1
|
Franke A, Bayer T, Clemmesen C, Wendt F, Lehmann A, Roth O, Schneider RF. Climate challenges for fish larvae: Interactive multi-stressor effects impair acclimation potential of Atlantic herring larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175659. [PMID: 39181268 DOI: 10.1016/j.scitotenv.2024.175659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Fish early life stages are particularly vulnerable and heavily affected by changing environmental factors. The interactive effects of multiple climate change-related stressors on fish larvae remain, however, largely underexplored. As rising temperatures can increase the abundance and virulence of bacteria, we investigated the combination of a spring heat wave and bacterial exposure on the development of Atlantic herring larvae (Clupea harengus). Eggs and larvae of Western Baltic Spring-spawners were reared at a normal and high temperature ramp and exposed to Vibrio alginolyticus and V. anguillarum, respectively. Subsequently, mRNA and miRNA transcriptomes, microbiota composition, growth and survival were assessed. Both high temperature and V. alginolyticus exposure induced a major downregulation of gene expression likely impeding larval cell proliferation. In contrast, interactive effects of elevated temperature and V. alginolyticus resulted in minimal gene expression changes, indicating an impaired plastic response, which may cause cellular damage reducing survival in later larval stages. The heat wave alone or in combination with V. alginolyticus induced a notable shift in miRNA expression leading to the down- but also upregulation of predicted target genes. Moreover, both increased temperature and the Vibrio exposures significantly altered the larval microbiota composition, with warming reducing microbial richness and diversity. The outcomes of this study highlight the high sensitivity of herring early life stages towards multiple climate change-related stressors. Our results indicate that interactive effects of rapidly changing environmental factors may exceed the larval stress threshold impairing essential acclimation responses, which may contribute to the ongoing recruitment decline of Western Baltic Spring-Spawning herring.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Im Technologiepark 5, 26129 Oldenburg, Germany; Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Catriona Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Fabian Wendt
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Andreas Lehmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| | - Ralf F Schneider
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Scott TJ, Queller DC, Strassmann JE. Complex third-party effects in the Dictyostelium-Paraburkholderia symbiosis: prey bacteria that are eaten, carried or left behind. Proc Biol Sci 2024; 291:20241111. [PMID: 39016123 PMCID: PMC11253208 DOI: 10.1098/rspb.2024.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis between Dictyostelium discoideum social amoeba hosts and Paraburkholderia bacterial symbionts. Symbiosis with inedible Paraburkholderia allows host D. discoideum to carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found that Paraburkholderia infection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University, St. Louis, MO63130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138, USA
| | - David C. Queller
- Department of Biology, Washington University, St. Louis, MO63130, USA
| | | |
Collapse
|
3
|
Stante M, Weiland-Bräuer N, von Hoyningen-Huene AJE, Schmitz RA. Marine bacteriophages disturb the associated microbiota of Aurelia aurita with a recoverable effect on host morphology. Front Microbiol 2024; 15:1356337. [PMID: 38533338 PMCID: PMC10964490 DOI: 10.3389/fmicb.2024.1356337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The concept of the metaorganism describes a multicellular host and its diverse microbial community, which form one biological unit with a combined genetic repertoire that significantly influences health and survival of the host. The present study delved into the emerging field of bacteriophage research within metaorganisms, focusing on the moon jellyfish Aurelia aurita as a model organism. The previously isolated Pseudomonas phage BSwM KMM1 and Citrobacter phages BSwM KMM2 - KMM4 demonstrated potent infectivity on bacteria present in the A. aurita-associated microbiota. In a host-fitness experiment, Baltic Sea subpopulation polyps were exposed to individual phages and a phage cocktail, monitoring polyp survival and morphology, as well as microbiome changes. The following effects were obtained. First, phage exposure in general led to recoverable malformations in polyps without affecting their survival. Second, analyses of the community structure, using 16S rRNA amplicon sequencing, revealed alterations in the associated microbial community in response to phage exposure. Third, the native microbiota is dominated by an uncultured likely novel Mycoplasma species, potentially specific to A. aurita. Notably, this main colonizer showed resilience through the recovery after initial declines, which aligned with abundance changes in Bacteroidota and Proteobacteria, suggesting a dynamic and adaptable microbial community. Overall, this study demonstrates the resilience of the A. aurita metaorganism facing phage-induced perturbations, emphasizing the importance of understanding host-phage interactions in metaorganism biology. These findings have implications for ecological adaptation and conservation in the rapidly changing marine environment, particularly regarding the regulation of blooming species and the health of marine ecosystems during ongoing environmental changes.
