1
|
Roca M, Eren GG, Böger L, Didenko O, Lo WS, Scholz M, Lightfoot JW. Evolution of sensory systems underlies the emergence of predatory feeding behaviours in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644997. [PMID: 40196577 PMCID: PMC11974876 DOI: 10.1101/2025.03.24.644997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sensory systems are the primary interface between an organism and its environment with changes in selectivity or sensitivity representing key events in behavioural evolution. Here, we explored the molecular modifications influencing sensory perception across the nematode phyla. Pristionchus pacificus is a predatory species and has evolved contact-dependent sensing and teeth-like structures to attack prey. Using mutants defective for mechanosensory neuron function, we found an expanded role for this sensory modality in efficient predation alongside its canonical function in sensing aversive touch. To identify the precise mechanism involved in this tactile divergence we generated mutations in 26 canonical mechanosensory genes and tested their function using a combination of behavioural assays, automated behavioural tracking and machine learning. While mechanosensory defects were observed in several mutants, Ppa-mec-6 mutants specifically also induced predation deficiencies. Previously, a similar phenotype was observed in a chemosensory defective mutant and we found a synergistic influence on predation in mutants lacking both sensory inputs. Importantly, both chemosensory and mechanosensory receptor expression converge on the same environmentally exposed IL2 neurons revealing these as the primary mechanism for sensing prey. Thus, predation evolved through the co-option of both mechanosensory and chemosensory systems which act synergistically to shape the evolution of complex behavioural traits.
Collapse
Affiliation(s)
- Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Güniz Göze Eren
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Leonard Böger
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Olena Didenko
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Wen-Sui Lo
- Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| |
Collapse
|
2
|
Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer RJ. High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:94-111. [PMID: 39822045 PMCID: PMC11788882 DOI: 10.1002/jez.b.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Collapse
Affiliation(s)
- Veysi Piskobulu
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Marina Athanasouli
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Hanh Witte
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Christian Feldhaus
- Max‐Planck Institute for Biology Tübingen, BioOptics FacilityTübingenGermany
| | - Adrian Streit
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
3
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
4
|
Athanasouli M, Akduman N, Röseler W, Theam P, Rödelsperger C. Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota. PLoS Genet 2023; 19:e1010832. [PMID: 37399201 DOI: 10.1371/journal.pgen.1010832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.
Collapse
Affiliation(s)
- Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Nermin Akduman
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Penghieng Theam
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
5
|
Han Z, Sieriebriennikov B, Susoy V, Lo WS, Igreja C, Dong C, Berasategui A, Witte H, Sommer RJ. Horizontally Acquired Cellulases Assist the Expansion of Dietary Range in Pristionchus Nematodes. Mol Biol Evol 2022; 39:msab370. [PMID: 34978575 PMCID: PMC8826503 DOI: 10.1093/molbev/msab370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.
Collapse
Affiliation(s)
- Ziduan Han
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Vladislav Susoy
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Catia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | | | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| |
Collapse
|
6
|
Sun S, Roedelsperger C, Sommer RJ. Single worm transcriptomics identifies a developmental core network of oscillating genes with deep conservation across nematodes. Genome Res 2021; 31:1590-1601. [PMID: 34301622 PMCID: PMC8415380 DOI: 10.1101/gr.275303.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/14/2021] [Indexed: 12/05/2022]
Abstract
High-resolution spatial and temporal maps of gene expression have facilitated a comprehensive understanding of animal development and evolution. In nematodes, the small body size represented a major challenge for such studies, but recent advancements have helped overcome this limitation. Here, we have implemented single worm transcriptomics (SWT) in the nematode model organism Pristionchus pacificus to provide a high-resolution map of the developmental transcriptome. We selected 38 time points from hatching of the J2 larvae to young adults to perform transcriptome analysis over 60 h of postembryonic development. A mean sequencing depth of 4.5 million read pairs allowed the detection of more than 23,135 (80%) of all genes. Nearly 3000 (10%) genes showed oscillatory expression with discrete expression levels, phases, and amplitudes. Gene age analysis revealed an overrepresentation of ancient gene classes among oscillating genes, and around one-third of them have 1:1 orthologs in C. elegans. One important gene family overrepresented among oscillating genes is collagens. Several of these collagen genes are regulated by the developmental switch gene eud-1, indicating a potential function in the regulation of mouth-form plasticity, a key developmental process in this facultative predatory nematode. Together, our analysis provides (1) an updated protocol for SWT in nematodes that is applicable to many microscopic species, (2) a 1- to 2-h high-resolution catalog of P. pacificus gene expression throughout postembryonic development, and (3) a comparative analysis of oscillatory gene expression between the two model organisms P. pacificus and C. elegans and associated evolutionary dynamics.
