1
|
Campitelli P, Ross D, Swint-Kruse L, Ozkan SB. Dynamics-based protein network features accurately discriminate neutral and rheostat positions. Biophys J 2024; 123:3612-3626. [PMID: 39277794 PMCID: PMC11494493 DOI: 10.1016/j.bpj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
In some proteins, a unique class of nonconserved positions is characterized by their ability to generate diverse functional outcomes through single amino acid substitutions. Due to their ability to tune protein function, accurately identifying such "rheostat" positions is crucial for protein design, for understanding the impact of mutations observed in humans, and for predicting the evolution of pathogen drug resistance. However, identifying rheostat positions has been challenging, due-in part-to the absence of a clear structural relationship with binding sites. In this study, experimental data from our previous study of the Escherichia coli lactose repressor protein (LacI) was used to identify rheostat positions for which mutations tune in vivo EC50 for the allosteric ligand "IPTG." We next used the rheostat assignments to test the hypothesis that rheostat positions have unique dynamic features that will enable their identification. To that end, we integrated all-atom molecular dynamics simulations with perturbation residue response analysis. Results first revealed distinct dynamic behavior in IPTG-bound LacI compared with apo LacI, which was consistent with IPTG's role as an allosteric inducer. Next, we used a variety of dynamic features to build a classification model that discriminates experimentally characterized rheostat positions in LacI from positions with other types of substitution outcomes. In parallel, we built a second classifier model based on the 3D structural "static" network features of LacI. In comparative studies, the dynamic model better identified rheostat positions that were >8 Å from the binding site. In summary, our study provides insights into the dynamic characteristics of rheostat positions and suggests that models built on dynamic features may be useful for predicting the locations of rheostat positions in a wide range of proteins.
Collapse
Affiliation(s)
- P Campitelli
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - D Ross
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - L Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| | - S B Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
2
|
Cousins HC, Nayar G, Altman RB. Computational Approaches to Drug Repurposing: Methods, Challenges, and Opportunities. Annu Rev Biomed Data Sci 2024; 7:15-29. [PMID: 38598857 DOI: 10.1146/annurev-biodatasci-110123-025333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Drug repurposing refers to the inference of therapeutic relationships between a clinical indication and existing compounds. As an emerging paradigm in drug development, drug repurposing enables more efficient treatment of rare diseases, stratified patient populations, and urgent threats to public health. However, prioritizing well-suited drug candidates from among a nearly infinite number of repurposing options continues to represent a significant challenge in drug development. Over the past decade, advances in genomic profiling, database curation, and machine learning techniques have enabled more accurate identification of drug repurposing candidates for subsequent clinical evaluation. This review outlines the major methodologic classes that these approaches comprise, which rely on (a) protein structure, (b) genomic signatures, (c) biological networks, and (d) real-world clinical data. We propose that realizing the full impact of drug repurposing methodologies requires a multidisciplinary understanding of each method's advantages and limitations with respect to clinical practice.
Collapse
Affiliation(s)
- Henry C Cousins
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| | - Gowri Nayar
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| | - Russ B Altman
- Departments of Genetics, Medicine, and Bioengineering, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA;
| |
Collapse
|
3
|
Fisher JL, Wilk EJ, Oza VH, Gary SE, Howton TC, Flanary VL, Clark AD, Hjelmeland AB, Lasseigne BN. Signature reversion of three disease-associated gene signatures prioritizes cancer drug repurposing candidates. FEBS Open Bio 2024; 14:803-830. [PMID: 38531616 PMCID: PMC11073506 DOI: 10.1002/2211-5463.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Sam E. Gary
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| |
Collapse
|
4
|
Kasimanickam R, Kasimanickam V. MicroRNAs in the Pathogenesis of Preeclampsia-A Case-Control In Silico Analysis. Curr Issues Mol Biol 2024; 46:3438-3459. [PMID: 38666946 PMCID: PMC11048894 DOI: 10.3390/cimb46040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein-protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal-maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Vanmathy Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
5
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Talevi A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol Biol 2024; 2714:1-20. [PMID: 37676590 DOI: 10.1007/978-1-0716-3441-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata, Argentina.
