1
|
Yu W, Wang Y, Li S, Dai Y, Li Y, Zhang X, Li B, Qian S, Zhang X, Bi C. Optimized dual-AAV base editor delivery system with enhanced editing efficiency and virion production titer. Synth Syst Biotechnol 2025; 10:697-706. [PMID: 40248483 PMCID: PMC12002711 DOI: 10.1016/j.synbio.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Base editors (BEs) are a promising tool for precise base conversion in human cells and animals, while the adeno-associated virus (AAV) is the major vector for human gene therapy. However, the size of the DNA cassette required for BE expression exceeds the 4.7 kb packing capacity of the AAV vector, making dual-AAV approaches based on trans-splicing intein necessary. Even with this approach, current split DNA cassettes are still larger than the AAV packing limit, posing a challenge for cellular production of AAV. Moreover, some split strategies yield variable editing results and target coverage. To address these limitations, 25 different split sets for BE4max and A3A-BE4max were tested at two target sites respectively, with splitting sites ranging from 493rd to 517th amino acids on the Cas9 peptide. Fortunately, the best Cas9 split site was identified between His511 and Ser512 and the arrangement of the AAV expression cassette was further manipulated to create evenly distributed CBE and ABE intein systems within 4.7 kb. These novel dual-AAV systems, designated 4.6AAV-CBE and 4.7AAV-ABE, were found to have base editing efficiencies similar to wild-type BEs, with a narrower editing window than the current 573 split system. Notably, 4.6AAV-CBE yield a higher AAV production titer, up to 2.1-fold in AAV-N and 1.5-fold in AAV-C, compared to the split-573BE system, likely due to the reduction of DNA cassette size within the AAV packaging capacity. Moreover, after packaging and infecting cells with AAV-N and AAV-C at the same volume and number of cells, the multiplicities of infection (MOI) and editing efficiency of 4.6 AAV-CBE were both higher than those of the split-573BE system. This study present advanced dual-AAV systems for ABE and CBE delivery, establishing a basis for safe and efficient BE therapies.
Collapse
Affiliation(s)
- Wenjia Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Yujie Wang
- Binzhou Medical University, Shandong, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Yingcai Dai
- Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Li
- Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Siriguleng Qian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300000, China
| |
Collapse
|
2
|
Lee SH, Wu J, Im D, Hwang GH, Jeong YK, Jiang H, Lee SJ, Jo DH, Goddard WA, Kim JH, Bae S. Bystander editing by adenine base editors impairs vision restoration in a mouse model of Leber congenital amaurosis. Mol Ther Methods Clin Dev 2025; 33:101461. [PMID: 40290762 PMCID: PMC12032331 DOI: 10.1016/j.omtm.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Base editors (BEs) have emerged as a powerful tool for gene correction with high activity. However, bystander base editing, a byproduct of BEs, presents challenges for precise editing. Here, we investigated the effects of bystander edits on phenotypic restoration in the context of Leber congenital amaurosis (LCA), a hereditary retinal disorder, as a therapeutic model. We observed that in retinal degeneration 12 (rd12) of LCA model mice, the highest editing activity version of an adenine base editors (ABEs), ABE8e, generated substantial bystander editing, resulting in missense mutations despite RPE65 expression, preventing restoration of visual function. Through AlphaFold-based mutational scanning and molecular dynamics simulations, we identified that the ABE8e-driven L43P mutation disrupts RPE65 structure and function. Our findings underscore the need for more stringent requirements in developing precise BEs for future clinical applications.
Collapse
Affiliation(s)
- Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jun Wu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gue-ho Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - You Kyeong Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hui Jiang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - William A. Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeong Hun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Schneider PG, Liu S, Bullinger L, Ostendorf BN. BEscreen: a versatile toolkit to design base editing libraries. Nucleic Acids Res 2025:gkaf406. [PMID: 40384567 DOI: 10.1093/nar/gkaf406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025] Open
Abstract
Base editing enables the high-throughput screening of genetic variants for phenotypic effects. Base editing screens require the design of single guide RNA (sgRNA) libraries to enable either gene- or variant-centric approaches. While computational tools supporting the design of sgRNAs exist, no solution offers versatile and scalable library design enabling all major use cases. Here, we introduce BEscreen, a comprehensive base editing guide design tool provided as a web server (bescreen.ostendorflab.org) and as a command line tool. BEscreen provides variant-, gene-, and region-centric modes to accommodate various screening approaches. The variant mode accepts genomic coordinates, amino acid changes, or rsIDs as input. The gene mode designs near-saturation libraries covering the entire coding sequence of given genes or transcripts, and the region mode designs all possible guides for given genomic regions. BEscreen enables selection of guides by biological consequence, it features comprehensive customization of base editor characteristics, and it offers optional annotation using Ensembl's Variant Effect Predictor. In sum, BEscreen is a highly versatile tool to design base editing screens for a wide range of use cases with seamless scalability from individual variants to large, near-saturation libraries.
Collapse
Affiliation(s)
- Philipp G Schneider
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Shuang Liu
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site, 13353 Berlin, Germany
| | - Benjamin N Ostendorf
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
4
|
Chapdelaine-Trépanier V, Shenoy S, Masud W, Minju-Op A, Bérubé MA, Schönherr S, Forer L, Fradet-Turcotte A, Taliun D, Cuella-Martin R. CRISPR-BEasy: a free web-based service for designing sgRNA tiling libraries for CRISPR-dependent base editing screens. Nucleic Acids Res 2025:gkaf382. [PMID: 40377102 DOI: 10.1093/nar/gkaf382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
CRISPR-dependent base editing (BE) enables the modeling and correction of genetic mutations at single-base resolution. Base editing screens, where point mutations are queried en masse, are powerful tools to systematically draw genotype-phenotype associations and characterise the function of genes and other genomic elements. However, the lack of user-friendly web-based tools for designing base editing screens can hinder broad technology adoption. Here, we introduce CRISPR-BEasy (https://crispr-beasy.cerc-genomic-medicine.ca), a free, automated web-based server that streamlines the creation of single guide (sg)RNA tiling libraries for base editing screens. Researchers can provide their genes or genomic features of interest, their base editors of choice, and target sequences to act as positive and negative controls. The server designs and annotates sgRNA libraries by integrating custom code with publicly available tools such as crisprVerse and Ensembl's Variant Effect Predictor. CRISPR-BEasy provides downloadable results, including sgRNA on/off-target scores, predicted mutational outcomes per base editor, and intuitive interactive visualizations for data quality assessment. CRISPR-BEasy also provides a separate tool that assembles sgRNA libraries into oligonucleotides for cloning following the detailed protocol documented in the searchable web server manual. Together, CRISPR-BEasy ensures the seamless design of cloning-ready sgRNA libraries, seeking to democratise access to base editing screening technologies.
