1
|
Wang T, Ji Z, Xiao X, Zhu D, Li H, Li X. Identification of reproduction-related genes in the hypothalamus of sheep (Ovis aries) using the nanopore full-length transcriptome sequencing technology. Sci Rep 2024; 14:27884. [PMID: 39537852 PMCID: PMC11561102 DOI: 10.1038/s41598-024-79140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The hypothalamus is the coordination center of the sheep (Ovis aries) endocrine system and plays an important role in the reproductive processes of sheep. However, the specific mechanism by which the hypothalamus affects sheep reproductive performance remains unclear. In this study, the hypothalamus tissues of high-reproduction small-tailed Han sheep and low-reproduction Wadi sheep were collected, and full-length transcriptome sequencing by Oxford Nanopore Technologies (ONT) was performed to explore the key functional genes associated with sheep fecundity. The differentially expressed genes (DEGs) were screened and enriched using DESeq2 software through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Approximately 41.75 million clean reads were obtained from the hypothalamus tissues of high- and low-reproduction sheep, after quality control, 32,194,872 high-quality full-length sequences and 2,114 DEGs were obtained, including 1,247 upregulated genes and 867 downregulated genes (P adjust < 0.05, |log2FC|>1). Some DEGs were enriched in oocyte meiosis, progesterone-mediated oocyte maturation, estrogen signaling pathway, GnRH signaling pathway and other development-related signaling pathways. The constructed protein-protein interaction (PPI) networks identified the reproduction-related genes, such as GSK3B, PPP2R1B, and PPP2CB. The results of this study will enrich and supplement the genomic information available for small-tailed Han sheep and Wadi sheep, as well as expand the understanding of the molecular mechanisms underlying the regulation of animal reproduction by the hypothalamus, and they also provided reference data for further investigations on the mechanism of high reproduction in sheep.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Zhibin Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China.
| | - Xue Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Dejie Zhu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Hengyi Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Xinyu Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| |
Collapse
|
2
|
Hansen PJ. Pressing needs and recent advances to enhance production of embryos in vitro in cattle. Anim Reprod 2024; 21:e20240036. [PMID: 39286365 PMCID: PMC11404885 DOI: 10.1590/1984-3143-ar2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 09/19/2024] Open
Abstract
Embryo transfer in cattle is an increasingly important technique for cattle production. Full attainment of the benefits of the technology will depend on overcoming hurdles to optimal performance using embryos produced in vitro. Given its importance, embryo technology research should become a global research priority for animal reproduction science. Among the goals of that research should be developing methods to increase the proportion of oocytes becoming embryos through optimization of in vitro oocyte maturation and in vitro fertilization, producing an embryo competent to establish and maintain pregnancy after transfer, and increasing recipient fertility through selection, management and pharmacological manipulation. The embryo produced in vitro is susceptible to epigenetic reprogramming and methods should be found to minimize deleterious epigenetic change while altering the developmental program of the resultant calf to increase its health and productivity. There are widening opportunities to rethink the technological basis for much of the current practices for production and transfer of embryos because of explosive advances in fields of bioengineering such as microfluidics, three-dimensional printing of cell culture materials, organoid culture, live-cell imaging, and cryopreservation.
Collapse
Affiliation(s)
- Peter James Hansen
- D.H. Barron Reproductive and Perinatal Biology Research Program, Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Hansen PJ, Estrada-Cortés E, Amaral TF, Ramírez-Hernández R. Meta-analysis to determine efficacy of colony-stimulating factor 2 for improving pregnancy success after embryo transfer in cattle. Theriogenology 2024; 219:126-131. [PMID: 38428334 DOI: 10.1016/j.theriogenology.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Results have been inconsistent as to whether addition of colony stimulating factor 2 (CSF2) to culture medium improves embryo competence for establishment of pregnancy in cattle and humans. The purpose of the current study was to use all available experiments in cattle concerning effects of CSF2 on pregnancy success after transfer into recipient cattle. The approach was to perform a meta-analysis of all published data sets as well as data from an unpublished experiment described for the first time here. Meta-analysis failed to support the hypothesis that addition of CSF2 to embryo culture medium improves competence of bovine blastocysts to increase pregnancy or calving rates after transfer into recipient females. Thus, its general use as a culture medium additive to increase pregnancy success after embryo transfer is not recommended.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA.