Collapse
Affiliation(s)
- Shuai Sun
- Max Planck Institute for Developmental Biology
| | | | | |
Collapse
|
7
|
Lu MR, Lai CK, Liao BY, Tsai IJ. Comparative Transcriptomics across Nematode Life Cycles Reveal Gene Expression Conservation and Correlated Evolution in Adjacent Developmental Stages. Genome Biol Evol 2021; 12:1019-1030. [PMID: 32467980 PMCID: PMC7353954 DOI: 10.1093/gbe/evaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Nematodes are highly abundant animals with diverse habitats and lifestyles. Some are free living whereas others parasitize animals or plants, and among the latter, infection abilities change across developmental stages to infect hosts and complete life cycles. To determine the relationship between transcriptome evolution and morphological divergences among nematodes, we compared 48 transcriptomes of different developmental stages across eight nematode species. The transcriptomes were clustered broadly into embryo, larva, and adult stages, with the developmental plastic stages were separated from common larval stages within the larval branch. This suggests that development was the major determining factor after lifestyle changes, such as parasitism, during transcriptome evolution. Such patterns were partly accounted for by tissue-specific genes—such as those in oocytes and the hypodermis—being expressed at different proportions. Although nematodes typically have 3–5 larval stages, the transcriptomes for these stages were found to be highly correlated within each species, suggesting high similarity among larval stages across species. For the Caenorhabditis elegans–Caenorhabditis briggsae and Strongyloides stercoralis–Strongyloides venezuelensis comparisons, we found that ∼50% of genes were expressed at multiple stages, whereas half of their orthologs were also expressed in multiple but different stages. Such frequent changes in expression have resulted in concerted transcriptome evolution across adjacent stages, thus generating species-specific transcriptomes over the course of nematode evolution. Our study provides a first insight into the evolution of nematode transcriptomes beyond embryonic development.
Collapse
Affiliation(s)
- Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Casasa S, Biddle JF, Koutsovoulos GD, Ragsdale EJ. Polyphenism of a Novel Trait Integrated Rapidly Evolving Genes into Ancestrally Plastic Networks. Mol Biol Evol 2021; 38:331-343. [PMID: 32931588 PMCID: PMC7826178 DOI: 10.1093/molbev/msaa235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus. In this species, individuals produce alternative forms of a novel trait—moveable teeth, which in one morph enable predatory feeding—in response to environmental cues. To identify the origins of polyphenism network components, we independently inferred coexpression modules for more conserved transcriptional responses, including in an ancestrally nonpolyphenic nematode species. Further, through genome-wide analyses of these components across the nematode family (Diplogastridae) in which the polyphenism arose, we reconstructed how network components have changed. To achieve this, we assembled and resolved the phylogenetic context for five genomes of species representing the breadth of Diplogastridae and a hypothesized outgroup. We found that gene networks instructing alternative forms arose from ancestral plastic responses to environment, specifically starvation-induced metabolism and the formation of a conserved diapause (dauer) stage. Moreover, loci from rapidly evolving gene families were integrated into these networks with higher connectivity than throughout the rest of the P. pacificus transcriptome. In summary, we show that the modular regulatory outputs of a polyphenic response evolved through the integration of conserved plastic responses into networks with genes of high evolutionary turnover.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | - Joseph F Biddle
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | | | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| |
Collapse
|
9
|
Carstensen HR, Villalon RM, Banerjee N, Hallem EA, Hong RL. Steroid hormone pathways coordinate developmental diapause and olfactory remodeling in Pristionchus pacificus. Genetics 2021; 218:6272519. [PMID: 33963848 DOI: 10.1093/genetics/iyab071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Developmental and behavioral plasticity allow animals to prioritize alternative genetic programs during fluctuating environments. Behavioral remodeling may be acute in animals that interact with host organisms, since reproductive adults and the developmentally arrested larvae often have different ethological needs for chemical stimuli. To understand the genes that coordinate the development and host-seeking behavior, we used the entomophilic nematode Pristionchus pacificus to characterize dauer-constitutive mutants (Daf-c) that inappropriately enter developmental diapause to become dauer larvae. We found two Daf-c loci with dauer-constitutive and cuticle exsheathment phenotypes that can be rescued by the feeding of Δ7-dafachronic acid, and that are dependent on the conserved canonical steroid hormone receptor Ppa-DAF-12. Specifically at one locus, deletions in the sole hydroxysteroid dehydrogenase (HSD) in P. pacificus resulted in Daf-c phenotypes. Ppa-hsd-2 is expressed in the canal-associated neurons (CANs) and excretory cells whose homologous cells in Caenorhabditis elegans are not known to be involved in the dauer decision. While in wildtype only dauer larvae are attracted to host odors, hsd-2 mutant adults show enhanced attraction to the host beetle pheromone, along with ectopic activation of a marker for putative olfactory neurons, Ppa-odr-3. Surprisingly, this enhanced odor attraction acts independently of the Δ7-DA/DAF-12 module, suggesting that Ppa-HSD-2 may be responsible for several steroid hormone products involved in coordinating the dauer decision and host-seeking behavior in P. pacificus.