Collapse
Affiliation(s)
- Vincent Chapdelaine-Trépanier
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| | - Shamika Shenoy
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| | - Wardah Masud
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| | - Amisha Minju-Op
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| | - Marie-Anne Bérubé
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC,G1V 0A6, Canada
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Québec City, QC,G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Québec City, QC,G1R 3S3, Canada
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck,6020, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck,6020, Austria
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC,G1V 0A6, Canada
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Québec City, QC,G1R 2J6, Canada
- Université Laval Cancer Research Center, Université Laval, Québec City, QC,G1R 3S3, Canada
| | - Daniel Taliun
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| | - Raquel Cuella-Martin
- Department of Human Genetics, McGill University, Montreal, QC,H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC,H3A 0G1, Canada
| |
Collapse
|
5
|
Wei Y, Yuan M, Zhang Y, Gao Y. The 2SP Site Mutation in the Bovine Natural Resistance-Associated Macrophage 1 Promoter Exhibits Antituberculosis Potential. Int J Mol Sci 2025; 26:4229. [PMID: 40362465 PMCID: PMC12071736 DOI: 10.3390/ijms26094229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Gene-edited cattle overexpressing natural resistance-associated macrophage 1 (NRAMP1) have demonstrated enhanced resistance to tuberculosis (TB). However, introducing synthetic sequences and selection markers may pose potential risks. The endogenous editing of target gene promoters could effectively mitigate these risks. To date, no available mutation sites in the bovine NRAMP1 promoter have been identified to enhance host resistance to TB. In this study, we identified a unique mutation editing site, designated as 2SP, within the bovine NRAMP1 promoter, using bioinformatics analysis and dual luciferase assays. The mutation at the 2SP site specifically increased NRAMP1 promoter activity by 2.3-fold after Mycobacterium tuberculosis H37Ra infection, without modifying promoter activity in non-infected groups. By using base editing techniques, an endogenously edited THP-1 cell line with a mutation at the homologous region of the 2SP site was generated, without introducing screening markers. In H37Ra infection experiments, the edited THP-1 cells specifically upregulated NRAMP1 expression and significantly inhibited H37Ra proliferation, while maintaining baseline NRAMP1 expression levels in the absence of infection. In this research, we identified a novel mutation site and provided a fundamental reference for the development of gene-edited cattle with enhanced resistance to TB.
Collapse
Affiliation(s)
- Yongke Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.W.); (M.Y.)
- Key Laboratory of Animal Biotechnology, Northwest A&F University, Yangling 712100, China
| | - Mengke Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.W.); (M.Y.)
- Key Laboratory of Animal Biotechnology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.W.); (M.Y.)
- Key Laboratory of Animal Biotechnology, Northwest A&F University, Yangling 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.W.); (M.Y.)
- Key Laboratory of Animal Biotechnology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Cabré-Romans JJ, Cuella-Martin R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front Genome Ed 2025; 7:1553590. [PMID: 40242216 PMCID: PMC12000063 DOI: 10.3389/fgeed.2025.1553590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Rare monogenic disorders are caused by mutations in single genes and have an incidence rate of less than 0.5%. Due to their low prevalence, these diseases often attract limited research and commercial interest, leading to significant unmet medical needs. In a therapeutic landscape where treatments are targeted to manage symptoms, gene editing therapy emerges as a promising approach to craft curative and lasting treatments for these patients, often referred to as "one-and-done" therapeutics. CRISPR-dependent base editing enables the precise correction of genetic mutations by direct modification of DNA bases without creating potentially deleterious DNA double-strand breaks. Base editors combine a nickase version of Cas9 with cytosine or adenine deaminases to convert C·G to T·A and A·T to G·C, respectively. Together, cytosine (CBE) and adenine (ABE) base editors can theoretically correct ∼95% of pathogenic transition mutations cataloged in ClinVar. This mini-review explores the application of base editing as a therapeutic approach for rare monogenic disorders. It provides an overview of the state of gene therapies and a comprehensive compilation of preclinical studies using base editing to treat rare monogenic disorders. Key considerations for designing base editing-driven therapeutics are summarized in a user-friendly guide for researchers interested in applying this technology to a specific rare monogenic disorder. Finally, we discuss the prospects and challenges for bench-to-bedside translation of base editing therapies for rare monogenic disorders.
Collapse
Affiliation(s)
- Júlia-Jié Cabré-Romans
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Cuella-Martin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Li H, Qiu Y, Song B, Quan X, Zhang D, Li X, Yang J, Liu X, Zeng Z, Jing J, Yin S, Dai Q, Wang L, Han H, Ye H, Sun Z, Cheng Y, Zhang X, Du B, Liu M, Li D. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. Nat Biotechnol 2025:10.1038/s41587-025-02610-2. [PMID: 40164763 DOI: 10.1038/s41587-025-02610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Tunable and reversible regulation of exogenous and endogenous gene expression would be useful for improving the safety and efficacy of gene therapy. Current chemically inducible systems are limited by the rapid diffusion and extended metabolism of small molecules, and associated side effects. Here we develop a photoactivatable RNA adenosine base editor (PA-rABE) by harnessing a compact Cas13 variant and a split ADAR2 deaminase fused with the Magnets system, which is activated through blue-light-induced dimerization. PA-rABE achieves highly efficient editing on endogenous RNA with minimal bystander editing and off-target effects. By editing a phosphorylation site of the endogenous CTNNB1 gene, PA-rABE stabilizes the β-catenin protein and activates Wnt signaling in vivo. Using adeno-associated virus vectors to deliver PA-rABE along with an hF9 variant containing a premature termination codon, we show amelioration of clotting defects in hemophilia B mice upon illumination. In summary, PA-rABE offers a controlled RNA base-editing technology for diverse biomedical applications, enabling reversible and spatiotemporally specific modulation.
Collapse
Affiliation(s)
- Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yuhao Qiu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Bowen Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinyi Quan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinru Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Jingyun Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xiaohong Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhiyang Zeng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Qi Dai
- Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Honghui Han
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
- BRL Medicine Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| |
Collapse
|
8
|
Le TT, Choi HI, Kim JW, Yun JH, Lee YH, Jeon EJ, Kwon KK, Cho DH, Choi DY, Park SB, Yoon HR, Lee J, Sim EJ, Lee YJ, Kim HS. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proc Natl Acad Sci U S A 2025; 122:e2415072122. [PMID: 40030016 PMCID: PMC11912399 DOI: 10.1073/pnas.2415072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen-derived nuclear localization signals (NLSs) enable vigorous nuclear invasion in the host by the virulence proteins harboring them. Herein, inspired by the robust nuclear import mechanism, we show that NLSs originating from the plant infection-associated Agrobacterium proteins VirD2 and VirE2 can be incorporated into the Cas9 system as efficient nuclear delivery enhancers, thereby improving the low gene-editing frequency in a model microalga, Chlamydomonas reinhardtii, caused by poor nuclear localization of the bulky nuclease. Prior to evaluation of the NLSs, IPA1 (Cre04.g215850) was first defined in the alga as the nuclear import-related importin alpha (Impα) that serves as a counterpart adaptor protein of the NLSs, based on extensive in silico analyses considering the protein's sequence, tertiary folding behavior, and structural basis when interacting with a well-studied SV40TAg NLS. Through precursive affinity explorations, we reproducibly found that the NLSs mediated the binding between the Cas9 and Impα with nM affinities and visually confirmed that the fusion of the NLSs strictly localized the peptide-bearing cargoes in the microalgal nucleus without compensating for their cleavage ability. When employed in a real-world application, the VirD2 NLS increases the mutation frequency (~1.12 × 10-5) over 2.4-fold compared to an archetypal SV40TAg NLS (~0.46 × 10-5) when fused with Cas9. We demonstrate the cross-species versatility of the Impα-dependent strategy by successfully applying it to an industrial alga, Chlorella Sp. HS2. This work, focused on affinity augmentation, provides insights into increasing the frequency of gene editing, which can be advantageously used in programmable mutagenesis with broad applicability.
Collapse
Affiliation(s)
- Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do16419, South Korea
| | - Yoon Hyeok Lee
- Design AI Lab, AI Center Samsung Electronics, Suwon-si, Gyeonggi-do16678, South Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Jeongmi Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Bio-Molecular Science, University of Science and Technology, Daejeon34113, South Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| |
Collapse
|
9
|
Zhou Q, Gao Q, Gao Y, Zhang Y, Chen Y, Li M, Wei P, Yue Z. BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library. Interdiscip Sci 2025; 17:134-139. [PMID: 39466357 DOI: 10.1007/s12539-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.