| | - Eliab Estrada-Cortés
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, 47600, Mexico
| | - Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA
| | - Rosabel Ramírez-Hernández
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, 32611-0910, FL, USA
| |
Collapse
|
4
|
Amaral TF, Xiao Y, Jeensuk S, Maia TS, Cuellar CJ, Gingerich CA, Scheffler TL, Hansen PJ. Presence of KREMEN receptors for DKK1 in the preimplantation bovine embryo. REPRODUCTION AND FERTILITY 2023; 4:RAF-23-0021. [PMID: 37582174 PMCID: PMC10620448 DOI: 10.1530/raf-23-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023] Open
Abstract
The WNT inhibitory protein DKK1 has been shown to regulate development of the preimplantation embryo to the blastocyst stage. In cattle, DKK1 increases the number of trophectoderm cells that are the precursor of the placenta. DKK1 can affect cells by blocking WNT signaling through its receptors KREMEN1 and KREMEN2. Here it was shown that the mRNA for KREMEN1 and KREMEN2 decline as the embryo advances in development. Nonetheless, immunoreactive KREMEN1 was identified in blastocysts using Western blotting. DKK1 also decreased amount of immunoreactive CTNNB1 in blastocysts, as would be expected if DKK1 was signaling through a KREMEN-mediated pathway. Thus, it is likely that KREMEN1 functions as a receptor for DKK1 in the preimplantation bovine embryo.
Collapse
Affiliation(s)
- Thiago Fernandes Amaral
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Genus PLC/ABS, Mogi Mirim, SP, Brazil
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Tatiane Silva Maia
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Camila J Cuellar
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Chloe A Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Haslin E, Pettigrew EJ, Hickson RE, Kenyon PR, Gedye KR, Lopez-Villalobos N, Jayawardana JMDR, Morris ST, Blair HT. Genome-Wide Association Studies of Live Weight at First Breeding at Eight Months of Age and Pregnancy Status of Ewe Lambs. Genes (Basel) 2023; 14:genes14040805. [PMID: 37107563 PMCID: PMC10137859 DOI: 10.3390/genes14040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study estimated genetic parameters and identified candidate genes associated with live weight, and the occurrence of pregnancy in 1327 Romney ewe lambs using genome-wide association studies. Phenotypic traits considered were the occurrence of pregnancy in ewe lambs and live weight at eight months of age. Genetic parameters were estimated, and genomic variation was assessed using 13,500 single-nucleotide polymorphic markers (SNPs). Ewe lamb live weight had medium genomic heritability and was positively genetically correlated with occurrence of pregnancy. This suggests that selection for heavier ewe lambs is possible and would likely improve the occurrence of pregnancy in ewe lambs. No SNPs were associated with the occurrence of pregnancy; however, three candidate genes were associated with ewe lamb live weight. Tenascin C (TNC), TNF superfamily member 8 (TNFSF8) and Collagen type XXVIII alpha 1 chain (COL28A1) are involved in extracellular matrix organization and regulation of cell fate in the immune system. TNC may be involved in ewe lamb growth, and therefore, could be of interest for selection of ewe lamb replacements. The association between ewe lamb live weight and TNFSF8 and COL28A1 is unclear. Further research is needed using a larger population to determine whether the genes identified can be used for genomic selection of replacement ewe lambs.