Collapse
Affiliation(s)
| | | | | | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
4
|
Chibani CM, Hertel R, Neumann-Schaal M, Goehlich H, Wagner K, Bunk B, Spröer C, Overmann J, Hoppert M, Marten SM, Roth O, Liesegang H, Wendling CC. Vibrio syngnathi sp. nov., a fish pathogen, isolated from the Kiel Fjord. Int J Syst Evol Microbiol 2023; 73. [PMID: 37384381 DOI: 10.1099/ijsem.0.005951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
A new Vibrio strain, K08M4T, was isolated from the broad-nosed pipefish Syngnathus typhle in the Kiel Fjord. Infection experiments revealed that K08M4T was highly virulent for juvenile pipefish. Cells of strain K08M4T were Gram-stain-negative, curved rod-shaped and motile by means of a single polar flagellum. The strain grew aerobically at 9-40° C, at pH 4-10.5 and it tolerated up to 12 % (w/v) NaCl. The most prevalent (>10 %) cellular fatty acids of K08M4T were C16 : 1 ω7c and C16 : 0. Whole-genome comparisons revealed that K08M4T represents a separate evolutionary lineage that is distinct from other Vibrio species and falls within the Splendidus clade. The genome is 4,886,292 bp in size, consists of two circular chromosomes (3,298,328 and 1, 587,964 bp) and comprises 4,178 protein-coding genes and 175 RNA genes. In this study, we describe the phenotypic features of the new isolate and present the annotation and analysis of its complete genome sequence. Based on these data, the new isolate represents a new species for which we propose the name Vibrio syngnathi sp. nov. The type strain is K08M4T (=DSM 109818T=CECT 30086T).
Collapse
Affiliation(s)
- Cynthia Maria Chibani
- Georg-August University Goettingen, Institute of Microbiology and Genetics, 37077 Goettingen, Germany
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Robert Hertel
- Georg-August University Goettingen, Institute of Microbiology and Genetics, 37077 Goettingen, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Henry Goehlich
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Marine Evolutionary Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Kim Wagner
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Marine Evolutionary Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Michael Hoppert
- Georg-August University Goettingen, Institute of Microbiology and Genetics, 37077 Goettingen, Germany
| | - Silke Mareike Marten
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Marine Evolutionary Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Marine Evolutionary Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Heiko Liesegang
- Georg-August University Goettingen, Institute of Microbiology and Genetics, 37077 Goettingen, Germany
| | - Carolin C Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
- ETH Zürich, Institute of Integrative Biology, Universitätsstraße 16, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Crum E, Merchant Z, Ene A, Miller-Ensminger T, Johnson G, Wolfe AJ, Putonti C. Coliphages of the human urinary microbiota. PLoS One 2023; 18:e0283930. [PMID: 37053131 PMCID: PMC10101464 DOI: 10.1371/journal.pone.0283930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its frequent association with urinary tract infections (UTIs), Escherichia coli is the best characterized constituent of the urinary microbiota (urobiome). However, uropathogenic E. coli is just one member of the urobiome. In addition to bacterial constituents, the urobiome of both healthy and symptomatic individuals is home to a diverse population of bacterial viruses (bacteriophages). A prior investigation found that most bacterial species in the urobiome are lysogens, harboring one or more phages integrated into their genome (prophages). Many of these prophages are temperate phages, capable of entering the lytic cycle and thus lysing their bacterial host. This transition from the lysogenic to lytic life cycle can impact the bacterial diversity of the urobiome. While many phages that infect E. coli (coliphages) have been studied for decades in the laboratory setting, the coliphages within the urobiome have yet to be cataloged. Here, we investigated the diversity of urinary coliphages by first identifying prophages in all publicly available urinary E. coli genomes. We detected 3,038 intact prophage sequences, representative of 1,542 unique phages. These phages include both novel species as well as species also found within the gut microbiota. Ten temperate phages were isolated from urinary E. coli strains included in our analysis, and we assessed their ability to infect and lyse urinary E. coli strains. We also included in these host range assays other urinary coliphages and laboratory coliphages. The temperate phages and other urinary coliphages were successful in lysing urinary E. coli strains. We also observed that coliphages from non-urinary sources were most efficient in killing urinary E. coli strains. The two phages, T2 and N4, were capable of lysing 83.5% (n = 86) of strains isolated from females with UTI symptoms. In conclusion, our study finds a diverse community of coliphages in the urobiome, many of which are predicted to be temperate phages, ten of which were confirmed here. Their ability to infect and lyse urinary E. coli strains suggests that urinary coliphages may play a role in modulating the E. coli strain diversity of the urobiome.