Collapse
Affiliation(s)
- Heather R Carstensen
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Reinard M Villalon
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Navonil Banerjee
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ray L Hong
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| |
Collapse
|
10
|
Ishita Y, Chihara T, Okumura M. Different combinations of serotonin receptors regulate predatory and bacterial feeding behaviors in the nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2021; 11:6104620. [PMID: 33598706 PMCID: PMC8022940 DOI: 10.1093/g3journal/jkab011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
Feeding behavior is one of the most fundamental behaviors in animals, and regulation of this behavior is critical for proper food intake. The nematode Pristionchus pacificus exhibits dimorphism in feeding behavior, bacterial feeding and predatory feeding on other nematodes, and the latter behavior is assumed to be an evolutionarily novel behavior. Both types of feeding behavior are modulated by serotonin; however, the downstream mechanism that modulates these behaviors is still to be clarified. Here, we focused on serotonin receptors and examined their expression patterns in P. pacificus. We also generated knockout mutants of the serotonin receptors using the CRISPR/Cas9 system and examined feeding behaviors. We found that Ppa-ser-5 mutants and the Ppa-ser-1; Ppa-ser-7 double mutant decreased predation. Detailed observation of the pharyngeal movement revealed that the Ppa-ser-1; Ppa-ser-7 double mutant reduces tooth movement, which is required for efficient predatory feeding. Conversely, Ppa-ser-7 and Ppa-mod-1 mutants decreased bacterial feeding. This study revealed that specific combinations of serotonin receptors are essential for the modulation of these distinct feeding behaviors, providing insight into the evolution of neural pathways to regulate novel feeding behavior.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
11
|
Rödelsperger C, Ebbing A, Sharma DR, Okumura M, Sommer RJ, Korswagen HC. Spatial Transcriptomics of Nematodes Identifies Sperm Cells as a Source of Genomic Novelty and Rapid Evolution. Mol Biol Evol 2021; 38:229-243. [PMID: 32785688 PMCID: PMC8480184 DOI: 10.1093/molbev/msaa207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60-90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the "out of testis" hypothesis that has been previously postulated based on studies in Drosophila and mammals. "Out of testis" genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
| | - Devansh Raj Sharma
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
- Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht,
The Netherlands
| |
Collapse
|
12
|
Athanasouli M, Witte H, Weiler C, Loschko T, Eberhardt G, Sommer RJ, Rödelsperger C. Comparative genomics and community curation further improve gene annotations in the nematode Pristionchus pacificus. BMC Genomics 2020; 21:708. [PMID: 33045985 PMCID: PMC7552371 DOI: 10.1186/s12864-020-07100-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Nematode model organisms such as Caenorhabditis elegans and Pristionchus pacificus are powerful systems for studying the evolution of gene function at a mechanistic level. However, the identification of P. pacificus orthologs of candidate genes known from C. elegans is complicated by the discrepancy in the quality of gene annotations, a common problem in nematode and invertebrate genomics. Results Here, we combine comparative genomic screens for suspicious gene models with community-based curation to further improve the quality of gene annotations in P. pacificus. We extend previous curations of one-to-one orthologs to larger gene families and also orphan genes. Cross-species comparisons of protein lengths, screens for atypical domain combinations and species-specific orphan genes resulted in 4311 candidate genes that were subject to community-based curation. Corrections for 2946 gene models were implemented in a new version of the P. pacificus gene annotations. The new set of gene annotations contains 28,896 genes and has a single copy ortholog completeness level of 97.6%. Conclusions Our work demonstrates the effectiveness of comparative genomic screens to identify suspicious gene models and the scalability of community-based approaches to improve the quality of thousands of gene models. Similar community-based approaches can help to improve the quality of gene annotations in other invertebrate species, including parasitic nematodes.