Collapse
Affiliation(s)
- Emmanuelle Haslin
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Correspondence:
| | | | | | - Paul R. Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Kristene R. Gedye
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand;
| | - Nicolas Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - J. M. D. R. Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Stephen T. Morris
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Hugh T. Blair
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| |
Collapse
|
6
|
Annes K, de Lima CB, Ispada J, dos Santos ÉC, Fontes PK, Nichi M, Nogueira MFG, Sudano MJ, Milazzotto MP. Insulin-like growth factor-1 (IGF-1) selectively modulates the metabolic and lipid profile of bovine embryos according to their kinetics of development. Theriogenology 2023; 204:1-7. [PMID: 37030172 DOI: 10.1016/j.theriogenology.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Supplementation of culture media with IGF-1 during in vitro culture of embryos has had controversial results over the years. In the present study, we show that differences previously observed in response to IGF addition might be related to intrinsic heterogeneity of the embryos. In other words, the effects exerted by IGF-1 are dependent on the characteristics of the embryos and their ability to modulate metabolism and overcome stressful conditions, such as the ones found in a non-optimized in vitro culture system. To test this hypothesis, in vitro produced bovine embryos with distinct morphokinetics (fast- and slow-cleavage) were submitted to treatment with IGF-1 and then evaluated for embryo production rates, total cell number, gene expression and lipid profile. Our results show that remarkable differences were found when fast and slow embryos treated with IGF-1 were compared. Fast embryos respond by upregulating genes related to mitochondrial function, stress response, and lipid metabolism, whereas slow embryos presented lower mitochondrial efficiency and lipid accumulation. We conclude that indeed the treatment with IGF-1 selectively affects embryonic metabolism according to early morphokinetics phenotypes, and this information is relevant for decision-making in the design of more appropriate in vitro culture systems.
Collapse
|
7
|
Oviduct Transcriptomic Reveals the Regulation of mRNAs and lncRNAs Related to Goat Prolificacy in the Luteal Phase. Animals (Basel) 2022; 12:ani12202823. [PMID: 36290212 PMCID: PMC9597788 DOI: 10.3390/ani12202823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The kidding number is an important reproductive trait in domestic goats. The oviduct, as one of the most major organs, is directly involved in the reproductive process, providing nutrition and a location for early embryonic development. The current study provides genome-wide expression profiles of mRNA and long noncoding RNAs (lncRNAs) expression in Yunshang black goat, a new breed of meat goat bred in China with a high kidding number. During the luteal phases, oviduct mRNAs and lncRNAs associated with high- and low-fecundity Yunshang black goats were identified, and their potential biological functions were predicted using GO, KEGG, and GSEA enrichment analysis. These findings shed light on the oviduct-based prolificacy mechanism in goats. Abstract The oviduct is associated with embryo development and transportation and regulates the pregnancy success of mammals. Previous studies have indicated a molecular mechanism of lncRNAs in gene regulation and reproduction. However, little is known about the function of lncRNAs in the oviduct in modulating goat kidding numbers. Therefore, we combined RNA sequencing (RNA-seq) to map the expression profiles of the oviduct at the luteal phase from high- and low-fecundity goats. The results showed that 2023 differentially expressed mRNAs (DEGs) and 377 differentially expressed lncRNAs (DELs) transcripts were screened, and 2109 regulated lncRNA-mRNA pairs were identified. Subsequently, the genes related to reproduction (IGF1, FGFRL1, and CREB1) and those associated with embryonic development and maturation (DHX34, LHX6) were identified. KEGG analysis of the DEGs revealed that the GnRH- and prolactin-signaling pathways, progesterone-mediated oocyte maturation, and oocyte meiosis were related to reproduction. GSEA and KEGG analyses of the target genes of DELs demonstrated that several biological processes and pathways might interact with oviduct functions and the prolificacy of goats. Furthermore, the co-expression network analysis showed that XLOC_029185, XLOC_040647, and XLOC_090025 were the cis-regulatory elements of the DEGs MUC1, PPP1R9A, and ALDOB, respectively; these factors might be associated with the success of pregnancy and glucolipid metabolism. In addition, the GATA4, LAMA2, SLC39A5, and S100G were trans-regulated by lncRNAs, predominantly mediating oviductal transport to the embryo and energy metabolism. Our findings could pave the way for a better understanding of the roles of mRNAs and lncRNAs in fecundity-related oviduct function in goats.