Collapse
Affiliation(s)
- Qian Zhou
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Gao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Yujia Gao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Yanjun Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Pengcheng Wei
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Oliynyk RT, Church GM. Circular Vectors as an efficient, fully synthetic, cell-free approach for preparing small circular DNA as a plasmid substitute for guide RNA expression in CRISPR-Cas9 genome editing. Nat Protoc 2025:10.1038/s41596-024-01138-0. [PMID: 39994413 DOI: 10.1038/s41596-024-01138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025]
Abstract
Robust expression of guide RNA (gRNA) is essential for successful implementation of CRISPR-Cas9 genome-editing methods. The gRNA components, such as an RNA polymerase promoter followed by the gRNA coding sequence and an RNA polymerase terminator sequence, and the Cas9 protein are expressed either via an all-in-one plasmid or separate dedicated plasmids. The preparation of such plasmids involves a laborious multi-day process of DNA assembly, bacterial cloning, validation, purification and sequencing. Our Circular Vector (CV) protocol introduces an efficient, fully synthetic, cell-free approach for preparing gRNA expression templates suitable for transfection, marking a significant advancement over traditional plasmid-based approaches. This protocol consists of the circularization and purification of linear double-stranded DNA (dsDNA) containing gRNA expression elements into compact, bacterial-backbone-free circular DNA expression vectors in as little as 3 h. We provide a guide to the design of the dsDNA template coding for gRNA elements for CRISPR-Cas9 base and prime editing, along with step-by-step instructions for the efficient preparation of gRNA-expressing CVs. In addition to rapid preparation, CVs created via this protocol offer several key advantages: a compact size, absence of a bacterial backbone, absence of bacterial endotoxins and no contamination by bacterial RNA or DNA fragments. These features make gRNA-expressing CVs a superior choice over plasmid-based gRNA expression templates.
Collapse
Affiliation(s)
- Roman Teo Oliynyk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Auckland, Auckland, New Zealand.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Tan YY, Liew YY, Lee RRQ, Castel B, Chan NM, Wan WL, Zhang Y, Hu D, Chan P, Kim ST, Chae E. Generation of Inheritable A-to-G Transitions Using Adenine Base Editing and NG-PAM Cas9 in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:30-42. [PMID: 39585742 DOI: 10.1094/mpmi-10-24-0127-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Towards precise genome editing, base editors have been developed by fusing catalytically compromised Cas9 with deaminase components, mediating C-to-T (cytosine base editors) or A-to-G (adenine base editors) transition. We developed a set of vectors consisting of a 5'-NG-3' PAM-recognizing variant of SpCas9 with adenosine deaminases TadA7.10 or TadA8e. Using a phenotype-based screen in Arabidopsis thaliana targeting multiple PDS3 intron splice sites, we achieved up to 81% somatic A-to-G editing in primary transformants at a splice acceptor site with NGG PAM, while 35% was achieved for the same target adenine with NGA PAM. Among tested vectors, pECNUS4 (Addgene #184887), carrying TadA8e, showed the highest adenine base editor (ABE) efficiency. With pECNUS4, we recreated a naturally occurring allele of DANGEROUS MIX3 (DM3) in two generations, transgene-free, for NGC PAM. We also simultaneously base-edited four redundant DM1/SSI4 homologs, encoding nucleotide-binding leucine-rich repeat (NLR) proteins, using a single gRNA with NGA PAM targeting the conserved yet functionally crucial P-loop motif of NLR proteins. We found fixation of A-to-G in three NLR genes for all three possible adenine sites within base-editing window 3-9, as the edited genes segregate in T2. Multigene targeting succeeded in rescuing the previously reported autoimmune phenotype in two generations. Mediating desired ABE on seven NLR genes simultaneously was successful as well; above 77% editing was achieved in six of the seven possible targets in a T1 plant, with the remaining having a moderately high (32%) editing. ABE application to specifically inactivate functional motifs is anticipated to expedite the discovery of novel roles for proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi Yun Tan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yin Yin Liew
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Nga Man Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yizhong Zhang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Donghui Hu
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Persis Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
12
|
Steiner S, Roy CR. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in Coxiella burnetii. mSphere 2024; 9:e0052324. [PMID: 39560384 DOI: 10.1128/msphere.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells. IMPORTANCE Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Taki T, Morimoto K, Mizuno S, Kuno A. KOnezumi-AID: Automation Software for Efficient Multiplex Gene Knockout Using Target-AID. Int J Mol Sci 2024; 25:13500. [PMID: 39769261 PMCID: PMC11679502 DOI: 10.3390/ijms252413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges. Nevertheless, the absence of adequate tools to support Target-AID-based gene knockout highlights the need for a comprehensive system to design guide RNAs (gRNAs) for the simultaneous knockout of multiple genes. Here, we aimed to develop KOnezumi-AID, a command-line tool for gRNA design for Target-AID-mediated genome editing. KOnezumi-AID facilitates gene knockout by inducing the premature termination codons or promoting exon skipping, thereby generating experiment-ready gRNA designs for mouse and human genomes. Additionally, KOnezumi-AID exhibits batch processing capacity, enabling rapid and precise gRNA design for large-scale genome editing, including CRISPR screening. In summary, KOnezumi-AID is an efficient and user-friendly tool for gRNA design, streamlining genome editing workflows and advancing gene knockout research.
Collapse
Affiliation(s)
- Taito Taki
- College of Biological Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Kento Morimoto
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
14
|
Liu S, Zhao Y, Mo Q, Sun Y, Ma H. Engineering CjCas9 for Efficient Base Editing and Prime Editing. CRISPR J 2024; 7:395-405. [PMID: 39556313 DOI: 10.1089/crispr.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
The CRISPR-Cas9 system has been applied for clinical applications of gene therapy. Most CRISPR-based gene therapies are derived from Streptococcus pyogenes Cas9, which is challenging to package into a single adeno-associated virus vector and limits its clinical applications. Campylobacter jejuni Cas9 (CjCas9) is one of the smallest Cas9 proteins. CjCas9-mediated base editing (CjBE) efficiency varies across genomic sites, while CjCas9-mediated prime editing (CjPE) efficiency is less than 5% on average. Here we developed enhanced cytosine base editors (enCjCBEs) and adenine base editors (enCjABEs) by engineered CjCas9P47K. We demonstrated the robust C-to-T conversion (70% on average) by enCjCBE or A-to-G conversion (76% on average) by enCjABE. Meanwhile, we applied the CjCas9P47K variant to generate enhanced CjPE (enCjPE), which increases the editing efficiency 17-fold at the PRNP site over wild-type CjPE. Fusing nonspecific DNA binding protein Sso7d to enCjCas9 and MS2 stem-loop RNA aptamer to the 3-terminal of cognate pegRNA resulted in 12% editing efficiency on average with a 24-fold increase over wild-type CjPE, and we termed it SsenCjPE. The SsenCjPE can also be combined with hMLH1dn to further increase the editing efficiency and MMLV RTaseΔRnH to reduce size. Finally, we introduced an additional mutation D829R into SsenCjPE and generated SsenCjPE-M2 with a 61-fold increase of PE efficiency over wild-type at the PRNP site. In summary, enCjBEs, SsenCjPEs, or SsenCjPE-M2 are compact Cas9-derived BE or prime editors in biological research or biomedical applications.
Collapse
Affiliation(s)
- Siyuan Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingdi Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Zhang D, Zheng R, Chen Z, Wang L, Chen X, Yang L, Huo Y, Yin S, Zhang D, Huang J, Cui X, Li D, Geng H. Lipid nanoparticle-mediated base-editing of the Hao1 gene achieves sustainable primary hyperoxaluria type 1 therapy in rats. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2575-2586. [PMID: 39425833 DOI: 10.1007/s11427-024-2697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/28/2024] [Indexed: 10/21/2024]
Abstract
Primary hyperoxaluria type 1 (PH1) is a severe hereditary disease, leading to the accumulation of oxalate in multiple organs, particularly the kidney. Hydroxyacid oxidase 1 (HAO1), a pivotal gene involved in oxalate production, is an approved target for the treatment of PH1. In this study, we demonstrated the discovery of several novel therapeutic sites of the Hao1 gene and the efficient editing of Hao1 c.290-2 A in vivo with lipid nanoparticles (LNP) delivered adenine base editing (ABE) mRNA. A single infusion of LNP-ABE resulted in a near-complete knockout of Hao1 in the liver, leading to the sustainable normalization of urinary oxalate (for at least 6 months) and complete rescue of the patho-physiology in PH1 rats. Additionally, a significant correlation between Hao1 editing efficiency and urinary oxalate levels was observed and over 60% Hao1 editing efficiency was required to achieve the normalization of urinary oxalate in PH1 rats. These findings suggest that the LNP-mediated base-editing of Hao1 c.290-2 A is an efficient and safe approach to PH1 therapy, highlighting its potential utility in clinical settings.