Collapse
Affiliation(s)
- Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Christian Weiler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
13
|
Rödelsperger C, Athanasouli M, Lenuzzi M, Theska T, Sun S, Dardiry M, Wighard S, Hu W, Sharma DR, Han Z. Crowdsourcing and the feasibility of manual gene annotation: A pilot study in the nematode Pristionchus pacificus. Sci Rep 2019; 9:18789. [PMID: 31827189 PMCID: PMC6906410 DOI: 10.1038/s41598-019-55359-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Nematodes such as Caenorhabditis elegans are powerful systems to study basically all aspects of biology. Their species richness together with tremendous genetic knowledge from C. elegans facilitate the evolutionary study of biological functions using reverse genetics. However, the ability to identify orthologs of candidate genes in other species can be hampered by erroneous gene annotations. To improve gene annotation in the nematode model organism Pristionchus pacificus, we performed a genome-wide screen for C. elegans genes with potentially incorrectly annotated P. pacificus orthologs. We initiated a community-based project to manually inspect more than two thousand candidate loci and to propose new gene models based on recently generated Iso-seq and RNA-seq data. In most cases, misannotation of C. elegans orthologs was due to artificially fused gene predictions and completely missing gene models. The community-based curation raised the gene count from 25,517 to 28,036 and increased the single copy ortholog completeness level from 86% to 97%. This pilot study demonstrates how even small-scale crowdsourcing can drastically improve gene annotations. In future, similar approaches can be used for other species, gene sets, and even larger communities thus making manual annotation of large parts of the genome feasible.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| | - Marina Athanasouli
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tobias Theska
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Shuai Sun
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Mohannad Dardiry
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Sara Wighard
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Wen Hu
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Devansh Raj Sharma
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ziduan Han
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| |
Collapse
|
14
|
Rödelsperger C, Prabh N, Sommer RJ. New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends Genet 2019; 35:914-922. [DOI: 10.1016/j.tig.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023]
|
15
|
Prabh N, Rödelsperger C. De Novo, Divergence, and Mixed Origin Contribute to the Emergence of Orphan Genes in Pristionchus Nematodes. G3 (BETHESDA, MD.) 2019; 9:2277-2286. [PMID: 31088903 PMCID: PMC6643871 DOI: 10.1534/g3.119.400326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
Homology is a fundamental concept in comparative biology. It is extensively used at the sequence level to make phylogenetic hypotheses and functional inferences. Nonetheless, the majority of eukaryotic genomes contain large numbers of orphan genes lacking homologs in other taxa. Generally, the fraction of orphan genes is higher in genomically undersampled clades, and in the absence of closely related genomes any hypothesis about their origin and evolution remains untestable. Previously, we sequenced ten genomes with an underlying ladder-like phylogeny to establish a phylogenomic framework for studying genome evolution in diplogastrid nematodes. Here, we use this deeply sampled data set to understand the processes that generate orphan genes in our focal species Pristionchus pacificus Based on phylostratigraphic analysis and additional bioinformatic filters, we obtained 29 high-confidence candidate genes for which mechanisms of orphan origin were proposed based on manual inspection. This revealed diverse mechanisms including annotation artifacts, chimeric origin, alternative reading frame usage, and gene splitting with subsequent gain of de novo exons. In addition, we present two cases of complete de novo origination from non-coding regions, which represents one of the first reports of de novo genes in nematodes. Thus, we conclude that de novo emergence, divergence, and mixed mechanisms contribute to novel gene formation in Pristionchus nematodes.
Collapse
Affiliation(s)
- Neel Prabh
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, August Thienemann Str. 2, 24306 Plön, Germany
| | - Christian Rödelsperger
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Herrmann M, Kanzaki N, Weiler C, Yoshida K, RÖdelsperger C, Sommer RJ. Two new Species of Pristionchus (Nematoda: Diplogastridae) include the Gonochoristic Sister Species of P. fissidentatus. J Nematol 2019; 51:1-14. [PMID: 31088036 PMCID: PMC6930957 DOI: 10.21307/jofnem-2019-024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
The genus Pristionchus (Kreis, 1932) consists of more than 30 soil nematode species that are often found in association with scarab beetles. Three major radiations have resulted in the "maupasi species group" in America, the "pacificus species group" in Asia, and the "lheritieri species group," which contains species from Europe and Asia. Phylogenetic analysis indicates that a group of three species, including the gonochorists P. elegans and P. bucculentus and the hermaphrodite P. fissidentatus, is basal to the above-mentioned radiations. Two novel species are described here: Pristionchus paulseni sp. n. from Taiwan and P. yamagatae sp. n. from Japan by means of morphology, morphometrics and genome-wide transcriptome sequence analysis. Previous phylotranscriptomic analysis of the complete Pristionchus genus recognized P. paulseni sp. n. as the sister species of P. fissidentatus, and thus its importance for macro-evolutionary studies. Specifically, the gonochorist P. paulseni sp. n. and the hermaphrodite P. fissidentatus form a species pair that is the sister group to all other described Pristionchus species. P. paulseni sp. n. has two distinct mouth forms, supporting the notion that the mouth dimorphism is ancestral in the genus Pristionchus. The genus Pristionchus (Kreis, 1932) consists of more than 30 soil nematode species that are often found in association with scarab beetles. Three major radiations have resulted in the “maupasi species group” in America, the “pacificus species group” in Asia, and the “lheritieri species group,” which contains species from Europe and Asia. Phylogenetic analysis indicates that a group of three species, including the gonochorists P. elegans and P. bucculentus and the hermaphrodite P. fissidentatus, is basal to the above-mentioned radiations. Two novel species are described here: Pristionchus paulseni sp. n. from Taiwan and P. yamagatae sp. n. from Japan by means of morphology, morphometrics and genome-wide transcriptome sequence analysis. Previous phylotranscriptomic analysis of the complete Pristionchus genus recognized P. paulseni sp. n. as the sister species of P. fissidentatus, and thus its importance for macro-evolutionary studies. Specifically, the gonochorist P. paulseni sp. n. and the hermaphrodite P. fissidentatus form a species pair that is the sister group to all other described Pristionchus species. P. paulseni sp. n. has two distinct mouth forms, supporting the notion that the mouth dimorphism is ancestral in the genus Pristionchus.
