1
|
Abalde S, Jondelius U. A Phylogenomic Backbone for Acoelomorpha Inferred From Transcriptomic Data. Syst Biol 2025; 74:70-85. [PMID: 39451056 PMCID: PMC11809588 DOI: 10.1093/sysbio/syae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 10/26/2024] Open
Abstract
Xenacoelomorpha are mostly microscopic, morphologically simple worms, lacking many structures typical of other bilaterians. Xenacoelomorphs-which include three main groups, namely Acoela, Nemertodermatida, and Xenoturbella-have been proposed to be an early diverging Bilateria, sister to protostomes and deuterostomes, but other phylogenomic analyses have recovered this clade nested within the deuterostomes, as sister to Ambulacraria. The position of Xenacoelomorpha within the metazoan tree has understandably attracted a lot of attention, overshadowing the study of phylogenetic relationships within this group. Given that Xenoturbella includes only six species whose relationships are well understood, we decided to focus on the most speciose Acoelomorpha (Acoela + Nemertodermatida). Here, we have sequenced 29 transcriptomes, doubling the number of sequenced species, to infer a backbone tree for Acoelomorpha based on genomic data. The recovered topology is mostly congruent with previous studies. The most important difference is the recovery of Paratomella as the first off-shoot within Acoela, dramatically changing the reconstruction of the ancestral acoel. Besides, we have detected incongruence between the gene trees and the species tree, likely linked to incomplete lineage sorting, and some signal of introgression between the families Dakuidae and Mecynostomidae, which hampers inferring the correct placement of this family and, particularly, of the genus Notocelis. We have also used this dataset to infer for the first time diversification times within Acoelomorpha, which coincide with known bilaterian diversification and extinction events. Given the importance of morphological data in acoelomorph phylogenetics, we tested several partitions and models. Although morphological data failed to recover a robust phylogeny, phylogenetic placement has proven to be a suitable alternative when a reference phylogeny is available.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
2
|
Nakano H, Nakano A, Maeno A, Thorndyke MC. Induced spawning with gamete release from body ruptures during reproduction of Xenoturbella bocki. Commun Biol 2023; 6:172. [PMID: 36805023 PMCID: PMC9938242 DOI: 10.1038/s42003-023-04549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Xenoturbella is a marine invertebrate with a simple body plan, with recent phylogenomic studies suggesting that it forms the phylum Xenacoelomorpha together with the acoelomorphs. The phylogenetic position of the phylum is still under debate, whether it is an early branching bilaterian or a sister group to the Ambulacraria. Phylogenetic traits often appear during development, and larva resembling the cnidarian planula has been reported for Xenoturbella. However, subsequent developmental studies on Xenoturbella have been scarce. This is mainly due to the difficulties in collecting and keeping adult animals, resulting in the lack of data on the reproduction of the animal, such as the breeding season and the spawning pattern. Here we report on the reproduction of X. bocki and confirm that its breeding season is winter. Spawning induction resulted in gametes being released from body ruptures and not the mouth. No evidence supported the animal as a simultaneous hermaphrodite.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan. .,Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178, Sweden.
| | - Ako Nakano
- grid.20515.330000 0001 2369 4728Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025 Japan
| | - Akiteru Maeno
- grid.288127.60000 0004 0466 9350Cell Architecture Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540 Japan
| | - Michael C. Thorndyke
- grid.8761.80000 0000 9919 9582Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178 Sweden
| |
Collapse
|
3
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
4
|
Larouche-Bilodeau C, Cameron CB. Acorn worm ossicle ultrastructure and composition and the origin of the echinoderm skeleton. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220773. [PMID: 36147942 PMCID: PMC9490348 DOI: 10.1098/rsos.220773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 05/02/2023]
Abstract
Here, we describe the shape and mineral composition of ossicles from eight acorn worm species, bringing the total known biomineralizing enteropneusts to 10 and confirming that ossicles are widespread in Enteropneusta. Three general forms were identified including a globular form that occurs in all three major enteropneust families. The biomineral compositions included all three polymorphs of calcium carbonate; calcite, aragonite and vaterite, and low to high magnesium concentrations. Calcite was the most common and characteristic of echinoderm ossicles. Based on these findings we hypothesize that an enteropneust-like ancestor to the Ambulacraria had ectodermal ossicles, formed in an extracellular occluded space bordered by a sheath of sclerocyte cells. The ossicles were microscopic, monotypic globular shaped, calcite ossicles with low to high Mg content and MSP130 proteins. The ossicles lacked intercalation with other ossicles. The function of acorn worm ossicles is unknown, but the position of ossicles in the trunk epithelia and near to the surface suggests predator deterrence, to provide grip on the walls of a burrow or tube, as storage of metabolic waste, or to regulate blood pH, rather than as an endoskeleton function seen in fossil and crown group Echinodermata.
