1
|
Abdolmaleki S, Ganjalikhani hakemi M, Ganjalikhany MR. An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy. PLoS One 2024; 19:e0304270. [PMID: 39052609 PMCID: PMC11271968 DOI: 10.1371/journal.pone.0304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.
Collapse
Affiliation(s)
- Sarah Abdolmaleki
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjalikhani hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
2
|
Schreiner W, Karch R, Cibena M, Tomasiak L, Kenn M, Pfeiler G. Clustering molecular dynamics conformations of the CC'-loop of the PD-1 immuno-checkpoint receptor. Comput Struct Biotechnol J 2023; 21:3920-3932. [PMID: 37602229 PMCID: PMC10432919 DOI: 10.1016/j.csbj.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Molecular mechanisms within the checkpoint receptor PD-1 are essential for its activation by PD-L1 as well as for blocking such an activation via checkpoint inhibitors. We use molecular dynamics to scrutinize patterns of atomic motion in PD-1 without a ligand. Molecular dynamics is performed for the whole extracellular domain of PD-1, and the analysis focuses on its CC'-loop and some adjacent Cα-atoms. We extend previous work by applying common nearest neighbor clustering (Cnn) and compare the performance of this method with Daura clustering as well as UMAP dimension reduction and subsequent agglomerative linkage clustering. As compared to Daura clustering, we found Cnn less sensitive to cutoff selection and better able to return representative clusters for sets of different 3D atomic conformations. Interestingly, Cnn yields results quite similar to UMAP plus linkage clustering.
Collapse
Affiliation(s)
- Wolfgang Schreiner
- Medical University of Vienna, Center for Medical Data Science, Spitalgasse 23, A-1090, Vienna, Austria
| | - Rudolf Karch
- Medical University of Vienna, Center for Medical Data Science, Spitalgasse 23, A-1090, Vienna, Austria
| | - Michael Cibena
- Medical University of Vienna, Center for Medical Data Science, Spitalgasse 23, A-1090, Vienna, Austria
| | - Lisa Tomasiak
- Medical University of Vienna, Center for Medical Data Science, Spitalgasse 23, A-1090, Vienna, Austria
| | - Michael Kenn
- Medical University of Vienna, Center for Medical Data Science, Spitalgasse 23, A-1090, Vienna, Austria
| | - Georg Pfeiler
- Medical University of Vienna, Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
3
|
Kenn M, Karch R, Tomasiak L, Cibena M, Pfeiler G, Koelbl H, Schreiner W. Molecular dynamics identifies semi-rigid domains in the PD-1 checkpoint receptor bound to its natural ligand PD-L1. Front Bioeng Biotechnol 2022; 10:838129. [PMID: 36277392 PMCID: PMC9582661 DOI: 10.3389/fbioe.2022.838129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cells in danger of being erroneously attacked by leucocytes express PD-L1 on their surface. These cells activate PD-1 on attacking leucocytes and send them to death, thus curbing erroneous, autoimmune attack. Unfortunately, cancer cells exploit this mechanism: By expressing PD-L1, they guard themselves against leucocyte attack and thereby evade immune clearance. Checkpoint inhibitors are drugs which re-enable immune clearance of cancer cells by blocking the binding of PD-L1 to PD-1 receptors. It is therefore of utmost interest to investigate these binding mechanisms. We use three 600 ns all-atom molecular dynamics simulations to scrutinize molecular motions of PD-1 with its binding partner, the natural ligand PD-L1. Usually, atomic motion patterns are evaluated against whole molecules as a reference, disregarding that such a reference is a dynamic entity by itself, thus degrading stability of the reference. As a remedy, we identify semi-rigid domains, lending themselves as more stable and reliable reference frames against which even minute differences in molecular motion can be quantified precisely. We propose an unsupervised three-step procedure. In previous work of our group and others, minute differences in motion patterns proved decisive for differences in function. Here, several highly reliable frames of reference are established for future investigations based on molecular motion.
Collapse
Affiliation(s)
- Michael Kenn
- Institute for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Rudolf Karch
- Institute for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Lisa Tomasiak
- Institute for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Michael Cibena
- Institute for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Pfeiler
- Division of General Gynecology and Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Heinz Koelbl
- Division of General Gynecology and Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Schreiner
- Institute for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- *Correspondence: Wolfgang Schreiner,
| |
Collapse
|
4
|
Ma DX, Ding XP, Zhang C, Shi P. Combined targeted therapy and immunotherapy in anaplastic thyroid carcinoma with distant metastasis: A case report. World J Clin Cases 2022; 10:3849-3855. [PMID: 35647147 PMCID: PMC9100742 DOI: 10.12998/wjcc.v10.i12.3849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/02/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC), also called undifferentiated thyroid cancer, is the least common but most aggressive and deadly thyroid gland malignancy of all thyroid cancers[1]. It has poor prognosis, and is the leading cause of death from malignant thyroid tumors. The one-year survival rate is 20%, with a median overall survival (OS) of only 5 mo[2]. The aim of this report is to provide our experience in the diagnosis and treatment of ATC.
CASE SUMMARY A patient with a thyroid mass underwent surgical treatment after developing symptoms of hoarseness. The resected tumor was pathologically diagnosed as ATC. Imaging examination revealed organ and lymph node metastasis. After multiple cycles of chemotherapy and local radiotherapy, the metastases were not relieved and gradually increased in size and new metastases appeared. The patient immediately received immunotherapy combined with targeted therapy. During treatment, immune-related adverse reactions occurred, which were improved after symptomatic treatment, and tolerated by the patient. The OS of the patient was more than 30 mo after immunotherapy combined with targeted therapy.