Collapse
Affiliation(s)
- Dexin Zhang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Zheng
- Department of Urology, Children's Hospital of Fudan University, Shanghai, 201100, China
| | - Zhoutong Chen
- Department of Urology, Children's Hospital of Fudan University, Shanghai, 201100, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanan Huo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaxin Huang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hongquan Geng
- Department of Urology, Children's Hospital of Fudan University, Shanghai, 201100, China.
| |
Collapse
|
16
|
Li P, Dong D, Gao F, Xie Y, Huang H, Sun S, Ma Z, He C, Lai J, Du X, Wu S. Versatile and efficient mammalian genome editing with Type I-C CRISPR System of Desulfovibrio vulgaris. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2471-2487. [PMID: 39126615 DOI: 10.1007/s11427-023-2682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins. While type I CRISPR systems in Class I may offer greater specificity and versatility, they are not well-developed for genome editing. Here, we present an alternative type I-C CRISPR system from Desulfovibrio vulgaris (Dvu) for efficient and precise genome editing in mammalian cells and animals. We optimized the Dvu type I-C editing complex to generate precise deletions at multiple loci in various cell lines and pig primary fibroblast cells using a paired PAM-in crRNA strategy. These edited pig cells can serve as donors for generating transgenic cloned piglets. The Dvu type I-C editor also enabled precise large fragment replacements with homology-directed repair. Additionally, we adapted the Dvu-Cascade effector for cytosine and adenine base editing, developing Dvu-CBE and Dvu-ABE systems. These systems efficiently induced C-to-T and A-to-G substitutions in human genes without double-strand breaks. Off-target analysis confirmed the high specificity of the Dvu type I-C editor. Our findings demonstrate the Dvu type I-C editor's potential for diverse mammalian genome editing applications, including deletions, fragment replacement, and base editing, with high efficiency and specificity for biomedicine and agriculture.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Dingcai Dong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuyang Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Honglin Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Siwei Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhao Ma
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Cheng He
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
17
|
Lee SH, Wu J, Im D, Hwang GH, Jeong YK, Jiang H, Lee SJ, Jo DH, Goddard WA, Kim JH, Bae S. Bystander base editing interferes with visual function restoration in Leber congenital amaurosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619839. [PMID: 39484395 PMCID: PMC11526940 DOI: 10.1101/2024.10.23.619839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Base editors (BEs) have emerged as a powerful tool for gene correction with high activity. However, bystander base editing, a byproduct of BEs, presents challenges for precise editing. Here, we investigated the effects of bystander edits on phenotypic restoration in the context of Leber congenital amaurosis (LCA), a hereditary retinal disorder, as a therapeutic model. We observed that in rd12 of LCA model mice, the highest editing activity version of an adenine base editors (ABEs), ABE8e, generated substantial bystander editing, resulting in missense mutations despite RPE65 expression, preventing restoration of visual function. Through AlphaFold-based mutational scanning and molecular dynamics simulations, we identified that the ABE8e-driven L43P mutation disrupts RPE65 structure and function. Our findings underscore the need for more stringent requirements in developing precise BEs for future clinical applications.
Collapse
Affiliation(s)
- Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Wu
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United Sates
| | - Gue-ho Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - You Kyeong Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hui Jiang
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - William A. Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United Sates
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical research institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03082, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Ye L, Zhao D, Li J, Wang Y, Li B, Yang Y, Hou X, Wang H, Wei Z, Liu X, Li Y, Li S, Liu Y, Zhang X, Bi C. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol 2024; 42:1538-1547. [PMID: 38168994 DOI: 10.1038/s41587-023-02050-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.
Collapse
Affiliation(s)
- Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yiran Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueting Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huibin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhandong Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoqi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yajing Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
19
|
Saito AC, Higashi T, Chiba H. Protocol for establishing knockout cell clones by deletion of a large gene fragment using CRISPR-Cas9 with multiple guide RNAs. STAR Protoc 2024; 5:103179. [PMID: 38972040 PMCID: PMC11264176 DOI: 10.1016/j.xpro.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Genome editing is a powerful tool for establishing gene knockout or mutant cell lines. Here, we present a protocol for establishing knockout cell clones by deletion of large gene fragments using CRISPR-Cas9 with multiple guide RNAs. We describe steps for designing guide RNAs, cloning them into CRISPR-Cas9 vectors, cell seeding, transfection into cultured cells, clonal selection, and screening assays. This protocol can delete gene regions over 100 kbp, including GC-rich domains, and is applicable to various cell lines. For complete details on the use and execution of this protocol, please refer to Saito et al.,1 Saito and Endo et al.,2 and Higashi et al.3.
Collapse
Affiliation(s)
- Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
20
|
Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, Chae HB, Lee DH, Lee SJ, Jo DH, Kim JH, Song JJ, Chae JH, Lee JH, Park J, Kang JY, Bae S, Lee SY. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102257. [PMID: 39104869 PMCID: PMC11299580 DOI: 10.1016/j.omtn.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.Arg91Gln) in single-stranded DNA-binding protein 1 (SSBP1), a crucial protein involved in mtDNA replisome. The proband manifested symptoms including sensorineural deafness, congenital cataract, optic atrophy, macular dystrophy, and myopathy. This mutation impeded multimer formation and DNA-binding affinity, leading to reduced efficiency of mtDNA replication, altered mitochondria dynamics, and compromised mitochondrial function. To correct this mutation, we tested two adenine base editor (ABE) variants on patient-derived fibroblasts. One variant, NG-Cas9-based ABE8e (NG-ABE8e), showed higher editing efficacy (≤30%) and enhanced mitochondrial replication and function, despite off-target editing frequencies; however, risks from bystander editing were limited due to silent mutations and off-target sites in non-translated regions. The other variant, NG-Cas9-based ABE8eWQ (NG-ABE8eWQ), had a safer therapeutic profile with very few off-target effects, but this came at the cost of lower editing efficacy (≤10% editing). Despite this, NG-ABE8eWQ-edited cells still restored replication and improved mtDNA copy number, which in turn recovery of compromised mitochondrial function. Taken together, base editing-based gene therapies may be a promising treatment for mitochondrial diseases, including those associated with SSBP1 mutations.
Collapse
Affiliation(s)
- Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hansol Koo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
21
|
Fernandez MM, Yu L, Jia Q, Wang X, Hart KL, Jia Z, Lin RJ, Wang L. Engineering Oncogenic Hotspot Mutations on SF3B1 via CRISPR-Directed PRECIS Mutagenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2498-2513. [PMID: 39194178 PMCID: PMC11421219 DOI: 10.1158/2767-9764.crc-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
SF3B1 is the most recurrently mutated RNA splicing gene in cancer. However, research of its pathogenic role has been hindered by a lack of disease-relevant cell line models. Here, our study compared four genome engineering platforms to establish SF3B1 mutant cell lines: CRISPR-Cas9 editing, AAV homology-directed repair editing, base editing (ABEmax, ABE8e), and prime editing (PE2, PE3, PE5max). We showed that prime editing via PE5max achieved the most efficient SF3B1 K700E editing across a wide range of cell lines. Our approach was further refined by coupling prime editing with a fluorescent reporter that leverages a SF3B1 mutation-responsive synthetic intron to mark successfully edited cells. By applying this approach, called prime editing coupled intron-assisted selection (PRECIS), we introduced the K700E hotspot mutation into two chronic lymphocytic leukemia cell lines, HG-3 and MEC-1. We demonstrated that our PRECIS-engineered cells faithfully recapitulate known mutant SF3B1 phenotypes, including altered splicing, copy number variations, and cell-growth defect. Moreover, we discovered that the SF3B1 mutation can cause the loss of Y chromosome in chronic lymphocytic leukemia. Our results showcase that PRECIS is an efficient and generalizable method for engineering genetically faithful SF3B1 mutant models. Our approach provides new insights on the role of SF3B1 mutation in cancer and enables the generation of SF3B1 mutant cell lines in relevant cellular context. SIGNIFICANCE This study developed an approach that can reliably and efficiently engineer SF3B1 mutation into different cellular contexts, thereby revealing novel roles of SF3B1 mutation in driving aberrant splicing, clonal evolution, and genome instability.