Collapse
Affiliation(s)
- Elias Crum
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Zubia Merchant
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Taylor Miller-Ensminger
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
6
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
7
|
Wendling CC, Lange J, Liesegang H, Sieber M, Pöhlein A, Bunk B, Rajkov J, Goehlich H, Roth O, Brockhurst MA. Higher phage virulence accelerates the evolution of host resistance. Proc Biol Sci 2022; 289:20221070. [PMID: 36196537 PMCID: PMC9532999 DOI: 10.1098/rspb.2022.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogens vary strikingly in their virulence and the selection they impose on their hosts. While the evolution of different virulence levels is well studied, the evolution of host resistance in response to different virulence levels is less understood and, at present, mainly based on observations and theoretical predictions with few experimental tests. Increased virulence can increase selection for host resistance evolution if the benefits of avoiding infection outweigh resistance costs. To test this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of two variants of a filamentous phage that differ in their virulence. The bacterial host exhibited two alternative defence strategies: (1) super infection exclusion (SIE), whereby phage-infected cells were immune to subsequent infection at the cost of reduced growth, and (2) surface receptor mutations (SRM), providing resistance to infection by preventing phage attachment. While SIE emerged rapidly against both phages, SRM evolved faster against the high- than the low-virulence phage. Using a mathematical model of our system, we show that increasing virulence strengthens selection for SRM owing to the higher costs of infection suffered by SIE immune hosts. Thus, by accelerating the evolution of host resistance, more virulent phages caused shorter epidemics.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, CHN D 33, 8092 Zürich, Switzerland
| | - Janina Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Heiko Liesegang
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Anja Pöhlein
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38114 Braunschweig, Germany
| | - Jelena Rajkov
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Henry Goehlich
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Olivia Roth
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
9
|
Complete genome analysis of an active prophage of Vibrio alginolyticus. Arch Virol 2021; 166:891-896. [PMID: 33454862 DOI: 10.1007/s00705-020-04941-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023]
Abstract
An active prophage, Vibrio phage ValM-yong1, was isolated from pathogenic Vibrio alginolyticus by mitomycin C induction. This phage is a member of the family Myoviridae and contains a head approximately 90 nm in diameter and a retractable tail approximately 250 nm in length. The genome of the phage is 33,851 bp in length with a G+C content of 45.6%. The noteworthy features of Vibrio phage ValM-yong1 are its flower-like head and genomic mosaicism. Here, we focus on presenting the genomic characterization of the virus.
Collapse
|
10
|
Yang Y, Fan C, Zhao Q. Recent Advances on the Machine Learning Methods in Identifying Phage Virion Proteins. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191203155511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the field of bioinformatics, the prediction of phage virion proteins helps us understand
the interaction between phage and its host cells and promotes the development of new antibacterial
drugs. However, traditional experimental methods to identify phage virion proteins are expensive
and inefficient, more researchers are working to develop new computational methods. In this review,
we summarized the machine learning methods for predicting phage virion proteins during recent
years, and briefly described their advantages and limitations. Finally, some research directions
related to phage virion proteins are listed.
Collapse
Affiliation(s)
- Yingjuan Yang
- School of Mathematics, Liaoning University, Shenyang, 110036, China
| | - Chunlong Fan
- College of Computer Science, Shenyang Aerospace University, Shenyang, 110136, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
11
|
Closely Related Vibrio alginolyticus Strains Encode an Identical Repertoire of Caudovirales-Like Regions and Filamentous Phages. Viruses 2020; 12:v12121359. [PMID: 33261037 PMCID: PMC7761403 DOI: 10.3390/v12121359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Many filamentous vibriophages encode virulence genes that lead to the emergence of pathogenic bacteria. Most genomes of filamentous vibriophages characterized up until today were isolated from human pathogens. Despite genome-based predictions that environmental Vibrios also contain filamentous phages that contribute to bacterial virulence, empirical evidence is scarce. This study aimed to characterize the bacteriophages of a marine pathogen, Vibrio alginolyticus (Kiel-alginolyticus ecotype) and to determine their role in bacterial virulence. To do so, we sequenced the phage-containing supernatant of eight different V. alginolyticus strains, characterized the phages therein and performed infection experiments on juvenile pipefish to assess their contribution to bacterial virulence. We were able to identify two actively replicating filamentous phages. Unique to this study was that all eight bacteria of the Kiel-alginolyticus ecotype have identical bacteriophages, supporting our previously established theory of a clonal expansion of the Kiel-alginolyticus ecotype. We further found that in one of the two filamentous phages, two phage-morphogenesis proteins (Zot and Ace) share high sequence similarity with putative toxins encoded on the Vibrio cholerae phage CTXΦ. The coverage of this filamentous phage correlated positively with virulence (measured in controlled infection experiments on the eukaryotic host), suggesting that this phage contributes to bacterial virulence.