Collapse
|
8
|
Jeensuk S, Ortega MS, Saleem M, Hawryluk B, Scheffler TL, Hansen PJ. Actions of WNT family member 5A to regulate characteristics of development of the bovine preimplantation embryo†. Biol Reprod 2022; 107:928-944. [PMID: 35765196 PMCID: PMC9562107 DOI: 10.1093/biolre/ioac127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
WNT signaling is important for regulation of embryonic development. The most abundant WNT gene expressed in the bovine endometrium during the preimplantation period is WNT5A. One objective was to determine whether WNT5A regulates competence of the bovine preimplantation embryo to become a blastocyst and alters the number of cells in the inner cell mass and trophectoderm. A second objective was to delineate features of the cell-signaling mechanisms involved in WNT5A actions. WNT5A caused a concentration-dependent increase in the proportion of embryos developing to the blastocyst stage and in the number of inner cell mass cells in the resultant blastocysts. A concentration of 200 ng/mL was most effective, and a higher concentration of 400 ng/mL was not stimulatory. Bovine serum albumin in culture reduced the magnitude of effects of WNT5A on development to the blastocyst stage. WNT5A affected expression of 173 genes at the morula stage; all were upregulated by WNT5A. Many of the upregulated genes were associated with cell signaling. Actions of WNT5A on development to the blastocyst stage were suppressed by a Rho-associated coiled-coil kinase (ROCK) signaling inhibitor, suggesting that WNT5A acts through Ras homology gene family member A (RhoA)/ROCK signaling. Other experiments indicated that actions of WNT5A are independent of the canonical β-catenin signaling pathway and RAC1/c-Jun N-terminal kinase (JNK) signaling. This is the first report outlining the actions of WNT5A to alter the development of the mammalian embryo. These findings provide insights into how embryokines regulate maternal-embryonic communication.
Collapse
Affiliation(s)
- Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - M Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Muhammad Saleem
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Wang X, Chen C, Wang L, Su Y, Li B, Xiao L, Lin Z, Sheng X, Qi X, Ni H, Guo Y. Specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine fate for bovine early implantation. J Reprod Immunol 2022; 153:103677. [PMID: 35907379 DOI: 10.1016/j.jri.2022.103677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Interferon-tau (IFNτ), as an antiluteolytic factor secreted by trophoderm during the pregnancy of ruminants, actually functions by activating the IFNτ receptor 1 (IFNAR1) and IFNτ receptor 2 (IFNAR2). However, it has not been clearly understood how IFNτ-IFNAR cascade regulation processes between the embryo and uterine epithelial cells in ruminants. In this study, we found the expression and location of IFNτ in the bovine blastocysts from different production sources. IFNτ, IFNAR1 and IFNAR2 were all located in the trophoblast cells of the blastocyst. However, the fluorescence intensity of IFNAR1 was consistent with that of IFNτ. Antagonizing the expressions of IFNAR1 and IFNAR2 in embryos and co-culture with endometrial epithelium cells (EECs) reduced the expressions of Integrin αv β3, WNT7A, and ISG15 in EECs. Knocking out IFNAR1 and IFNAR2 reduce the expressions of Integrin αv β3 and WNT7A in EECs, the deletion of IFNAR2 gene has a greater impact than that of IFNAR1 gene. IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- EECs were co-cultured with IVF embryos, the expression of Integrin αv β3 was inhibited, and the inhibition of IFNAR1+/IFNAR2- was much stronger, and the expression of WNT7A was not inhibited. The expressions of Integrin αv β3 and WNT7A did not change significantly after IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- co-culture with PA embryos. All of these results strongly suggest that specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine preparation for bovine early implantation.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Chaolei Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lijuan Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunze Su
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Boyu Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zili Lin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
10
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
Amaral TF, Diaza AG, Heredia D, Melo GD, Estrada-Cortés E, Jensen LM, Pohler K, Hansen PJ. Actions of DKK1 on the preimplantation bovine embryo to affect pregnancy establishment, placental function and postnatal phenotype†. Biol Reprod 2022; 107:945-955. [PMID: 35765194 DOI: 10.1093/biolre/ioac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