Collapse
Affiliation(s)
- Mike M. Fernandez
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
| | - Lei Yu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Qiong Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Xuesong Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Kevyn L. Hart
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California.
| | - Ren-Jang Lin
- Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, Duarte, California.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California.
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
22
|
Yang L, Huo Y, Wang M, Zhang D, Zhang T, Wu H, Rao X, Meng H, Yin S, Mei J, Zhang D, Chen X, Lv J, Liu M, Cheng Y, Guan Y, Feng B, Song G, Yi C, Liu M, Zeng F, Wang L, Li D. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nat Chem Biol 2024; 20:1176-1187. [PMID: 38553609 DOI: 10.1038/s41589-024-01595-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/29/2024] [Indexed: 08/30/2024]
Abstract
Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.
Collapse
Affiliation(s)
- Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Huo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Man Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tianai Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xichen Rao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Haowei Meng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiale Mei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dexin Zhang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Chen
- BRL Medicine Inc., Shanghai, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
23
|
Xue N, Hong D, Zhang D, Wang Q, Zhang S, Yang L, Chen X, Li Y, Han H, Hu C, Liu M, Song G, Guan Y, Wang L, Zhu Y, Li D. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Mol Cell 2024; 84:3128-3140.e4. [PMID: 39096898 DOI: 10.1016/j.molcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.
Collapse
Affiliation(s)
- Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dishan Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qian Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xi Chen
- Bioray Laboratories Inc., Shanghai, China
| | - Yongmei Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Honghui Han
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Bioray Laboratories Inc., Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yifan Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Tonetto E, Cucci A, Follenzi A, Bernardi F, Pinotti M, Balestra D. DNA base editing corrects common hemophilia A mutations and restores factor VIII expression in in vitro and ex vivo models. J Thromb Haemost 2024; 22:2171-2183. [PMID: 38718928 DOI: 10.1016/j.jtha.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Replacement and nonreplacement therapies effectively control bleeding in hemophilia A (HA) but imply lifelong interventions. Authorized gene addition therapy could provide a cure but still poses questions on durability. FVIIIgene correction would definitively restore factor (F)VIII production, as shown in animal models through nuclease-mediated homologous recombination (HR). However, low efficiency and potential off-target double-strand break still limit HR translatability. OBJECTIVES To correct common model single point mutations leading to severe HA through the recently developed double-strand break/HR-independent base editing (BE) and prime editing (PE) approaches. METHODS Screening for efficacy of BE/PE systems in HEK293T cells transiently expressing FVIII variants and validation at DNA (sequencing) and protein (enzyme-linked immunosorbent assay; activated partial thromboplastin time) level in stable clones. Evaluation of rescue in engineered blood outgrowth endothelial cells by lentiviral-mediated delivery of BE. RESULTS Transient assays identified the best-performing BE/PE systems for each variant, with the highest rescue of FVIII expression (up to 25% of wild-type recombinant FVIII) for the p.R2166∗ and p.R2228Q mutations. In stable clones, we demonstrated that the mutation reversion on DNA (∼24%) was consistent with the rescue of FVIII secretion and activity of 20% to 30%. The lentiviral-mediated delivery of the selected BE systems was attempted in engineered blood outgrowth endothelial cells harboring the p.R2166∗ and p.R2228Q variants, which led to an appreciable and dose-dependent rescue of secreted functional FVIII. CONCLUSION Overall data provide the first proof-of-concept for effective BE/PE-mediated correction of HA-causing mutations, which encourage studies in mouse models to develop a personalized cure for large cohorts of patients through a single intervention.
Collapse
Affiliation(s)
- Elena Tonetto
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Loret C, Pauset A, Faye PA, Prouzet-Mauleon V, Pyromali I, Nizou A, Miressi F, Sturtz F, Favreau F, Turcq B, Lia AS. CRISPR Base Editing to Create Potential Charcot-Marie-Tooth Disease Models with High Editing Efficiency: Human Induced Pluripotent Stem Cell Harboring SH3TC2 Variants. Biomedicines 2024; 12:1550. [PMID: 39062123 PMCID: PMC11274897 DOI: 10.3390/biomedicines12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool to investigate neuropathological disorders in which the cells of interest are inaccessible, such as in the Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy. Developing appropriate cellular models becomes crucial in order to both study the disease's pathophysiology and test new therapeutic approaches. The generation of hiPS cellular models for disorders caused by a single nucleotide variation has been significantly improved following the development of CRISPR-based editing tools. In this study, we efficiently and quickly generated, by CRISPR editing, the two first hiPSCs cellular models carrying alterations involved in CMT4C, also called AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in the SH3TC2 gene and represents the most prevalent form of autosomal recessive demyelinating CMT. We aimed to develop models for two different SH3TC2 nonsense variants, c.211C>T, p.Gln71* and the most common AR-CMTde-SH3TC2 alteration, c.2860C>T, p.Arg954*. First, in order to determine the best CRISPR strategy to adopt on hiPSCs, we first tested a variety of sgRNAs combined with a selection of recent base editors using the conveniently cultivable and transfectable HEK-293T cell line. The chosen CRISPR base-editing strategy was then applied to hiPSCs derived from healthy individuals to generate isogenic CMT disease models with up to 93% editing efficiency. For point mutation generation, we first recommend to test your strategies on alternative cell line such as HEK-293T before hiPSCs to evaluate a variety of sgRNA-BE combinations, thus boosting the chance of achieving edited cellular clones with the hard-to-culture and to transfect hiPSCs.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Amandine Pauset
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Valérie Prouzet-Mauleon
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Ioanna Pyromali
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Angélique Nizou
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Federica Miressi
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Béatrice Turcq
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- CHU Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
26
|
Gopalappa R, Lee M, Kim G, Jung ES, Lee H, Hwang HY, Lee JG, Kim SJ, Yoo HJ, Sung YH, Kim D, Baek IJ, Kim HH. In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model. Mol Ther 2024; 32:2190-2206. [PMID: 38796705 PMCID: PMC11286820 DOI: 10.1016/j.ymthe.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Collapse
Affiliation(s)
- Ramu Gopalappa
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinYoung Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; JES Clinic, Incheon 21550, Republic of Korea
| | - Hanahrae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
27
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
28
|
Kennedy PH, Alborzian Deh Sheikh A, Balakar M, Jones AC, Olive ME, Hegde M, Matias MI, Pirete N, Burt R, Levy J, Little T, Hogan PG, Liu DR, Doench JG, Newton AC, Gottschalk RA, de Boer CG, Alarcón S, Newby GA, Myers SA. Post-translational modification-centric base editor screens to assess phosphorylation site functionality in high throughput. Nat Methods 2024; 21:1033-1043. [PMID: 38684783 PMCID: PMC11804830 DOI: 10.1038/s41592-024-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.
Collapse
Affiliation(s)
- Patrick H Kennedy
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amin Alborzian Deh Sheikh
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alexander C Jones
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | | | - Mudra Hegde
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria I Matias
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Natan Pirete
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rajan Burt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tamia Little
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Program in Immunology, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carl G de Boer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzie Alarcón
- La Jolla Institute for Immunology, La Jolla, CA, USA
- AUGenomics, San Diego, CA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Center of Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA.
