1
|
Andraca-Gómez G, Ordano M, Lira-Noriega A, Osorio-Olvera L, Domínguez CA, Fornoni J. Climatic and soil characteristics account for the genetic structure of the invasive cactus moth Cactoblastis cactorum, in its native range in Argentina. PeerJ 2024; 12:e16861. [PMID: 38361769 PMCID: PMC10868523 DOI: 10.7717/peerj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Background Knowledge of the physical and environmental conditions that may limit the migration of invasive species is crucial to assess the potential for expansion outside their native ranges. The cactus moth, Cactoblastis cactorum, is native to South America (Argentina, Paraguay, Uruguay and Brazil) and has been introduced and invaded the Caribbean and southern United States, among other regions. In North America there is an ongoing process of range expansion threatening cacti biodiversity of the genus Opuntia and the commercial profits of domesticated Opuntia ficus-indica. Methods To further understand what influences the distribution and genetic structure of this otherwise important threat to native and managed ecosystems, in the present study we combined ecological niche modeling and population genetic analyses to identify potential environmental barriers in the native region of Argentina. Samples were collected on the host with the wider distribution range, O. ficus-indica. Results Significant genetic structure was detected using 10 nuclear microsatellites and 24 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and wetlands were mainly located to the west of the Dry Chaco ecoregion. Niche modeling supports that this region has high environmental suitability where the upper soil temperature and humidity, soil carbon content and precipitation were the main environmental factors that explain the presence of the moth. Environmental filters such as the upper soil layer may be critical for pupal survival and consequently for the establishment of populations in new habitats, whereas the presence of available hosts is a necessary conditions for insect survival, upper soil and climatic characteristics will determine the opportunities for a successful establishment.
Collapse
Affiliation(s)
- Guadalupe Andraca-Gómez
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Mariano Ordano
- CONICET-UNT, Fundación Miguel Lillo-Instituto de Ecología Regional, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., CONAHCYT Research Fellow, Xalapa, Veracrúz, México
| | - Luis Osorio-Olvera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - César A. Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
2
|
“Lepidoptera Flies”, but Not Always…Interactions of Caterpillars and Chrysalis with Soil. DIVERSITY 2022. [DOI: 10.3390/d15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lepidoptera, an order of insects traditionally linked to the aerial habitat, are much more diverse in their living environment than the clichéd image we may have of them. The imago stage, which is the most visible in these insects, is not the one that has the most interaction with the environment (usually caterpillars) nor the one that lasts the longest (very often chrysalises). These two stages are often directly related to litter and soil, although only the interaction at the pupal stage seems to follow a phylogenetic logic with two independent evolutionary events for the preference with soil: Use of litter and the upper “O” horizon as protection against predation for the evolutionarily oldest Lepidoptera families, pupation at greater depths (up to 60 centimetres in extreme cases) for the most derived Lepidoptera families; this probably to take advantage of the thermal and moisture buffer provided by the soil. An estimate suggests that about 25% of lepidopteran species worldwide have more or less obligatory interactions with soil.
Collapse
|
3
|
Fite T, Tefera T, Goftishu M, Damte T. Genetic diversity and demographic history of the Old World Bollworm,
Helicoverpa armigera
(Hubner) (Lepidoptera: Noctuidae), in Ethiopia inferred from mitochondrial gene sequences. Ecol Evol 2022; 12:e8907. [PMID: 35592065 PMCID: PMC9102519 DOI: 10.1002/ece3.8907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022] Open
Abstract
The Old World bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a globally distributed agricultural and horticultural insect pest. Despite the economic importance of this insect in Ethiopia, its genetic diversity and demographic history are poorly understood. We examined the nucleotide variation of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment of 74 H. armigera individuals from six collection sites in Ethiopia. We recorded 15 COI haplotypes in H. armigera, ten globally shared and five exclusive to Ethiopia (HaET15, HaET14, HaET10, HaET7, and HaET4). Haplotype HaET1 was the most widely geographically distributed and frequent (71.62%). Analysis of molecular variance (AMOVA) revealed a high and significant level of variation within H. armigera populations (θST = −0.0135). Negative values of the neutrality test and nonsignificant index of mismatch distribution supported the demographic expansion of H. armigera populations in Ethiopia; furthermore, this was also supported by the nonsignificant values of the sum of squared deviations (SSD) and raggedness index (r). The high genetic variation and population expansion of H. armigera have immense implications for devising locally adapted management strategies in area‐wide integrated pest management IPM programs. However, a comprehensive study of H. armigera genetic diversity and population structure using various molecular markers is needed for future confirmation.