Collapse
Affiliation(s)
- Matthias Herrmann
- Department of Evolutionary Biology, Spemannstraße 37, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Christian Weiler
- Department of Evolutionary Biology, Spemannstraße 37, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kohta Yoshida
- Department of Evolutionary Biology, Spemannstraße 37, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian RÖdelsperger
- Department of Evolutionary Biology, Spemannstraße 37, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Spemannstraße 37, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
17
|
McLean F, Berger D, Laetsch DR, Schwartz HT, Blaxter M. Improving the annotation of the Heterorhabditis bacteriophora genome. Gigascience 2018; 7:4958981. [PMID: 29617768 PMCID: PMC5906903 DOI: 10.1093/gigascience/giy034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Genome assembly and annotation remain exacting tasks. As the tools available for these tasks improve, it is useful to return to data produced with earlier techniques to assess their credibility and correctness. The entomopathogenic nematode Heterorhabditis bacteriophora is widely used to control insect pests in horticulture. The genome sequence for this species was reported to encode an unusually high proportion of unique proteins and a paucity of secreted proteins compared to other related nematodes. Findings We revisited the H. bacteriophora genome assembly and gene predictions to determine whether these unusual characteristics were biological or methodological in origin. We mapped an independent resequencing dataset to the genome and used the blobtools pipeline to identify potential contaminants. While present (0.2% of the genome span, 0.4% of predicted proteins), assembly contamination was not significant. Conclusions Re-prediction of the gene set using BRAKER1 and published transcriptome data generated a predicted proteome that was very different from the published one. The new gene set had a much reduced complement of unique proteins, better completeness values that were in line with other related species’ genomes, and an increased number of proteins predicted to be secreted. It is thus likely that methodological issues drove the apparent uniqueness of the initial H. bacteriophora genome annotation and that similar contamination and misannotation issues affect other published genome assemblies.
Collapse
Affiliation(s)
- Florence McLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Duncan Berger
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
18
|
Werner MS, Claaßen MH, Renahan T, Dardiry M, Sommer RJ. Adult Influence on Juvenile Phenotypes by Stage-Specific Pheromone Production. iScience 2018; 10:123-134. [PMID: 30513394 PMCID: PMC6279967 DOI: 10.1016/j.isci.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Marc H Claaßen
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
19
|
Rödelsperger C, Röseler W, Prabh N, Yoshida K, Weiler C, Herrmann M, Sommer RJ. Phylotranscriptomics of Pristionchus Nematodes Reveals Parallel Gene Loss in Six Hermaphroditic Lineages. Curr Biol 2018; 28:3123-3127.e5. [DOI: 10.1016/j.cub.2018.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
|
20
|
Moreno E, Lenuzzi M, Rödelsperger C, Prabh N, Witte H, Roeseler W, Riebesell M, Sommer RJ. DAF‐19/RFX controls ciliogenesis and influences oxygen‐induced social behaviors in
Pristionchus pacificus. Evol Dev 2018; 20:233-243. [DOI: 10.1111/ede.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eduardo Moreno
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Neel Prabh
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Hanh Witte
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Waltraud Roeseler
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Metta Riebesell
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| |
Collapse
|
21
|
Werner MS, Sieriebriennikov B, Prabh N, Loschko T, Lanz C, Sommer RJ. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res 2018; 28:1675-1687. [PMID: 30232198 PMCID: PMC6211652 DOI: 10.1101/gr.234872.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Species-specific, new, or "orphan" genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Tobias Loschko
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Prabh N, Roeseler W, Witte H, Eberhardt G, Sommer RJ, Rödelsperger C. Deep taxon sampling reveals the evolutionary dynamics of novel gene families in Pristionchus nematodes. Genome Res 2018; 28:1664-1674. [PMID: 30232197 PMCID: PMC6211646 DOI: 10.1101/gr.234971.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/05/2018] [Indexed: 01/20/2023]
Abstract
The widespread identification of genes without detectable homology in related taxa is a hallmark of genome sequencing projects in animals, together with the abundance of gene duplications. Such genes have been called novel, young, taxon-restricted, or orphans, but little is known about the mechanisms accounting for their origin, age, and mode of evolution. Phylogenomic studies relying on deep and systematic taxon sampling and using the comparative method can provide insight into the evolutionary dynamics acting on novel genes. We used a phylogenomic approach for the nematode model organism Pristionchus pacificus and sequenced six additional Pristionchus and two outgroup species. This resulted in 10 genomes with a ladder-like phylogeny, sequenced in one laboratory using the same platform and analyzed by the same bioinformatic procedures. Our analysis revealed that 68%-81% of genes are assignable to orthologous gene families, the majority of which defined nine age classes with presence/absence patterns that can be explained by single evolutionary events. Contrasting different age classes, we find that older age classes are concentrated at chromosome centers, whereas novel gene families preferentially arise at the periphery, are weakly expressed, evolve rapidly, and have a high propensity of being lost. Over time, they increase in expression and become more constrained. Thus, the detailed phylogenetic resolution allowed a comprehensive characterization of the evolutionary dynamics of Pristionchus genomes indicating that distribution of age classes and their associated differences shape chromosomal divergence. This study establishes the Pristionchus system for future research on the mechanisms that drive the formation of novel genes.