Collapse
Affiliation(s)
| | - Christopher B. Cameron
- Département de sciences biologiques, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
5
|
Larouche-Bilodeau C, Cameron CB. Acorn worm ossicle ultrastructure and composition and the origin of the echinoderm skeleton. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220773. [PMID: 36147942 DOI: 10.5281/zenodo.5103051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 05/18/2023]
Abstract
Here, we describe the shape and mineral composition of ossicles from eight acorn worm species, bringing the total known biomineralizing enteropneusts to 10 and confirming that ossicles are widespread in Enteropneusta. Three general forms were identified including a globular form that occurs in all three major enteropneust families. The biomineral compositions included all three polymorphs of calcium carbonate; calcite, aragonite and vaterite, and low to high magnesium concentrations. Calcite was the most common and characteristic of echinoderm ossicles. Based on these findings we hypothesize that an enteropneust-like ancestor to the Ambulacraria had ectodermal ossicles, formed in an extracellular occluded space bordered by a sheath of sclerocyte cells. The ossicles were microscopic, monotypic globular shaped, calcite ossicles with low to high Mg content and MSP130 proteins. The ossicles lacked intercalation with other ossicles. The function of acorn worm ossicles is unknown, but the position of ossicles in the trunk epithelia and near to the surface suggests predator deterrence, to provide grip on the walls of a burrow or tube, as storage of metabolic waste, or to regulate blood pH, rather than as an endoskeleton function seen in fossil and crown group Echinodermata.
Collapse
Affiliation(s)
| | - Christopher B Cameron
- Département de sciences biologiques, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
6
|
Nakano H, Jimi N, Sasaki T, Kajihara H. Sinking Down or Floating Up? Current State of Taxonomic Studies on Marine Invertebrates in Japan Inferred from the Number of New Species Published between the Years 2003 and 2020. Zoolog Sci 2021; 39:7-15. [DOI: 10.2108/zs210076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Naoto Jimi
- Sugashima Marine Biological Laboratory, Nagoya University, 429-63 Sugashima, Toba, Mie 517-0004, Japan
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Kita-ku N10E8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
7
|
Kakui K, Kano Y. First Complete Mitochondrial Genome of a Tanaidacean Crustacean ( Arctotanais alascensis). Zoolog Sci 2021; 38:267-272. [PMID: 34057352 DOI: 10.2108/zs200167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
We present a complete mitochondrial genomic sequence for the tanaidacean Arctotanais alascensis (Richardson, 1899); this is the first complete mitogenome reported from the order Tanaidacea. The mitogenome is 13,988 bp long and contains 13 protein coding and two ribosomal RNA genes (as is typical for animal mitogenomes), and 21 of 22 transfer RNAs; we did not detect an isoleucine transfer RNA (trnI) gene. The gene order differed markedly from the hypothetical ground pattern for Pancrustacea; only four clusters (trnM + nad2; trnC + trnY + cox1 + trnL2 + cox2; trnD + atp8 + atp6 + cox3; trnH + nad4 + nad4l) ancestrally present were retained. In a malacostracan phylogenetic tree reconstructed from mitogenome data, basal relationships were marginally supported or incongruent with the traditional morphology-based classification and the latest phylogenetic reconstructions from large transcriptomic datasets. Relationships involving more recent divergences were better supported in our tree, suggesting that complete mitogenome sequences are more suitable for phylogenetic analyses within malacostracan orders, presumably including Tanaidacea.