One mechanism by which the maternal environment regulates the early embryo is by secretion of cell-signaling molecules. One of these is dickkopf WNT signaling pathway inhibitor 1 (DKK1). Objectives were to A) resolve discrepancies in the literature regarding effects of DKK1 in the bovine embryo on development of trophectoderm (TE) and competence to establish pregnancy after embryo transfer and B) determine whether there are long-term consequences of DKK1 on placental function and postnatal phenotype. Embryos produced in vitro were cultured with vehicle or 100 ng/mL recombinant human DKK1 from day 5 to 7.5 of development (i.e. the morula and blastocyst stages of development). DKK1 increased the number of cells positive for the TE marker CDX2 at day 7.5 of development while having no effect on numbers of cells positive for the inner cell mass marker SOX2. There was no effect of DKK1 on pregnancy or calving rate after transfer of blastocysts produced with Y-sorted semen to either lactating dairy cows or suckling beef cows. Treatment with DKK1 at the morula-to-blastocyst stages programmed placental function, as measured by an effect of DKK1 on plasma concentrations of pregnancy associated glycoproteins and placental lactogen at day 160 of gestation (although not on other days examined). DKK1 treatment also resulted in calves that were heavier at birth as compared to calves derived from control embryos. After birth, DKK1 calves grew slower than controls. Results confirm that DKK1 alters the developmental program of the bovine embryo to affect both prenatal and postnatal phenotype.
Collapse
Affiliation(s)
- Thiago F Amaral
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville FL, USA.,Current position: Zoetis, Kalamazoo, MI, USA
| | - Angela Gonella Diaza
- North Florida Research and Education Center, University of Florida, Marianna, FL, USA
| | - Daniella Heredia
- North Florida Research and Education Center, University of Florida, Marianna, FL, USA
| | - Gabriela D Melo
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Eliab Estrada-Cortés
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville FL, USA.,Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México
| | - Laura M Jensen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville FL, USA
| | - Ky Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville FL, USA
| |
Collapse
|
12
|
Xiao Y, Sosa F, Ross PJ, Diffenderfer KE, Hansen PJ. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts. Biol Open 2021; 10:bio058669. [PMID: 34643229 PMCID: PMC8649639 DOI: 10.1242/bio.058669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine embryonic stem cells (ESC) have features associated with the primed pluripotent state including low expression of one of the core pluripotency transcription factors, NANOG. It has been reported that NANOG expression can be upregulated in porcine ESC by treatment with activin A and the WNT agonist CHIR99021. Accordingly, it was tested whether expression of NANOG and another pluripotency factor SOX2 could be stimulated by activin A and the WNT agonist CHIR99021. Immunoreactive NANOG and SOX2 were analyzed for bovine ESC lines derived under conditions in which activin A and CHIR99021 were added singly or in combination. Activin A enhanced NANOG expression but also reduced SOX2 expression. CHIR99021 depressed expression of both NANOG and SOX2. In a second experiment, activin A enhanced blastocyst development while CHIR99021 treatment impaired blastocyst formation and reduced number of blastomeres. Activin A treatment decreased blastomeres in the blastocyst that were positive for either NANOG or SOX2 but increased those that were CDX2+ and that were GATA6+ outside the inner cell mass. CHIR99021 reduced SOX2+ and NANOG+ blastomeres without affecting the number or percent of blastomeres that were CDX2+ and GATA6+. Results indicate activation of activin A signaling stimulates NANOG expression during self-renewal of bovine ESC but suppresses cells expressing pluripotency markers in the blastocyst and increases cells expressing CDX2. Actions of activin A to promote blastocyst development may involve its role in promoting trophectoderm formation. Furthermore, results demonstrate the negative role of canonical WNT signaling in cattle for pluripotency marker expression in ESC and in formation of the inner cell mass and epiblast during embryonic development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yao Xiao
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| |
Collapse
|
13
|
Copping KJ, Hoare A, McMillen IC, Rodgers RJ, Wallace CR, Perry VEA. Maternal periconceptional and first trimester protein restriction in beef heifers: effects on maternal performance and early fetal growth. Reprod Fertil Dev 2021; 32:835-850. [PMID: 32527374 DOI: 10.1071/rd19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the effect of protein restriction during the periconception (PERI) and first trimester (POST) periods on maternal performance, physiology and early fetal growth. Yearling nulliparous heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri respectively) beginning 60 days before conception. From 24 to 98 days post-conception (dpc), half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost respectively), yielding four groups in a 2×2 factorial design with a common diet until parturition. Protein restriction was associated with lower bodyweight subsequent to reduced (but positive) average daily weight gain (ADG) during the PERI and POST periods. During the POST period, ADG was greater in LPeri than HPeri heifers and tended to be greater in LPost than HPost heifers during the second and third trimester. Bodyweight was similar at term. The pregnancy rate did not differ, but embryo loss between 23 and 36 dpc tended to be greater in LPeri than HPeri heifers. Overall, a greater proportion of male fetuses was detected (at 60 dpc 63.3% male vs 36.7% female). Protein restriction altered maternal plasma urea, non-esterified fatty acids, progesterone, leptin and insulin-like growth factor 1 at critical stages of fetal development. However, profiles varied depending on the sex of the conceptus.