Collapse
|
12
|
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics (Basel) 2020; 9:E493. [PMID: 32784768 PMCID: PMC7460141 DOI: 10.3390/antibiotics9080493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Lara Areal-Hermida
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Ángeles Pichardo-Gallardo
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Raquel Almuiña-González
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Sandra Sánchez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydnay NSN 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| |
Collapse
|
13
|
Chibani CM, Roth O, Liesegang H, Wendling CC. Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements. BMC Genomics 2020; 21:354. [PMID: 32393168 PMCID: PMC7216594 DOI: 10.1186/s12864-020-6735-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. RESULTS We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. CONCLUSION We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.
Collapse
Affiliation(s)
- Cynthia Maria Chibani
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077, Göttingen, Germany
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Duesternbrooker Weg 20, 24105, Kiel, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077, Göttingen, Germany
| | - Carolin Charlotte Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Duesternbrooker Weg 20, 24105, Kiel, Germany.
- Department of Environmental Systems Science, ETH Zürich, Universitätsstraße 16, 8092, Zürich, Switzerland.
| |
Collapse
|
14
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
15
|
Goehlich H, Roth O, Wendling CC. Filamentous phages reduce bacterial growth in low salinities. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191669. [PMID: 31903215 PMCID: PMC6936277 DOI: 10.1098/rsos.191669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Being non-lytic, filamentous phages can replicate at high frequencies and often carry virulence factors, which are important in the evolution and emergence of novel pathogens. However, their net effect on bacterial fitness remains unknown. To understand the ecology and evolution between filamentous phages and their hosts, it is important to assess (i) fitness effects of filamentous phages on their hosts and (ii) how these effects depend on the environment. To determine how the net effect on bacterial fitness by filamentous phages changes across environments, we constructed phage-bacteria infection networks at ambient 15 practical salinity units (PSU) and stressful salinities (11 and 7 PSU) using the marine bacterium, Vibrio alginolyticus and its derived filamentous phages as model system. We observed no significant difference in network structure at 15 and 11 PSU. However, at 7 PSU phages significantly reduced bacterial growth changing network structure. This pattern was mainly driven by a significant increase in bacterial susceptibility. Our findings suggest that filamentous phages decrease bacterial growth, an indirect measure of fitness in stressful environmental conditions, which might impact bacterial communities, alter horizontal gene transfer events and possibly favour the emergence of novel pathogens in environmental Vibrios.
Collapse
Affiliation(s)
- Henry Goehlich
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Carolin C. Wendling
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, CHN D 33, 8092 Zürich, Switzerland
| |
Collapse
|
16
|
Large Phenotypic and Genetic Diversity of Prophages Induced from the Fish Pathogen Vibrio anguillarum. Viruses 2019; 11:v11110983. [PMID: 31653117 PMCID: PMC6893619 DOI: 10.3390/v11110983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023] Open
Abstract
Vibrio anguillarum is a marine pathogenic bacterium that causes vibriosis in fish and shellfish. Although prophage-like sequences have been predicted in V. anguillarum strains, many are not characterized, and it is not known if they retain the functional capacity to form infectious particles that can infect and lysogenize other bacterial hosts. In this study, the genome sequences of 28 V. anguillarum strains revealed 55 different prophage-related elements. Chemical and spontaneous induction allowed a collection of 42 phage isolates, which were classified in seven different groups according to a multiplex PCR assay. One shared prophage sequence, p41 (group III), was present in 17 V. anguillarum strains, suggesting that this specific element is very dynamically exchanged among V. anguillarum populations. Interestingly, the host range of genetically identical phages was highly dependent on the strains used for proliferation, indicating that phenotypic properties of phages were partly regulated by the host. Finally, experimental evidence displayed that the induced phage ɸVa_90-11-287_p41 was able to lysogenize V. anguillarum strain Ba35, and subsequently spontaneously become released from the lysogenized cells, demonstrating an efficient transfer of the phage among V. anguillarum strains. Altogether, the results showed large genetic and functional diversity and broad distribution of prophages in V. anguillarum, and demonstrated the potential of prophages as drivers of evolution in V. anguillarum strains.