- Program in Immunology, University of California San Diego, San Diego, CA, USA.
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA.
| |
Collapse
|
29
|
Park JC, Kim YJ, Hwang GH, Kang CY, Bae S, Cha HJ. Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways. Nat Commun 2024; 15:4002. [PMID: 38734692 PMCID: PMC11088699 DOI: 10.1038/s41467-024-48111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gue-Ho Hwang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Young Kang
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
31
|
Vishy CE, Thomas C, Vincent T, Crawford DK, Goddeeris MM, Freedman BS. Genetics of cystogenesis in base-edited human organoids reveal therapeutic strategies for polycystic kidney disease. Cell Stem Cell 2024; 31:537-553.e5. [PMID: 38579684 PMCID: PMC11325856 DOI: 10.1016/j.stem.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.
Collapse
Affiliation(s)
- Courtney E Vishy
- Division of Nephrology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, WA 98109, USA
| | - Chardai Thomas
- Division of Nephrology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, WA 98109, USA
| | - Thomas Vincent
- Division of Nephrology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, WA 98109, USA
| | - Daniel K Crawford
- Eloxx Pharmaceuticals, Inc., 950 Winter Street, Waltham, MA 02451, USA
| | | | - Benjamin S Freedman
- Division of Nephrology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, WA 98109, USA; Plurexa, 1209 6th Ave. N., Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Chen L, Hong M, Luan C, Gao H, Ru G, Guo X, Zhang D, Zhang S, Li C, Wu J, Randolph PB, Sousa AA, Qu C, Zhu Y, Guan Y, Wang L, Liu M, Feng B, Song G, Liu DR, Li D. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat Biotechnol 2024; 42:638-650. [PMID: 37322276 DOI: 10.1038/s41587-023-01821-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing. We found that a fusion of mouse alkyladenine DNA glycosylase (mAAG) with nickase Cas9 and deaminase TadA-8e catalyzed adenosine transversion in specific sequence contexts. Laboratory evolution of mAAG significantly increased A-to-C/T conversion efficiency up to 73% and expanded the targeting scope. Further engineering yielded adenine-to-cytosine base editors (ACBEs), including a high-accuracy ACBE-Q variant, that precisely install A-to-C transversions with minimal Cas9-independent off-targeting effects. ACBEs mediated high-efficiency installation or correction of five pathogenic mutations in mouse embryos and human cell lines. Founder mice showed 44-56% average A-to-C edits and allelic frequencies of up to 100%. Adenosine transversion editors substantially expand the capabilities and possible applications of base editing technology.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyuan Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dujuan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Chao Qu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yifan Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine, Inc., Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
33
|
Brooks IR, Alrokh Y, Kazemizadeh A, Balon K, Newby G, Liu DR, Łaczmański Ł, McGrath JA, Jacków-Malinowska J. Highly efficient biallelic correction of homozygous COL7A1 mutation using ABE8e adenine base editor. Br J Dermatol 2024; 190:583-585. [PMID: 38149684 DOI: 10.1093/bjd/ljad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 01/13/2024] [Indexed: 12/28/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin disorder characterized by severe skin blistering. With no cure at present, we have pursued a gene repair approach using base editing of COL7A1. Following on from our previous report of highly efficient base editing using the novel base editor, ABE8e, here we explore the use of lipid nanoparticle (LNP)-based delivery systems instead of electroporation to effect base editing in RDEB fibroblasts and correct a missense G > A mutation. We demonstrate increasingly high editing efficiencies, averaging 90%, which vary with the ABE8e dosage. We then demonstrate the viability of topical delivery of mRNA encapsulated in an LNP. Our work underscores the translational potential of this therapeutic route for DEB.
Collapse
Affiliation(s)
- Imogen R Brooks
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara Alrokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Aidin Kazemizadeh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Katarzyna Balon
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Gregory Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
34
|
Gao S, Guan H, Bloomer H, Wich D, Song D, Khirallah J, Ye Z, Zhao Y, Chen M, Xu C, Liu L, Xu Q. Harnessing non-Watson-Crick's base pairing to enhance CRISPR effectors cleavage activities and enable gene editing in mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2308415120. [PMID: 38150477 PMCID: PMC10786293 DOI: 10.1073/pnas.2308415120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.
Collapse
Affiliation(s)
- Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Huiwen Guan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Chutian Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Lihan Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| |
Collapse
|
35
|
Ravi NS, George A, Mohankumar KM. Protocol for arrayed gRNA screening by base editors in mammalian cell lines using lentiviral system. STAR Protoc 2023; 4:102668. [PMID: 37922314 PMCID: PMC10656259 DOI: 10.1016/j.xpro.2023.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023] Open
Abstract
Base editing, a CRISPR-based genome engineering technique, enables precise single-nucleotide modifications while minimizing double-strand breaks. Here, we present a protocol for arrayed mutagenesis using base editors to identify regulatory elements within the gamma-globin locus. We describe steps for guide RNA (gRNA) cloning into lentiviral vectors, establishing stable cell lines with base editor expression, transducing gRNAs, and assessing editing efficiency. This protocol can be applied to diverse genomic regions and cell lines for arrayed screening, facilitating genetic research, and target discovery. For complete details on the use and execution of this protocol, please refer to Ravi et al. (2022)1.
Collapse
Affiliation(s)
- Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India.
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India.
| |
Collapse
|
36
|
Zhang A, Shan T, Sun Y, Chen Z, Hu J, Hu Z, Ming Z, Zhu Z, Li X, He J, Liu S, Jiang L, Dong X, Wu Y, Wang Y, Liu Y, Li C, Wan J. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2597-2610. [PMID: 37571976 PMCID: PMC10651138 DOI: 10.1111/pbi.14156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
CRISPR-based directed evolution is an effective breeding biotechnology to improve agronomic traits in plants. However, its gene diversification is still limited using individual single guide RNA. We described here a multiplexed orthogonal base editor (MoBE), and a randomly multiplexed sgRNAs assembly strategy to maximize gene diversification. MoBE could induce efficiently orthogonal ABE (<36.6%), CBE (<36.0%), and A&CBE (<37.6%) on different targets, while the sgRNA assembling strategy randomized base editing events on various targets. With respective 130 and 84 targets from each strand of the 34th exon of rice acetyl-coenzyme A carboxylase (OsACC), we observed the target-scaffold combination types up to 27 294 in randomly dual and randomly triple sgRNA libraries. We further performed directed evolution of OsACC using MoBE and randomly dual sgRNA libraries in rice, and obtained single or linked mutations of stronger herbicide resistance. These strategies are useful for in situ directed evolution of functional genes and may accelerate trait improvement in rice.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Tiaofeng Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Yan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhipeng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jianjian Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhichao Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ziheng Ming
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhitao Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Xue Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jun He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome EditingInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
37
|
Kennedy PH, Deh Sheikh AA, Balakar M, Jones AC, Olive ME, Hegde M, Matias MI, Pirete N, Burt R, Levy J, Little T, Hogan PG, Liu DR, Doench JG, Newton AC, Gottschalk RA, de Boer C, Alarcón S, Newby G, Myers SA. Proteome-wide base editor screens to assess phosphorylation site functionality in high-throughput. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566649. [PMID: 38014346 PMCID: PMC10680671 DOI: 10.1101/2023.11.11.566649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of the phosphatase PHLPP1 which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.