Collapse
Affiliation(s)
- Neel Prabh
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Waltraud Roeseler
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Gabi Eberhardt
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Namdeo S, Moreno E, Rödelsperger C, Baskaran P, Witte H, Sommer RJ. Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development 2018; 145:145/13/dev166272. [PMID: 29967123 DOI: 10.1242/dev.166272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Sulfation of biomolecules, like phosphorylation, is one of the most fundamental and ubiquitous biochemical modifications with important functions during detoxification. This process is reversible, involving two enzyme classes: a sulfotransferase, which adds a sulfo group to a substrate; and a sulfatase that removes the sulfo group. However, unlike phosphorylation, the role of sulfation in organismal development is poorly understood. In this study, we find that two independent sulfation events regulate the development of mouth morphology in the nematode Pristionchus pacificus. This nematode has the ability to form two alternative mouth morphologies depending on environmental cues, an example of phenotypic plasticity. We found that, in addition to a previously described sulfatase, a sulfotransferase is involved in regulating the mouth-form dimorphism in P. pacificus However, it is unlikely that both of these sulfation-associated enzymes act upon the same substrates, as they are expressed in different cell types. Furthermore, animals mutant in genes encoding both enzymes show condition-dependent epistatic interactions. Thus, our study highlights the role of sulfation-associated enzymes in phenotypic plasticity of mouth structures in Pristionchus.
Collapse
Affiliation(s)
- Suryesh Namdeo
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Eduardo Moreno
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Praveen Baskaran
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Rödelsperger C, Meyer JM, Prabh N, Lanz C, Bemm F, Sommer RJ. Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. Cell Rep 2018; 21:834-844. [PMID: 29045848 DOI: 10.1016/j.celrep.2017.09.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 09/24/2017] [Indexed: 01/24/2023] Open
Abstract
The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| | - Jan M Meyer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation. G3-GENES GENOMES GENETICS 2018; 8:353-362. [PMID: 29162683 PMCID: PMC5765362 DOI: 10.1534/g3.117.300281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Collapse
|
26
|
Abstract
Nematodes, such as Caenorhabditis elegans, form one of the most species-rich animal phyla. By now more than 30 nematode genomes have been published allowing for comparative genomic analyses at various different time-scales. The majority of a nematode's gene repertoire is represented by either duplicated or so-called orphan genes of unknown origin. This indicates the importance of mechanisms that generate new genes during the course of evolution. While it is certain that nematodes have acquired genes by horizontal gene transfer from various donors, this process only explains a small portion of the nematode gene content. As evolutionary genomic analyses strongly support that most orphan genes are indeed protein-coding, future studies will have to decide, whether they are result from extreme divergence or evolved de novo from previously noncoding sequences. In this contribution, I summarize several studies investigating gene loss and gain in nematodes and discuss the strengths and weaknesses of individual approaches and datasets. These approaches can be used to ask nematode-specific questions such as associated with the evolution of parasitism or with switches in mating systems, but also can complement studies in other animal phyla like vertebrates and insects to broaden our general view on genome evolution.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany.