Collapse
Affiliation(s)
- Keiichi Kakui
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan,
| | - Yasunori Kano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| |
Collapse
|
8
|
Miyazawa H, Osigus HJ, Rolfes S, Kamm K, Schierwater B, Nakano H. Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions. Genome Biol Evol 2020; 13:5919586. [PMID: 33031489 PMCID: PMC7813641 DOI: 10.1093/gbe/evaa213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32–43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon–intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hans-Jürgen Osigus
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Sarah Rolfes
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Kai Kamm
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Bernd Schierwater
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
9
|
Ueki T, Arimoto A, Tagawa K, Satoh N. Xenacoelomorph-Specific Hox Peptides: Insights into the Phylogeny of Acoels, Nemertodermatids, and Xenoturbellids. Zoolog Sci 2019; 36:395-401. [DOI: 10.2108/zs190045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/10/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8526, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kuni Tagawa
- Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Nakano H, Miyazawa H. A New Species of Orthonectida That Parasitizes Xenoturbella bocki: Implications for Studies on Xenoturbella. THE BIOLOGICAL BULLETIN 2019; 236:66-73. [PMID: 30707607 DOI: 10.1086/700834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Orthonectida is a phylum of marine invertebrates known to parasitize many invertebrate animals. Because of its simple body plan, it was suggested that it belong to Mesozoa, together with Dicyemida, and that it represent the evolutionary step between unicellular organisms and multicellular animals. Recent studies, including analyses of its genomes, have clarified its phylogenetic position as a member of the Protostomia, but details such as the species diversity within the phylum and how it infects the host remain unknown. Here we report orthonectids discovered from the marine worm Xenoturbella bocki. Orthonectids were found from sections of four xenoturbellid specimens, collected eight years apart. Live females were also discovered on three separate occasions. These recurring instances of orthonectids found from Xenoturbella show that they are parasitic to the animal and not just chance contaminations. Based on morphological characters such as the presence of sexual dimorphism, the arrangement of oocytes within the female body, and the presence of crystalline inclusions in the male epidermal cells, we regard this orthonectid as a new species, Rhopalura xenoturbellae sp. nov. Since orthonectids are present within the xenoturbellid adult body, caution is needed when interpreting morphological, molecular, and experimental data from X. bocki. Further studies on R. xenoturbellae will yield important information on the fundamental biological details of orthonectids that remain unknown.
Collapse
|
11
|
Moroz LL. NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chem Neurosci 2018; 9:1884-1903. [PMID: 29989789 DOI: 10.1021/acschemneuro.8b00100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes (=convergent evolution). Neurons are different not only because they have different functions, but also because neurons and circuits have different genealogies, and perhaps independent origins at the broadest scale from ctenophores and cnidarians to cephalopods and primates. By combining modern phylogenomics, single-neuron sequencing (scRNA-seq), machine learning, single-cell proteomics, and metabolomic across Metazoa, it is possible to reconstruct the evolutionary histories of neurons tracing them to ancestral secretory cells. Comparative data suggest that neurons, and perhaps synapses, evolved at least 2-3 times (in ctenophore, cnidarian and bilateral lineages) during ∼600 million years of animal evolution. There were also several independent events of the nervous system centralization either from a common bilateral/cnidarian ancestor without the bona fide neurons or from the urbilaterian with diffuse, nerve-net type nervous system. From the evolutionary standpoint, (i) a neuron should be viewed as a functional rather than a genetic character, and (ii) any given neural system might be chimeric and composed of different cell lineages with distinct origins and evolutionary histories. The identification of distant neural homologies or examples of convergent evolution among 34 phyla will not only allow the reconstruction of neural systems' evolution but together with single-cell "omic" approaches the proposed synthesis would lead to the "Periodic System of Neurons" with predictive power for neuronal phenotypes and plasticity. Such a phylogenetic classification framework of Neuronal Systematics (NeuroSystematics) might be a conceptual analog of the Periodic System of Chemical Elements. scRNA-seq profiling of all neurons in an entire brain or Brain-seq is now fully achievable in many nontraditional reference species across the entire animal kingdom. Arguably, marine animals are the most suitable for the proposed tasks because the world oceans represent the greatest taxonomic and body-plan diversity.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, Florida 32611, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, Florida 32080, United States
| |
Collapse
|
12
|
Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H. Correction to: A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 2018; 18:83. [PMID: 29879905 PMCID: PMC5991446 DOI: 10.1186/s12862-018-1190-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
After publication of Nakano et al. (2017) [1], the authors became aware of the fact that the new species-group name erected for the two specimens of a Japanese xenoturbellid species in the article is not available because Nakano et al. (2017) [1] does not meet the requirement of the amendment of Article 8.5.3 of the International Code of Zoological Nomenclature (the Code) [2]. The authors therefore describe the two xenoturbellids as a new species again in this correction article. Methods for morphological observation, DNA extraction and sequencing were as described in Nakano et al. (2017) [1]. The holotype and paratype specimens are deposited in the National Museum of Nature and Science, Tsukuba (NSMT), Japan. The DNA sequences obtained were deposited in the International Nucleotide Sequence Database (INSD).
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan.
| | - Hideyuki Miyazawa
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Keiichi Kakui
- Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Akihito Omori
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
- Present address: Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata, 952-2135, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
13
|
Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H. A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 2017; 17:245. [PMID: 29249199 PMCID: PMC5733810 DOI: 10.1186/s12862-017-1080-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan.
| | - Hideyuki Miyazawa
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Keiichi Kakui
- Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Akihito Omori
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.,Present address: Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata, 952-2135, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|