CONCLUSION For metastatic ATC, surgical treatment, radiotherapy and chemotherapy have no significant effect on remission of the disease. However, immunotherapy has made a breakthrough in the treatment of ATC.
Collapse
Affiliation(s)
- Dong-Xu Ma
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Department of Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Xiu-Ping Ding
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Chi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Peng Shi
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
5
|
Baltrukevich H, Podlewska S. From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Front Pharmacol 2022; 13:844293. [PMID: 35359865 PMCID: PMC8960308 DOI: 10.3389/fphar.2022.844293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.
Collapse
Affiliation(s)
- Hanna Baltrukevich
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
- Faculty of Pharmacy, Chair of Technology and Biotechnology of Medical Remedies, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Ponce LF, Leon K, Valiente PA. Unraveling a Conserved Conformation of the FG Loop upon the Binding of Natural Ligands to the Human and Murine PD1. J Phys Chem B 2022; 126:1441-1446. [PMID: 35167293 DOI: 10.1021/acs.jpcb.1c09463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activation of T cells is normally accompanied by inhibitory mechanisms within which the PD1 receptor stands out. PD1 drives T cells to an unresponsive state called exhaustion, characterized by a markedly decreased capacity to exert effector functions upon binding the ligands PDL1 and PDL2. For this reason, PD1 has become one of the most important targets in cancer immunotherapy. Despite the numerous studies about PD1 signaling modulation, how the PD1 signaling pathway is activated upon the ligands' binding remains an open question. In this work, we used molecular dynamics simulations to assess the differences of the PD1 motion in the free state and in complex with the ligands. We found that, in both human and murine systems, the binding of PDL1 and PDL2 stabilizes the conformation of the FG loop similarly. This result, combined with the conservation of the FG loop residues across species, suggests that the conformation of the FG loop is somehow related to the signaling process. We also found a high similarity between the PD1-PDL1 structures with the variable region of an antibody structure, where the FG loop occupies a similar position to the CDR3 light chain.
Collapse
Affiliation(s)
- Luis F Ponce
- Molecular System Biology Department, Center of Molecular Immunology, Havana, Havana 11600, Cuba.,Center for Molecular Simulations, Biological Science Department, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kalet Leon
- Molecular System Biology Department, Center of Molecular Immunology, Havana, Havana 11600, Cuba
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Havana 10400, Cuba.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
7
|
Pembrolizumab Induces an Unexpected Conformational Change in the CC'-loop of PD-1. Cancers (Basel) 2020; 13:cancers13010005. [PMID: 33375020 PMCID: PMC7792774 DOI: 10.3390/cancers13010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer cells are normally destructed by killer T-cells. However, T-cells expose the PD-1 receptor on their surface, acting as a checkpoint: If it is activated through a special molecule, PD-L1, the T-cell kills itself, ending the attack. Cells often need to present PD-L1 to prevent T-cells from over-aggressive attacks which cause autoimmune disease. There are tumors which also present PD-L1, thereby evading natural clearing, allowing them to continue growing. New anticancer drugs (checkpoint inhibitors: nivolumab and pembrolizumab) disrupt this evasion: They competitively bind to PD-1, without activating it, and re-enable immune tumor destruction. We scrutinize the binding mechanisms via molecular dynamics simulation. We demonstrate that these drugs deform the CC′-loop of the PD-1 in ways differing from those seen with PD-L1 as a binding partner. Pembrolizumab induces a new conformation of the CC′-loop not known to date. These findings might pave the way for the development of new anti-cancer drugs. Abstract To improve cancer immunotherapy, a clearer understanding of key targets such as the immune checkpoint receptor PD-1 is essential. The PD-1 inhibitors nivolumab and pembrolizumab were recently approved by the FDA. The CC′-loop of PD-1 has been identified as a hotspot for drug targeting. Here, we investigate the influence of nivolumab and pembrolizumab on the molecular motion of the CC′-loop of PD-1. We performed molecular dynamics simulations on the complete extracellular domain of PD-1, in complex with PD-L1, and the blocking antibodies nivolumab and pembrolizumab. Conformations of the CC′-loop were analyzed unsupervised with the Daura et al. clustering algorithm and multidimensional scaling. Surprisingly, two conformations found were seen to correspond to the ‘open’ and ‘closed’ conformation of CC′-loop in apo-PD-1, already known from literature. Unsupervised clustering also surprisingly reproduced the natural ligand, PD-L1, exclusively stabilizing the ‘closed’ conformation, as also known from literature. Nivolumab, like PD-L1, was found to shift the equilibrium towards the ‘closed’ conformation, in accordance with the conformational selection model. Pembrolizumab, on the other hand, induced a third conformation of the CC′-loop which has not been described to date: Relative to the conformation ‘open’ the, CC′-loop turned 180° to form a new conformation which we called ‘overturned’. We show that the combination of clustering and multidimensional scaling is a fast, easy, and powerful method in analyzing structural changes in proteins. Possible refined antibodies or new small molecular compounds could utilize the flexibility of the CC′-loop to improve immunotherapy.
Collapse
|
8
|
Abstract
The 3rd edition of the computational methods for the immune system function workshop has been held in San Diego, CA, in conjunction with the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2019) from November 18 to 21, 2019. The workshop has continued its growing tendency, with a total of 18 accepted papers that have been presented in a full day workshop. Among these, the best 10 papers have been selected and extended for presentation in this special issue. The covered topics range from computer-aided identification of T cell epitopes to the prediction of heart rate variability to prevent brain injuries, from In Silico modeling of Tuberculosis and generation of digital patients to machine learning applied to predict type-2 diabetes risk.
Collapse
Affiliation(s)
- Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Pedro A. Reche
- Departamento de Immunología (Microbiología I), Universidad Complutense de Madrid, Facultad de Medicina, Plaza Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|