Collapse
Affiliation(s)
- Katrina J Copping
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew Hoare
- South East Vets, 314 Commercial Street, Mount Gambier, SA 5290, Australia
| | | | - Raymond J Rodgers
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia
| | - Charles R Wallace
- Animal and Veterinary Sciences, University of Maine, Orono, ME 04469, USA
| | - Viv E A Perry
- University of Adelaide, Robinson Research Institute, School of Medicine, North Terrace, Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
14
|
Xiao Y, Sosa F, de Armas LR, Pan L, Hansen PJ. An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis. J Dairy Sci 2021; 104:3722-3735. [PMID: 33455782 PMCID: PMC8050830 DOI: 10.3168/jds.2020-19497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Gene expression analysis in preimplantation embryos has been used for answering fundamental questions related to development, prediction of pregnancy outcome, and other topics. Limited amounts of mRNA in preimplantation embryos hinders progress in studying the preimplantation embryo. Here, a method was developed involving direct synthesis and specific-target preamplification (STA) of cDNA for gene expression analysis in single blastocysts. Effective cell lysis and genomic DNA removal steps were incorporated into the method. In addition, conditions for real-time PCR of cDNA generated from these processes were improved. By using this system, reliable embryo sexing results based on expression of sex-chromosome linked genes was demonstrated. Calibration curve analysis of PCR results using the Fluidigm Biomark microfluidic platform (Fluidigm, South San Francisco, CA) was performed to evaluate 96 STA cDNA from single blastocysts. In total, 93.75% of the genes were validated. Robust amplification was detected even when STA cDNA from a single blastocyst was diluted 1,024-fold. Further analysis showed that within-assay variation increased when cycle threshold values exceeded 18. Overall, STA quantitative real-time PCR analysis was shown to be useful for analysis of gene expression of multiple specific targets in single blastocysts.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910
| | - Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Li Pan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
15
|
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genomics 2020; 21:798. [PMID: 33198638 PMCID: PMC7667858 DOI: 10.1186/s12864-020-07206-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sperm miRNAs were reported to regulate spermatogenesis and early embryonic development in some mammals including bovine. The dairy cattle breeding industry now tends to collect semen from younger bulls under high selection pressure at a time when semen quality may be suboptimal compared to adult bulls. Whether the patterns of spermatic miRNAs are affected by paternal age and/or impact early embryogenesis is not clear. Hence, we generated small non-coding RNA libraries of sperm collected from same bulls at 10, 12, and 16 months of age, using 16 months as control for differential expression and functional analysis. RESULTS We firstly excluded all miRNAs present in measurable quantity in oocytes according to the literature. Of the remaining miRNAs, ten sperm-borne miRNAs were significantly differentially expressed in younger bulls (four in the 10 vs 16 months contrast and six in the 12 vs 16 months contrast). Targets of miRNAs were identified and compared to the transcriptomic database of two-cell embryos, to genes related to two-cell competence, and to the transcriptomic database of blastocysts. Ingenuity pathway analysis of the targets of these miRNAs suggested potential influence on the developmental competence of two-cell embryos and on metabolism and protein synthesis in blastocysts. CONCLUSIONS The results showed that miRNA patterns in sperm are affected by the age of the bull and may mediate the effects of paternal age on early embryonic development.