Collapse
Affiliation(s)
- Tarekegn Fite
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tadele Tefera
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
| | - Muluken Goftishu
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tebekew Damte
- Debre Zeit Agricultural Research Center Pulses, Oil and Fibre Crops Research Team Ethiopian Institute of Agricultural Research Debre Zeit Oromiya Ethiopia
| |
Collapse
|
4
|
Wang F, Li M, Zheng H, Dong T, Zhang X. A Phylogeographical Analysis of the Beetle Pest Species Callosobruchus chinensis (Linnaeus, 1758) in China. INSECTS 2022; 13:145. [PMID: 35206719 PMCID: PMC8878040 DOI: 10.3390/insects13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
Callosobruchus chinensis (Coleoptera Bruchidae), is a pest of different varieties of legumes. In this paper, a phylogeographical analysis of C. chinensis was conducted to provide knowledge for the prevention and control of C. chinensis. A total of 224 concatenated mitochondrial sequences were obtained from 273 individuals. Suitable habitat shifts were predicted by the distribution modelling (SDM). Phylogeny, genetic structure and population demographic history were analyzed using multiple software. Finally, the least-cost path (LCP) method was used to identify possible dispersal corridors and genetic connectivity. The SDM results suggested that the distribution of C. chinensis experienced expansion and contraction with changing climate. Spatial distribution of mtDNA haplotypes showed there was partial continuity among different geographical populations of C. chinensis, except for the Hohhot (Inner Mongolia) population. Bayesian skyline plots showed that the population had a recent expansion during 0.0125 Ma and 0.025 Ma. The expansion and divergent events were traced back to Quaternary glaciations. The LCP method confirmed that there were no clear dispersal routes. Our findings indicated that climatic cycles of the Pleistocene glaciations, unsuitable climate and geographic isolation played important roles in the genetic differentiation of C. chinensis. Human activities weaken the genetic differentiation between populations. With the change in climate, the suitable areas of C. chinensis will disperse greatly in the future.
Collapse
Affiliation(s)
- Fang Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Min Li
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China;
| | - Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Tian Dong
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| |
Collapse
|
5
|
Cao LJ, Li BY, Chen JC, Zhu JY, Hoffmann AA, Wei SJ. Local climate adaptation and gene flow in the native range of two co-occurring fruit moths with contrasting invasiveness. Mol Ecol 2021; 30:4204-4219. [PMID: 34278603 DOI: 10.1111/mec.16055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Invasive species pose increasing threats to global biodiversity and ecosystems. While previous studies have characterized successful invaders based on ecological traits, characteristics related to evolutionary processes have rarely been investigated. Here we compared gene flow and local adaptation using demographic analyses and outlier tests in two co-occurring moth pests across their common native range of China, one of which (the peach fruit moth, Carposina sasakii) has maintained its native distribution, while the other (the oriental fruit moth, Grapholita molesta) has expanded its range globally during the past century. We found that both species showed a pattern of genetic differentiation and an evolutionary history consistent with a common southwestern origin and northward expansion in their native range. However, for the noninvasive species, genetic differentiation was closely aligned with the environment, and there was a relatively low level of gene flow, whereas in the invasive species, genetic differentiation was associated with geography. Genome scans indicated stronger patterns of climate-associated loci in the noninvasive species. While strong local adaptation and reduced gene flow across its native range may have decreased the invasiveness of C. sasakii, this requires further validation with additional comparisons of invasive and noninvasive species across their native range.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bing-Yan Li
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Kapantaidaki DE, Antonatos S, Evangelou V, Papachristos DP, Milonas P. Genetic and endosymbiotic diversity of Greek populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, vectors of Xylella fastidiosa. Sci Rep 2021; 11:3752. [PMID: 33580178 PMCID: PMC7881138 DOI: 10.1038/s41598-021-83109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
The plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.
Collapse
Affiliation(s)
- Despoina Ev Kapantaidaki
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece.
| | - Spyridon Antonatos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Vasiliki Evangelou
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Panagiotis Milonas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| |
Collapse
|
7
|
Gong Q, Cao LJ, Sun LN, Chen JC, Gong YJ, Pu DQ, