1
|
Bragantini J, Theodoro I, Zhao X, Huijben TAPM, Hirata-Miyasaki E, VijayKumar S, Balasubramanian A, Lao T, Agrawal R, Xiao S, Lammerding J, Mehta S, Falcão AX, Jacobo A, Lange M, Royer LA. Ultrack: pushing the limits of cell tracking across biological scales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610652. [PMID: 39282368 PMCID: PMC11398427 DOI: 10.1101/2024.09.02.610652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tracking live cells across 2D, 3D, and multi-channel time-lapse recordings is crucial for understanding tissue-scale biological processes. Despite advancements in imaging technology, achieving accurate cell tracking remains challenging, particularly in complex and crowded tissues where cell segmentation is often ambiguous. We present Ultrack, a versatile and scalable cell-tracking method that tackles this challenge by considering candidate segmentations derived from multiple algorithms and parameter sets. Ultrack employs temporal consistency to select optimal segments, ensuring robust performance even under segmentation uncertainty. We validate our method on diverse datasets, including terabyte-scale developmental time-lapses of zebrafish, fruit fly, and nematode embryos, as well as multi-color and label-free cellular imaging. We show that Ultrack achieves state-of-the-art performance on the Cell Tracking Challenge and demonstrates superior accuracy in tracking densely packed embryonic cells over extended periods. Moreover, we propose an approach to tracking validation via dual-channel sparse labeling that enables high-fidelity ground truth generation, pushing the boundaries of long-term cell tracking assessment. Our method is freely available as a Python package with Fiji and napari plugins and can be deployed in a high-performance computing environment, facilitating widespread adoption by the research community.
Collapse
Affiliation(s)
| | - Ilan Theodoro
- Chan Zuckerberg Biohub, San Francisco, United States
- Institute of Computing - State University of Campinas, Campinas, Brazil
| | - Xiang Zhao
- Chan Zuckerberg Biohub, San Francisco, United States
| | | | | | | | | | - Tiger Lao
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Richa Agrawal
- Weill Institute for Cell and Molecular Biology - Cornell University, Ithaca, United States
| | - Sheng Xiao
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology - Cornell University, Ithaca, United States
- Meinig School of Biomedical Engineering - Cornell University, Ithaca, United States
| | - Shalin Mehta
- Chan Zuckerberg Biohub, San Francisco, United States
| | | | - Adrian Jacobo
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Merlin Lange
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Loïc A Royer
- Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
2
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
3
|
Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. The dynamics along the biointerface between the epithelial and cancer mesenchymal cells: Modeling consideration. Semin Cell Dev Biol 2023; 147:47-57. [PMID: 36631334 DOI: 10.1016/j.semcdb.2022.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Epithelial cancer is the one of most lethal cancer type worldwide. Targeting the early stage of disease would allow dramatic improvements in the survival of cancer patients. The early stage of the disease is related to cancer cell spreading across surrounding healthy epithelium. Consequently, deeper insight into cell dynamics along the biointerface between epithelial and cancer (mesenchymal) cells is necessary in order to control the disease as soon as possible. Cell dynamics along this epithelial-cancer biointerface is the result of the interplay between various biological and physical mechanisms. Despite extensive research devoted to study cancer cell spreading across the epithelium, we still do not understand the physical mechanisms which influences the dynamics along the biointerface. These physical mechanisms are related to the interplay between physical parameters such as: (1) interfacial tension between cancer and epithelial subpopulations, (2) established interfacial tension gradients, (3) the bending rigidity of the biointerface and its impact on the interfacial tension, (4) surface tension of the subpopulations, (5) viscoelasticity caused by collective cell migration, and (6) cell residual stress accumulation. The main goal of this study is to review some of these physical parameters in the context of the epithelial/cancer biointerface elaborated on the model system such as the biointerface between breast epithelial MCF-10A cells and cancer MDA-MB-231 cells and then to incorporate these parameters into a new biophysical model that could describe the dynamics of the biointerface. We conclude by discussing three biophysical scenarios for cell dynamics along the biointerface, which can occur depending on the magnitude of the generated shear stress: a smooth biointerface, a slightly-perturbed biointerface and an intensively-perturbed biointerface in the context of the Kelvin-Helmholtz instability. These scenarios are related to the probability of cancer invasion.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia.
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comte, 16 Route de Gray, Besançon 25000, France
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia
| | - Stéphane P A Bordas
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Torrisi F, Stella G, Guarino FM, Bucolo M. Cell counting and velocity algorithms for hydrodynamic study of unsteady biological flows in micro-channels. BIOMICROFLUIDICS 2023; 17:014105. [PMID: 36714795 PMCID: PMC9878589 DOI: 10.1063/5.0138587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 05/20/2023]
Abstract
In this paper, the combination of two algorithms, a cell counting algorithm and a velocity algorithm based on a Digital Particle Image Velocimetry (DPIV) method, is presented to study the collective behavior of micro-particles in response to hydrodynamic stimuli. A wide experimental campaign was conducted using micro-particles of different natures and diameters (from 5 to 16 μ m ), such as living cells and silica beads. The biological fluids were injected at the inlet of a micro-channel with an external oscillating flow, and the process was monitored in an investigated area, simultaneously, through a CCD camera and a photo-detector. The proposed data analysis procedure is based on the DPIV-based algorithm to extrapolate the micro-particles velocities and a custom counting algorithm to obtain the instantaneous micro-particles number. The counting algorithm was easily integrated with the DPIV-based algorithm, to automatically run the analysis to different videos and to post-process the results in time and frequency domain. The performed experiments highlight the difference in the micro-particles hydrodynamic responses to external stimuli and the possibility to associate them with the micro-particles physical properties. Furthermore, in order to overcome the hardware and software requirements for the development of a real-time approach, it was also investigated the possibility to detect the flows by photo-detector signals as an alternative to camera acquisition. The photo-detector signals were compared with the velocity trends as a proof of concept for further simplification and speed-up of the data acquisition and analysis. The algorithm flexibility underlines the potential of the proposed methodology to be suitable for real-time detection in embedded systems.
Collapse
Affiliation(s)
- Federica Torrisi
- Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy
| | - Giovanna Stella
- Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy
| | - Francesca M. Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy
| |
Collapse
|