Collapse
Affiliation(s)
- Chongyang Wu
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | | | | | | | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
16
|
Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci 2020; 103:11930-11944. [PMID: 33041033 DOI: 10.3168/jds.2020-19068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Once it enters the uterus at d 4 to 5 after ovulation, the preimplantation bovine embryo is controlled in its development by regulatory signaling molecules from the mother called embryokines. Here, several cell-signaling molecules whose genes are expressed in the endometrium during d 5 to 7 after estrus were tested for the ability to affect the competence of the embryo for further development and the characteristics of the resultant blastocysts. Molecules tested were C-natriuretic peptide (CNP), IL-8, bovine morphogenetic protein 4 (BMP-4), IL-6, and leukemia inhibitory factor (LIF). None of the cell-signaling molecules tested improved the competence of the embryo to become a blastocyst; in fact, BMP-4 decreased development. All molecules modified attributes of the blastocyst formed in culture. In particular, CNP increased the number of cells in the ICM, whereas IL-8 decreased inner cell mass cell numbers and tended to increase the proportion of blastocysts that were hatching or hatched. In addition, BMP-4 decreased the proportion of blastocysts that were hatching. Interleukin-6 and, to a lesser extent, LIF activated the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the inner cell mass, and LIF increased the percent of cells in the blastocyst that were positive for both NANOG and phosphorylated (activated) STAT3. In conclusion, our results indicate that CNP, IL-8, IL-6, LIF, and BMP-4 can modify embryonic development of the cow in a manner that affects characteristics of the resultant blastocyst. Further research is required to understand how these changes in characteristics of the blastocyst would affect competence of the embryo to establish and maintain pregnancy.
Collapse
Affiliation(s)
- Lei Sang
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - W Ortiz
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - Y Xiao
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - E Estrada-Cortes
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México 47600
| | - E A Jannaman
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - P J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
17
|
Zou FW, Yang SZ, Li WY, Liu CY, Liu XH, Hu CH, Liu ZH, Xu S. circRNA_001275 upregulates Wnt7a expression by competitively sponging miR‑370‑3p to promote cisplatin resistance in esophageal cancer. Int J Oncol 2020; 57:151-160. [PMID: 32319613 PMCID: PMC7252462 DOI: 10.3892/ijo.2020.5050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are aberrantly expressed in various tumors and are associated with tumorigenesis. The present study aimed to determine the role of circRNA_001275 in cisplatin‑resistant esophageal cancer. Three pairs of cisplatin‑resistant tissues and corresponding adjacent tissues were collected and subjected to circRNA chip analysis. Additionally, the effect of circRNA_001275 on cisplatin‑resistant cells was investigated. The relationship between circRNA_001275, microRNAs (miRs) and target genes were analyzed using luciferase assays, and validated via reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. The results showed that circRNA_001275 was significantly upregulated in cisplatin‑resistant esophageal cancer tissues and cells (P<0.05). Overexpression of circRNA_001275 promoted the proliferation and invasion, and decreased the apoptosis of cisplatin‑resistant cells. On the other hand, circRNA_001275 silencing inhibited cell proliferation and invasion, and promoted cell apoptosis (P<0.05). Dual‑luciferase reporter assays revealed that circRNA_001275 directly binds to miR‑370‑3p, and that Wnt family member 7A (Wnt7a) is targeted by miR‑370‑3p. RT‑qPCR and western blotting further demonstrated that circRNA_001275 serves as an miR‑370‑3p sponge to upregulate Wnt7a expression. In conclusion, the present study revealed that circRNA_001275 was upregulated in cisplatin‑resistant esophageal cancer and promoted cisplatin resistance by sponging miR‑370‑3p to upregulate Wnt7a expression. Therefore, circRNA_001275 may serve as a potential diagnostic biomarker and therapeutic target for patients with cisplatin‑resistant esophageal cancer.