Collapse
|
38
|
Han W, Gao BQ, Zhu J, He Z, Li J, Yang L, Chen J. Design and application of the transformer base editor in mammalian cells and mice. Nat Protoc 2023; 18:3194-3228. [PMID: 37794072 DOI: 10.1038/s41596-023-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/21/2023] [Indexed: 10/06/2023]
Abstract
Fusing apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like cytidine deaminase with catalytically impaired Cas proteins (e.g., nCas9 or dCas9) provides a novel gene-editing technology, base editing, that grants targeted base substitutions with high efficiency. However, genome-wide and transcriptome-wide off-target mutations are observed in base editing, which raises safety concerns regarding therapeutic applications. Previously, we developed a new base editing system, the transformer base editor (tBE), to induce efficient editing with no observable genome-wide or transcriptome-wide off-target mutations both in mammalian cells and in mice. Here we describe a detailed protocol for the design and application of the tBE. Steps for designing single-guide RNA (sgRNA) and helper sgRNA pairs, making constructs, determining the genome-wide and transcriptome-wide off-target mutations, producing the tBE-containing adeno-associated viruses, delivering adeno-associated viruses into mice and examining the in vivo editing effects are included in this protocol. High-precision base editing by the tBE can be completed within 2-3 weeks (in mammalian cells) or within 6-8 weeks (in mice), with sgRNA-helper sgRNA pairs. The whole process can be collaboratively accomplished by researchers using standard techniques from molecular biology, bioinformatics and mouse husbandry.
Collapse
Affiliation(s)
- Wenyan Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junjie Zhu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zongxing He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
39
|
Xiong X, Liu K, Li Z, Xia FN, Ruan XM, He X, Li JF. Split complementation of base editors to minimize off-target edits. NATURE PLANTS 2023; 9:1832-1847. [PMID: 37845337 DOI: 10.1038/s41477-023-01540-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Base editors (BEs) empower the efficient installation of beneficial or corrective point mutations in crop and human genomes. However, conventional BEs can induce unpredictable guide RNA (gRNA)-independent off-target edits in the genome and transcriptome due to spurious activities of BE-enclosing deaminases, and current improvements mostly rely on deaminase-specific mutagenesis or exogenous regulators. Here we developed a split deaminase for safe editing (SAFE) system applicable to BEs containing distinct cytidine or adenosine deaminases, with no need of external regulators. In SAFE, a BE was properly split at a deaminase domain embedded inside a Cas9 nickase, simultaneously fragmenting and deactivating both the deaminase and the Cas9 nickase. The gRNA-conditioned BE reassembly conferred robust on-target editing in plant, human and yeast cells, while minimizing both gRNA-independent and gRNA-dependent off-target DNA/RNA edits. SAFE also substantially increased product purity by eliminating indels. Altogether, SAFE provides a generalizable solution for BEs to suppress off-target editing and improve on-target performance.
Collapse
Affiliation(s)
- Xiangyu Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kehui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zhenxiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xue-Ming Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
40
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
41
|
Kabra M, Shahi PK, Wang Y, Sinha D, Spillane A, Newby GA, Saxena S, Tong Y, Chang Y, Abdeen AA, Edwards KL, Theisen CO, Liu DR, Gamm DM, Gong S, Saha K, Pattnaik BR. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J Clin Invest 2023; 133:e171356. [PMID: 37561581 PMCID: PMC10541187 DOI: 10.1172/jci171356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.
Collapse
Affiliation(s)
- Meha Kabra
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Pawan K. Shahi
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Yuyuan Wang
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Divya Sinha
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Shivani Saxena
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Yao Tong
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | | | - Amr A. Abdeen
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Kimberly L. Edwards
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cole O. Theisen
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David M. Gamm
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences and
| | - Shaoqin Gong
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Department of Ophthalmology and Visual Sciences and
| | - Krishanu Saha
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
42
|
Dickson KA, Field N, Blackman T, Ma Y, Xie T, Kurangil E, Idrees S, Rathnayake SNH, Mahbub RM, Faiz A, Marsh DJ. CRISPR single base-editing: in silico predictions to variant clonal cell lines. Hum Mol Genet 2023; 32:2704-2716. [PMID: 37369005 DOI: 10.1093/hmg/ddad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Engineering single base edits using CRISPR technology including specific deaminases and single-guide RNA (sgRNA) is a rapidly evolving field. Different types of base edits can be constructed, with cytidine base editors (CBEs) facilitating transition of C-to-T variants, adenine base editors (ABEs) enabling transition of A-to-G variants, C-to-G transversion base editors (CGBEs) and recently adenine transversion editors (AYBE) that create A-to-C and A-to-T variants. The base-editing machine learning algorithm BE-Hive predicts which sgRNA and base editor combinations have the strongest likelihood of achieving desired base edits. We have used BE-Hive and TP53 mutation data from The Cancer Genome Atlas (TCGA) ovarian cancer cohort to predict which mutations can be engineered, or reverted to wild-type (WT) sequence, using CBEs, ABEs or CGBEs. We have developed and automated a ranking system to assist in selecting optimally designed sgRNA that considers the presence of a suitable protospacer adjacent motif (PAM), the frequency of predicted bystander edits, editing efficiency and target base change. We have generated single constructs containing ABE or CBE editing machinery, an sgRNA cloning backbone and an enhanced green fluorescent protein tag (EGFP), removing the need for co-transfection of multiple plasmids. We have tested our ranking system and new plasmid constructs to engineer the p53 mutants Y220C, R282W and R248Q into WT p53 cells and shown that these mutants cannot activate four p53 target genes, mimicking the behaviour of endogenous p53 mutations. This field will continue to rapidly progress, requiring new strategies such as we propose to ensure desired base-editing outcomes.
Collapse
Affiliation(s)
- Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha Field
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiane Blackman
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ecem Kurangil
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sobia Idrees
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and the University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Senani N H Rathnayake
- Respiratory Bioinformatics and Molecular Biology (RBMB), Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rashad M Mahbub
- Respiratory Bioinformatics and Molecular Biology (RBMB), Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
43
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
44
|
Yao T, Yuan G, Lu H, Liu Y, Zhang J, Tuskan GA, Muchero W, Chen JG, Yang X. CRISPR/Cas9-based gene activation and base editing in Populus. HORTICULTURE RESEARCH 2023; 10:uhad085. [PMID: 37323227 PMCID: PMC10266945 DOI: 10.1093/hr/uhad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
The genus Populus has long been used for environmental, agroforestry and industrial applications worldwide. Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research. As such, various modern biotechnologies, including CRISPR/Cas9-based techniques, have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition. However, CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone "717-1B4" (P. tremula x P. alba clone INRA 717-1B4). Alternative CRISPR/Cas9-based technologies, e.g. those involving modified Cas9 for gene activation and base editing, have not been evaluated in most Populus species for their efficacy. Here we employed a deactivated Cas9 (dCas9)-based CRISPR activation (CRISPRa) technique to fine-tune the expression of two target genes, TPX2 and LecRLK-G which play important roles in plant growth and defense response, in hybrid poplar clone "717-1B4" and poplar clone "WV94" (P. deltoides "WV94"), respectively. We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation, demonstrating the effectiveness of dCas9-based CRISPRa system in Populus. In addition, we applied Cas9 nickase (nCas9)-based cytosine base editor (CBE) to precisely introduce premature stop codons via C-to-T conversion, with an efficiency of 13%-14%, in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone "717-1B4". Overall, we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species, facilitating the adoption of emerging genome editing tools in woody species.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Academic Education, Central Community College –Hastings; Hastings; NE 68901, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
45
|
Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, Zhang D, Luan C, Zhang S, Wu H, Gao H, Bai S, Li C, Ding R, Xue N, Lei Z, Chen Y, Guan Y, Siwko S, Cheng Y, Song G, Wang L, Yi C, Liu M, Li D. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41:663-672. [PMID: 36357717 DOI: 10.1038/s41587-022-01532-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- School of Life Sciences, Peking University, Beijing, China
| | - Yongchang Yan