- Argentinean National Council of Scientific and Technical Research (CONICET), La Plata, Argentina.
| |
Collapse
|
7
|
Cunningham M, Pins D, Dezső Z, Torrent M, Vasanthakumar A, Pandey A. PINNED: identifying characteristics of druggable human proteins using an interpretable neural network. J Cheminform 2023; 15:64. [PMID: 37468968 PMCID: PMC10354961 DOI: 10.1186/s13321-023-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The identification of human proteins that are amenable to pharmacologic modulation without significant off-target effects remains an important unsolved challenge. Computational methods have been devised to identify features which distinguish between "druggable" and "undruggable" proteins, finding that protein sequence, tissue and cellular localization, biological role, and position in the protein-protein interaction network are all important discriminant factors. However, many prior efforts to automate the assessment of protein druggability suffer from low performance or poor interpretability. We developed a neural network-based machine learning model capable of generating druggability sub-scores based on each of four distinct categories, combining them to form an overall druggability score. The model achieves an excellent performance in separating drugged and undrugged proteins in the human proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of multiple sub-scores allows the assessment of potential protein targets of interest based on distinct contributors to druggability, leading to a more interpretable and holistic model to identify novel targets.
Collapse
Affiliation(s)
- Michael Cunningham
- Genomics Research Center, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
| | - Danielle Pins
- Information Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Zoltán Dezső
- Genomics Research Center, AbbVie Inc., 1000 Gateway Boulevard, South San Francisco, CA, 94080, USA
| | - Maricel Torrent
- Small Molecule Therapeutics and Platform Technologies, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Aparna Vasanthakumar
- Genomics Research Center, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Abhishek Pandey
- Information Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| |
Collapse
|
8
|
Ginsberg SD, Sharma S, Norton L, Chiosis G. Targeting stressor-induced dysfunctions in protein-protein interaction networks via epichaperomes. Trends Pharmacol Sci 2023; 44:20-33. [PMID: 36414432 PMCID: PMC9789192 DOI: 10.1016/j.tips.2022.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
Diseases are manifestations of complex changes in protein-protein interaction (PPI) networks whereby stressors, genetic, environmental, and combinations thereof, alter molecular interactions and perturb the individual from the level of cells and tissues to the entire organism. Targeting stressor-induced dysfunctions in PPI networks has therefore become a promising but technically challenging frontier in therapeutics discovery. This opinion provides a new framework based upon disrupting epichaperomes - pathological entities that enable dysfunctional rewiring of PPI networks - as a mechanism to revert context-specific PPI network dysfunction to a normative state. We speculate on the implications of recent research in this area for a precision medicine approach to detecting and treating complex diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA; Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Lazar IM, Karcini A, Haueis JRS. Mapping the cell-membrane proteome of the SKBR3/HER2+ cell line to the cancer hallmarks. PLoS One 2022; 17:e0272384. [PMID: 35913978 PMCID: PMC9342750 DOI: 10.1371/journal.pone.0272384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
The hallmarks of biological processes that underlie the development of cancer have been long recognized, yet, existing therapeutic treatments cannot prevent cancer from continuing to be one of the leading causes of death worldwide. This work was aimed at exploring the extent to which the cell-membrane proteins are implicated in triggering cancer hallmark processes, and assessing the ability to pinpoint tumor-specific therapeutic targets through a combined membrane proteome/cancer hallmark perspective. By using GO annotations, a database of human proteins associated broadly with ten cancer hallmarks was created. Cell-membrane cellular subfractions of SKBR3/HER2+ breast cancer cells, used as a model system, were analyzed by high resolution mass spectrometry, and high-quality proteins (FDR<3%) identified by at least two unique peptides were mapped to the cancer hallmark database. Over 1,400 experimentally detected cell-membrane or cell-membrane associated proteins, representing ~18% of the human cell-membrane proteome, could be matched to the hallmark database. Representative membrane constituents such as receptors, CDs, adhesion and transport proteins were distributed over the entire genome and present in every hallmark category. Sustained proliferative signaling/cell cycle, adhesion/tissue invasion, and evasion of immune destruction emerged as prevalent hallmarks represented by the membrane proteins. Construction of protein-protein interaction networks uncovered a high level of connectivity between the hallmark members, with some receptor (EGFR, ERBB2, FGFR, MTOR, CSF1R), antigen (CD44), and adhesion (MUC1) proteins being implicated in most hallmark categories. An illustrative subset of 138 hallmark proteins that included 42 oncogenes, 24 tumor suppressors, 9 oncogene/tumor suppressor, and 45 approved drug targets was subjected to a more in-depth analysis. The existing drug targets were implicated mainly in signaling processes. Network centrality analysis revealed that nodes with high degree, rather than betweenness, represent a good resource for informing the selection of putative novel drug targets. Through heavy involvement in supporting cancer hallmark processes, we show that the functionally diverse and networked landscape of cancer cell-membrane proteins fosters unique opportunities for guiding the development of novel therapeutic interventions, including multi-agent, immuno-oncology and precision medicine applications.
Collapse
Affiliation(s)
- Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- Academy of Integrated Science/Systems Biology, Virginia Tech, Blacksburg, VA, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States of America
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Joshua R. S. Haueis
- Academy of Integrated Science/Systems Biology, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|