Collapse
Affiliation(s)
- Fang-Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Shi-Ze Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Wen-Ya Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Chao-Yuan Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xu-Hong Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Chun-Hong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zheng-Hua Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| |
Collapse
|
18
|
Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod 2019; 101:526-537. [PMID: 31220231 PMCID: PMC8127039 DOI: 10.1093/biolre/ioz030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The preimplantation embryo has a remarkable ability to execute its developmental program using regulatory information inherent within itself. Nonetheless, the uterine environment is rich in cell signaling molecules termed embryokines that act on the embryo during the morula-to-blastocyst transition, promoting blastocyst formation and programming the embryo for subsequent developmental events. Programming can not only affect developmental processes important for continuance of development in utero but also affect characteristics of the offspring during postnatal life. Given the importance of embryokines for regulation of embryonic development, it is likely that some causes of infertility involve aberrant secretion of embryokines by the uterus. Embryokines found to regulate development of the bovine embryo include insulin-like growth factor 1, colony stimulating factor 2 (CSF2), and dickkopf WNT signaling pathway inhibitor 1. Embryo responses to CSF2 exhibit sexual dimorphism, suggesting that sex-specific programming of postnatal function is caused by maternal signals acting on the embryo during the preimplantation period that regulate male embryos differently than female embryos.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Paula Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Zona Rural General Paz, Córdoba, Argentina
| |
Collapse
|
19
|
Tríbulo P, Rabaglino MB, Bo MB, Carvalheira LDR, Bishop JV, Hansen TR, Hansen PJ. Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation. Sci Rep 2019; 9:11816. [PMID: 31413296 PMCID: PMC6694114 DOI: 10.1038/s41598-019-48374-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Progesterone regulates the endometrium to support pregnancy establishment and maintenance. In the ruminant, one action of progesterone early in pregnancy is to alter embryonic development and hasten the process of trophoblast elongation around day 14–15 of pregnancy, which is required for maternal recognition of pregnancy. Here we demonstrate that the WNT antagonist DKK1, whose expression is increased by progesterone treatment, can act on the bovine embryo during day 5 to 7.5 of development (the morula to blastocyst stage) to promote embryonic elongation on day 15 of pregnancy. Embryos were produced in vitro and exposed to 0 or 100 ng/ml recombinant human DKK1 from day 5 to 7.5 of culture. Blastocysts were transferred into synchronized recipient cows on day 7.5 (n = 23 for control and 17 for DKK1). On day 15, cows were slaughtered and embryos recovered by flushing the uterus. Embryo recovery was n = 11 for controls (48% recovery) and n = 11 for DKK1 (65% recovery). Except for two DKK1 embryos, all embryos were filamentous. Treatment with DKK1 increased (P = 0.007) the length of filamentous embryos from 43.9 mm to 117.4 mm and the intrauterine content of the maternal recognition of pregnancy signal IFNT (P = 0.01) from 4.9 µg to 16.6 µg. Determination of differentially expressed genes (DEG), using the R environment, revealed 473 DEG at p < 0.05 but none at FDR < 0.05, suggesting that DKK1 did not strongly modify the embryo transcriptome at the time it was measured. However, samples clustered apart in a multidimensional scaling analyisis. Weighted gene co-expression analysis of the transcriptome of filamentous embryos revealed a subset of genes that were related to embryo length, with identification of a significant module of genes in the DKK1 group only. Thus, several of the differences between DKK1 and control groups in gene expression were due to differences in embryo length. In conclusion, DKK1 can act on the morula-to-blastocyst stage embryo to modify subsequent trophoblast elongation. Higher pregnancy rates associated with transfer of DKK1-treated embryos may be due in part to enhancements of trophoblast growth and antiluteolytic signaling through IFNT secretion. Given that progesterone can regulate both timing of trophoblast elongation and DKK1 expression, DKK1 may be a mediator of progesterone effects on embryonic development.
Collapse
Affiliation(s)
- Paula Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Luciano de R Carvalheira
- Departamento de Clínica e Cirugia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|