Collapse
|
17
|
Classifying the Unclassified: A Phage Classification Method. Viruses 2019; 11:v11020195. [PMID: 30813498 PMCID: PMC6409715 DOI: 10.3390/v11020195] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 01/21/2023] Open
Abstract
This work reports the method ClassiPhage to classify phage genomes using sequence derived taxonomic features. ClassiPhage uses a set of phage specific Hidden Markov Models (HMMs) generated from clusters of related proteins. The method was validated on all publicly available genomes of phages that are known to infect Vibrionaceae. The phages belong to the well-described phage families of Myoviridae, Podoviridae, Siphoviridae, and Inoviridae. The achieved classification is consistent with the assignments of the International Committee on Taxonomy of Viruses (ICTV), all tested phages were assigned to the corresponding group of the ICTV-database. In addition, 44 out of 58 genomes of Vibrio phages not yet classified could be assigned to a phage family. The remaining 14 genomes may represent phages of new families or subfamilies. Comparative genomics indicates that the ability of the approach to identify and classify phages is correlated to the conserved genomic organization. ClassiPhage classifies phages exclusively based on genome sequence data and can be applied on distinct phage genomes as well as on prophage regions within host genomes. Possible applications include (a) classifying phages from assembled metagenomes; and (b) the identification and classification of integrated prophages and the splitting of phage families into subfamilies.
Collapse
|
18
|
Wendling CC, Goehlich H, Roth O. The structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. Biol Lett 2018; 14:rsbl.2018.0320. [PMID: 30429242 DOI: 10.1098/rsbl.2018.0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 11/12/2022] Open
Abstract
With their ability to integrate into the bacterial chromosome and thereby transfer virulence or drug-resistance genes across bacterial species, temperate phage play a key role in bacterial evolution. Thus, it is paramount to understand who infects whom to be able to predict the movement of DNA across the prokaryotic world and ultimately the emergence of novel (drug-resistant) pathogens. We empirically investigated lytic infection patterns among Vibrio spp. from distinct phylogenetic clades and their derived temperate phage. We found that across distantly related clades, infections occur preferentially within modules of the same clade. However, when the genetic distance of the host bacteria decreases, these clade-specific infections disappear. This indicates that the structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany .,Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Henry Goehlich
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Olivia Roth
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| |
Collapse
|
19
|
Huber I, Potapova K, Kuhn A, Schmidt H, Hinrichs J, Rohde C, Beyer W. 1st German Phage Symposium-Conference Report. Viruses 2018; 10:v10040158. [PMID: 29596346 PMCID: PMC5923452 DOI: 10.3390/v10040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
In Germany, phage research and application can be traced back to the beginning of the 20th century. However, with the triumphal march of antibiotics around the world, the significance of bacteriophages faded in most countries, and respective research mainly focused on fundamental questions and niche applications. After a century, we pay tribute to the overuse of antibiotics that led to multidrug resistance and calls for new strategies to combat pathogenic microbes. Against this background, bacteriophages came into the spotlight of researchers and practitioners again resulting in a fast growing “phage community”. In October 2017, part of this community met at the 1st German Phage Symposium to share their knowledge and experiences. The participants discussed open questions and challenges related to phage therapy and the application of phages in general. This report summarizes the presentations given, highlights the main points of the round table discussion and concludes with an outlook for the different aspects of phage application.
Collapse
Affiliation(s)
- Irene Huber
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Katerina Potapova
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Andreas Kuhn
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Herbert Schmidt
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Jörg Hinrichs
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Christine Rohde
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany.
| | - Wolfgang Beyer
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Animal Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
20
|
Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics (Basel) 2018; 7:antibiotics7010015. [PMID: 29495270 PMCID: PMC5872126 DOI: 10.3390/antibiotics7010015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.
Collapse
|
21
|
Harrison E, Brockhurst MA. Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger. Bioessays 2017; 39. [PMID: 28983932 DOI: 10.1002/bies.201700112] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Infection by a temperate phage can lead to death of the bacterial cell, but sometimes these phages integrate into the bacterial chromosome, offering the potential for a more long-lasting relationship to be established. Here we define three major ecological and evolutionary benefits of temperate phage for bacteria: as agents of horizontal gene transfer (HGT), as sources of genetic variation for evolutionary innovation, and as weapons of bacterial competition. We suggest that a coevolutionary perspective is required to understand the roles of temperate phages in bacterial populations.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Arthur Willis Environment Centre, Sheffield, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| |
Collapse
|
22
|
Poirier M, Listmann L, Roth O. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring. Evol Appl 2017; 10:603-615. [PMID: 28616067 PMCID: PMC5469169 DOI: 10.1111/eva.12477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring‐spawning herring (Clupea harengus) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher‐order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus. In addition, larvae were exposed to a Vibrio spp. infection. Life‐history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.
Collapse
Affiliation(s)
- Maude Poirier
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
| | | | - Olivia Roth
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
| |
Collapse
|