| |
Collapse
|
27
|
Kanzaki N, Herrmann M, Yoshida K, Weiler C, Rödelsperger C, Sommer RJ. Samplings of Millipedes in Japan and Scarab Beetles in Hong Kong result in five new Species of Pristionchus (Nematoda: Diplogastridae). J Nematol 2018; 50:587-610. [PMID: 31094161 PMCID: PMC6909306 DOI: 10.21307/jofnem-2018-044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/11/2022] Open
Abstract
The authors describe five new species of Pristionchus from Japan and Hongkong. Scarab beetle samplings in Hongkong identified P. hongkongensis sp. n. and P. neolucani sp. n., representing the first beetle-associated Pristionchus species from China. Surprisingly, samplings of millipedes in Japan revealed a previously unknown association of Pristionchus nematodes with these arthropods. Specifically, the authors found three previously known Pristionchus species, P. arcanus, P. entomophagus, and P. fukushimae on Japanese millipedes. In addition, the authors found three new Pristionchus species on millipedes, which are described as P. riukiariae sp. n., P. degawai sp. n., and P. laevicollis, sp. n., the latter of which was also found on stag beetles. These species are most closely related to P. maxplancki, P. japonicus, and P. quartusdecimus and belong to the pacificus species-complex. The authors describe all species based on morphology, morphometrics, and genome-wide sequence analysis. Mating experiments indicated that all species are reproductively isolated from each other and in contrast to the species of the "pacificus species-complex sensu stricto" they do not form F1 hybrids. The authors describe five new species of Pristionchus from Japan and Hongkong. Scarab beetle samplings in Hongkong identified P. hongkongensis sp. n. and P. neolucani sp. n., representing the first beetle-associated Pristionchus species from China. Surprisingly, samplings of millipedes in Japan revealed a previously unknown association of Pristionchus nematodes with these arthropods. Specifically, the authors found three previously known Pristionchus species, P. arcanus, P. entomophagus, and P. fukushimae on Japanese millipedes. In addition, the authors found three new Pristionchus species on millipedes, which are described as P. riukiariae sp. n., P. degawai sp. n., and P. laevicollis, sp. n., the latter of which was also found on stag beetles. These species are most closely related to P. maxplancki, P. japonicus, and P. quartusdecimus and belong to the pacificus species-complex. The authors describe all species based on morphology, morphometrics, and genome-wide sequence analysis. Mating experiments indicated that all species are reproductively isolated from each other and in contrast to the species of the “pacificus species-complex sensu stricto” they do not form F1 hybrids.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Fushimi, Kyoto 612-0855, Japan
| | - Matthias Herrmann
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Kohta Yoshida
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Christian Weiler
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| |
Collapse
|
28
|
Moreno E, Sieriebriennikov B, Witte H, Rödelsperger C, Lightfoot JW, Sommer RJ. Regulation of hyperoxia-induced social behaviour in Pristionchus pacificus nematodes requires a novel cilia-mediated environmental input. Sci Rep 2017; 7:17550. [PMID: 29242625 PMCID: PMC5730589 DOI: 10.1038/s41598-017-18019-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Social behaviours are frequently utilised for defence and stress avoidance in nature. Both Caenorhabditis elegans and Pristionchus pacificus nematodes display social behaviours including clumping and bordering, to avoid hyperoxic stress conditions. Additionally, both species show natural variation in social behaviours with “social” and “solitary” strains. While the single solitary C. elegans N2 strain has evolved under laboratory domestication due to a gain-of-function mutation in the neuropeptide receptor gene npr-1, P. pacificus solitary strains are commonplace and likely ancestral. P. pacificus therefore provides an opportunity to further our understanding of the mechanisms regulating these complex behaviours and how they evolved within an ecologically relevant system. Using CRISPR/Cas9 engineering, we show that Ppa-npr-1 has minimal influence on social behaviours, indicating independent evolutionary pathways compared to C. elegans. Furthermore, solitary P. pacificus strains show an unexpected locomotive response to hyperoxic conditions, suggesting a novel regulatory mechanism counteracting social behaviours. By utilising both forward and reverse genetic approaches we identified 10 genes of the intraflagellar transport machinery in ciliated neurons that are essential for this inhibition. Therefore, a novel cilia-mediated environmental input adds an additional level of complexity to the regulation of hyperoxia-induced social behaviours in P. pacificus, a mechanism unknown in C. elegans.
Collapse
Affiliation(s)
- Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - James W Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2017; 7:3745-3755. [PMID: 28903981 PMCID: PMC5677172 DOI: 10.1534/g3.117.300263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.
Collapse
|
30
|
Baskaran P, Jaleta TG, Streit A, Rödelsperger C. Duplications and Positive Selection Drive the Evolution of Parasitism-Associated Gene Families in the Nematode Strongyloides papillosus. Genome Biol Evol 2017; 9:790-801. [PMID: 28338804 PMCID: PMC5381570 DOI: 10.1093/gbe/evx040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/29/2022] Open
Abstract
Gene duplication is a major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families.To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages and sexes. Overall, we found that the majority of genes are developmentally regulated and have one-to-one orthologs in the diverged S. ratti genome. Together with the finding of similar expression profiles between S. papillosus and S. ratti, these results indicate a strong evolutionary constraint acting against change at sequence and expression levels. However, the comparison between parasitic and free-living females demonstrates a quite divergent pattern that is mostly due to the previously mentioned expansion in the Astacin and CAP gene families. More detailed phylogenetic analysis of both gene families shows that most members date back to single expansion events early in the Strongyloides lineage and have undergone subfunctionalization resulting in clusters that are highly expressed either in infective larvae or in parasitic females. Finally, we found increased evidence for positive selection in both gene families relative to the genome-wide expectation.In summary, our study reveals first insights into the developmental transcriptomes of S. papillosus and provides a detailed analysis of sequence and expression evolution in parasitism-associated gene families.
