidence that they play a pivotal role in horizontal gene transfers. The occurrence of ICEs has not been documented in Mycoplasma hominis, a human urogenital pathogen responsible for urogenital infections, neonatal infections and extragenital infections. In this study, we searched for, characterized, and compared ICEs by genome analyses of 12 strains of M. hominis. ICEs of 27–30 kb were found in one or two copies in seven of the 12 M. hominis strains sequenced. Only five of these ICEs seemed to be functional, as assessed by detection of circular forms of extrachromosomal ICE. Moreover, the prevalence of ICEs in M. hominis was estimated to be 45% in a collection of 120 clinical isolates of M. hominis, including 27 tetracycline-resistant tet(M)-positive isolates. The proportion of ICEs was not higher in isolates carrying the tet(M) gene, suggesting that ICEs are not involved in tetracycline resistance. Notably, all M. hominis ICEs had a very similar structure, consisting of a 4.0–5.1 kb unusual module composed of five to six juxtaposed CDSs. All the genes forming this module were specific to M. hominis ICEs as they had no homologs in other mycoplasma ICEs. In each M. hominis ICE, one to three CDSs encode proteins that share common structural features with transcription activator-like (TAL) effectors involved in polynucleotide recognition and signal transduction in symbiotic plant pathogen bacteria. The conserved and specific structure of M. hominis ICEs and the high prevalence in clinical strains suggest that these ICEs may confer a selective advantage for the physiology or pathogenicity of this human pathogenic bacterium. These data open the way for further studies aiming at unraveling horizontal gene transfers and virulence factors in M. hominis.
Collapse
Affiliation(s)
- Alexandra Meygret
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Olivia Peuchant
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Emilie Dordet-Frisoni
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Pascal Sirand-Pugnet
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Christine Citti
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Cécile Bébéar
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Laure Béven
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Sabine Pereyre
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Danchin A. Conceptual sequel to biological expeditions at the time of global changes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:38-40. [PMID: 30516032 DOI: 10.1111/1758-2229.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, Paris, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, Hong Kong University, Pokfulam, SAR, Hong Kong
| |
Collapse
|