- School of Life Sciences, Peking University, Beijing, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Peking University, Beijing, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changqing Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruoyi Ding
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhixin Lei
- School of Life Sciences, Peking University, Beijing, China
| | - Yuting Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Genome Engineering and Therapy, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- School of Life Sciences, Peking University, Beijing, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- BRL Medicine, Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
46
|
Pan C, Qi Y. CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding. Nat Protoc 2023:10.1038/s41596-023-00823-w. [PMID: 37085666 DOI: 10.1038/s41596-023-00823-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/09/2023] [Indexed: 04/23/2023]
Abstract
CRISPR-Cas nuclease systems, base editors, and CRISPR activation have greatly advanced plant genome engineering. However, the combinatorial approaches for multiplexed orthogonal genome editing and transcriptional regulation were previously unexploited in plants. We have recently established a single Cas9 protein-based CRISPR-Combo platform, enabling efficient multiplexed orthogonal genome editing (double-strand break-mediated genome editing or base editing) and transcriptional activation in plants via engineering the single guide RNA (sgRNA) structure. Here, we provide step-by-step instructions for constructing CRISPR-Combo systems for speed breeding of transgene-free, genome-edited Arabidopsis plants and enhancing rice regeneration with more heritable targeted mutations in a hormone-free manner. We also provide guidance on designing efficient sgRNA, Agrobacterium-mediated transformation of Arabidopsis and rice, rice regeneration without exogenous plant hormones, gene editing evaluation and visual identification of transgene-free Arabidopsis plants with high editing activity. With the use of this protocol, it takes ~2 weeks to establish the CRISPR-Combo systems, 4 months to obtain transgene-free genome-edited Arabidopsis plants and 4 months to obtain rice plants with enrichment of heritable targeted mutations by hormone-free tissue culture.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
47
|
Xue N, Liu X, Zhang D, Wu Y, Zhong Y, Wang J, Fan W, Jiang H, Zhu B, Ge X, Gonzalez RVL, Chen L, Zhang S, She P, Zhong Z, Sun J, Chen X, Wang L, Gu Z, Zhu P, Liu M, Li D, Zhong TP, Zhang X. Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat Commun 2023; 14:1224. [PMID: 36869044 PMCID: PMC9984408 DOI: 10.1038/s41467-023-36887-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Base editors, including dual base editors, are innovative techniques for efficient base conversions in genomic DNA. However, the low efficiency of A-to-G base conversion at positions proximal to the protospacer adjacent motif (PAM) and the A/C simultaneous conversion of the dual base editor hinder their broad applications. In this study, through fusion of ABE8e with Rad51 DNA-binding domain, we generate a hyperactive ABE (hyABE) which offers improved A-to-G editing efficiency at the region (A10-A15) proximal to the PAM, with 1.2- to 7-fold improvement compared to ABE8e. Similarly, we develop optimized dual base editors (eA&C-BEmax and hyA&C-BEmax) with markedly improved simultaneous A/C conversion efficiency (1.2-fold and 1.5-fold improvement, respectively) compared to A&C-BEmax in human cells. Moreover, these optimized base editors catalyze efficiently nucleotide conversions in zebrafish embryos to mirror human syndrome or in human cells to potentially treat genetic diseases, indicating their great potential in broad applications for disease modeling and gene therapy.
Collapse
Affiliation(s)
- Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xu Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Youming Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yi Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinxin Wang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Wenjing Fan
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Haixia Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel V L Gonzalez
- Department of Physiology and Cellular Biophysics, Columbia University, Manhattan, NY, USA
| | - Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peilu She
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhilin Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianjian Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xi Chen
- BRL Medicine, Inc., Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhimin Gu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Tao P Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Xiaohui Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China.
| |
Collapse
|
48
|
Kim S, Jeong YK, Cho CS, Lee S, Sohn CH, Kim JH, Jeong Y, Jo DH, Bae S, Lee H. Enhancement of Gene Editing and Base Editing with Therapeutic Ribonucleoproteins through In Vivo Delivery Based on Absorptive Silica Nanoconstruct. Adv Healthc Mater 2023; 12:e2201825. [PMID: 36326169 PMCID: PMC11468555 DOI: 10.1002/adhm.202201825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Key to the widespread and secure application of genome editing tools is the safe and effective delivery of multiple components of ribonucleoproteins (RNPs) into single cells, which remains a biological barrier to their clinical application. To overcome this issue, a robust RNP delivery platform based on a biocompatible sponge-like silica nanoconstruct (SN) for storing and directly delivering therapeutic RNPs, including Cas9 nuclease RNP (Cas9-RNP) and base editor RNP (BE-RNP) is designed. Compared with commercialized material such as lipid-based methods, up to 50-fold gene deletion and 10-fold base substitution efficiency is obtained with a low off-target efficiency by targeting various cells and genes. In particular, gene correction is successfully induced by SN-based delivery through intravenous injection in an in vivo solid-tumor model and through subretinal injection in mouse eye. Moreover, because of its low toxicity and high biodegradability, SN has negligible effect on cellular function of organs. As the engineered SN can overcome practical challenges associated with therapeutic RNP application, it is strongly expected this platform to be a modular RNPs delivery system, facilitating in vivo gene deletion and editing.
Collapse
Affiliation(s)
- Seongchan Kim
- Biomaterials Research CenterBiomedical Research InstituteKorea Institute of Science and Technology (KIST)02792SeoulRepublic of Korea
| | - You Kyeong Jeong
- Medical Research Center of Genomic Medicine InstituteSeoul National University College of Medicine03080SeoulRepublic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis‐Related Blindness (FARB) LaboratoryBiomedical Research InstituteSeoul National University Hospital03080SeoulRepublic of Korea
| | - SeokHoon Lee
- Department of Biomedical SciencesSeoul National University College of Medicine03080SeoulRepublic of Korea
| | - Chang Ho Sohn
- Center for NanomedicineInstitute for Basic ScienceGraduate Program in Nanobiomedical EngineeringAdvanced Science InstituteYonsei University03722SeoulRepublic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis‐Related Blindness (FARB) LaboratoryBiomedical Research InstituteSeoul National University Hospital03080SeoulRepublic of Korea
- Department of Ophthalmology and Department of Biomedical SciencesSeoul National University College of Medicine03080SeoulRepublic of Korea
| | - Youngdo Jeong
- Biomaterials Research CenterBiomedical Research InstituteKorea Institute of Science and Technology (KIST)02792SeoulRepublic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell BiologySeoul National University College of Medicine03080SeoulRepublic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine InstituteSeoul National University College of Medicine03080SeoulRepublic of Korea
- Department of Biomedical SciencesSeoul National University College of Medicine03080SeoulRepublic of Korea
| | - Hyojin Lee
- Biomaterials Research CenterBiomedical Research InstituteKorea Institute of Science and Technology (KIST)02792SeoulRepublic of Korea
- Division of Bio‐Medical Science & TechnologyKIST School – Korea University of Science and Technology (UST)02792SeoulRepublic of Korea
| |
Collapse
|
49
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
50
|
Liu T, Zhang X, Li K, Yao Q, Zhong D, Deng Q, Lu Y. Large-scale genome editing in plants: approaches, applications, and future perspectives. Curr Opin Biotechnol 2023; 79:102875. [PMID: 36610369 DOI: 10.1016/j.copbio.2022.102875] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
As a powerful genome editing technology, CRISPR/Cas is revolutionizing both fundamental research and crop breeding, and has now evolved into large-scale editing tools that are efficient, simple, and programmable. With such CRISPR screening technologies, the numbers of genome-edited crops are rapidly increasing. Here, we describe the general workflow of a CRISPR screen in plants, including the selection of appropriate editors, genome-wide guide RNA design, pooled library construction, massive transformation, and high-throughput genotyping. We also discuss applications for the screening of candidate genes, the optimization of spatiotemporal expression, the evolution of protein activities, and the establishment of genome-wide libraries of knockout mutant. After considering the current challenges and limitations, we finally envision a virus-mediated strategy to improve CRISPR screens.
Collapse
Affiliation(s)
- Tianzhen Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuening Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Kai Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Yao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Dating Zhong
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Qi Deng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuming Lu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|