Collapse
Affiliation(s)
- Praveen Baskaran
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Tegegn G Jaleta
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Adrian Streit
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
31
|
Rödelsperger C, Menden K, Serobyan V, Witte H, Baskaran P. First insights into the nature and evolution of antisense transcription in nematodes. BMC Evol Biol 2016; 16:165. [PMID: 27549405 PMCID: PMC4994411 DOI: 10.1186/s12862-016-0740-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/11/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The development of multicellular organisms is coordinated by various gene regulatory mechanisms that ensure correct spatio-temporal patterns of gene expression. Recently, the role of antisense transcription in gene regulation has moved into focus of research. To characterize genome-wide patterns of antisense transcription and to study their evolutionary conservation, we sequenced a strand-specific RNA-seq library of the nematode Pristionchus pacificus. RESULTS We identified 1112 antisense configurations of which the largest group represents 465 antisense transcripts (ASTs) that are fully embedded in introns of their host genes. We find that most ASTs show homology to protein-coding genes and are overrepresented in proteomic data. Together with the finding, that expression levels of ASTs and host genes are uncorrelated, this indicates that most ASTs in P. pacificus do not represent non-coding RNAs and do not exhibit regulatory functions on their host genes. We studied the evolution of antisense gene pairs across 20 nematode genomes, showing that the majority of pairs is lineage-specific and even the highly conserved vps-4, ddx-27, and sel-2 loci show abundant structural changes including duplications, deletions, intron gains and loss of antisense transcription. In contrast, host genes in general, are remarkably conserved and encode exceptionally long introns leading to unusually large blocks of conserved synteny. CONCLUSIONS Our study has shown that in P. pacificus antisense transcription as such does not define non-coding RNAs but is rather a feature of highly conserved genes with long introns. We hypothesize that the presence of regulatory elements imposes evolutionary constraint on the intron length, but simultaneously, their large size makes them a likely target for translocation of genomic elements including protein-coding genes that eventually end up as ASTs.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Kevin Menden
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Vahan Serobyan
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany
| | - Praveen Baskaran
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany
| |
Collapse
|
32
|
Prabh N, Rödelsperger C. Are orphan genes protein-coding, prediction artifacts, or non-coding RNAs? BMC Bioinformatics 2016; 17:226. [PMID: 27245157 PMCID: PMC4888513 DOI: 10.1186/s12859-016-1102-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/26/2022] Open
Abstract
Background Current genome sequencing projects reveal substantial numbers of taxonomically restricted, so called orphan genes that lack homology with genes from other evolutionary lineages. However, it is not clear to what extent orphan genes are real, genomic artifacts, or represent non-coding RNAs. Results Here, we use a simple set of assumptions to test the nature of orphan genes. First, a sequence that is transcribed is considered a real biological entity. Second, every sequence that is supported by proteome data or shows a depletion of non-synonymous substitutions is a protein-coding gene. Using genomic, transcriptomic and proteomic data for the nematode Pristionchus pacificus, we show that between 4129–7997 (42–81 %) of predicted orphan genes are expressed and 3818–7545 (39–76 %) of orphan genes are under negative selection. In three cases that exhibited strong evolutionary constraint but lacked expression evidence in 14 RNA-seq samples, we could experimentally validate the predicted gene structures. Comparing different data sets to infer selection on orphan gene clusters, we find that the presence of a closely related genome provides the most powerful resource to robustly identify evidence of negative selection. However, even in the absence of other genomic data, the availability of paralogous sequences was enough to show negative selection in 8–10 % of orphan genes. Conclusions Our study shows that the great majority of previously identified orphan genes in P. pacificus are indeed protein-coding genes. Even though this work represents a case study on a single species, our approach can be transferred to genomic data of other non-model organisms in order to ascertain the protein-coding nature of orphan genes.
Collapse
Affiliation(s)
- Neel Prabh
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Markov GV, Meyer JM, Panda O, Artyukhin AB, Claaßen M, Witte H, Schroeder FC, Sommer RJ. Functional Conservation and Divergence of daf-22 Paralogs in Pristionchus pacificus Dauer Development. Mol Biol Evol 2016; 33:2506-14. [PMID: 27189572 DOI: 10.1093/molbev/msw090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal β-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal β-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution.
Collapse
Affiliation(s)
- Gabriel V Markov
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Jan M Meyer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | | | - Marc Claaßen
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Hanh Witte
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| |
Collapse
|
34
|
Lightfoot JW, Chauhan VM, Aylott JW, Rödelsperger C. Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility. BMC Res Notes 2016; 9:142. [PMID: 26944260 PMCID: PMC4779222 DOI: 10.1186/s13104-016-1886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Background The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. Results To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66 %) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Conclusions Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James W Lightfoot
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| | - Veeren M Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Jonathan W Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| |
Collapse
|