1
|
Chow L, Wheat W, Ramirez D, Impastato R, Dow S. Direct comparison of canine and human immune responses using transcriptomic and functional analyses. Sci Rep 2024; 14:2207. [PMID: 38272935 PMCID: PMC10811214 DOI: 10.1038/s41598-023-50340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The canine spontaneous cancer model is increasingly utilized to evaluate new combined cancer immunotherapy approaches. While the major leukocyte subsets and phenotypes are closely related in dogs and humans, the functionality of T cells and antigen presenting cells in the two species has not been previously compared in detail. Such information would be important in interpreting immune response data and evaluating the potential toxicities of new cancer immunotherapies in dogs. To address this question, we used in vitro assays to compare the transcriptomic, cytokine, and proliferative responses of activated canine and human T cells, and also compared responses in activated macrophages. Transcriptomic analysis following T cell activation revealed shared expression of 515 significantly upregulated genes and 360 significantly downregulated immune genes. Pathway analysis identified 33 immune pathways shared between canine and human activated T cells, along with 34 immune pathways that were unique to each species. Activated human T cells exhibited a marked Th1 bias, whereas canine T cells were transcriptionally less active overall. Despite similar proliferative responses to activation, canine T cells produced significantly less IFN-γ than human T cells. Moreover, canine macrophages were significantly more responsive to activation by IFN-γ than human macrophages, as reflected by co-stimulatory molecule expression and TNF-α production. Thus, these studies revealed overall broad similarity in responses to immune activation between dogs and humans, but also uncovered important key quantitative and qualitative differences, particularly with respect to T cell responses, that should be considered in designing and evaluating cancer immunotherapy studies in dogs.
Collapse
Affiliation(s)
- Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| | - William Wheat
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Dominique Ramirez
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Renata Impastato
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Haldar A, Oza VH, DeVoss NS, Clark AD, Lasseigne BN. CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis. Bioinformatics 2023; 39:btad759. [PMID: 38109675 PMCID: PMC10749757 DOI: 10.1093/bioinformatics/btad759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023] Open
Abstract
SUMMARY High-throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), a Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics. AVAILABILITY AND IMPLEMENTATION https://github.com/lasseignelab/CoSIA.
Collapse
Affiliation(s)
- Anisha Haldar
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Vishal H Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Nathaniel S DeVoss
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Amanda D Clark
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Brittany N Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
3
|
Haldar A, Oza VH, DeVoss NS, Clark AD, Lasseigne BN. CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537877. [PMID: 37163017 PMCID: PMC10168259 DOI: 10.1101/2023.04.21.537877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
High throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), an Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics.
Collapse
Affiliation(s)
- Anisha Haldar
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vishal H. Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel S. DeVoss
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amanda D. Clark
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|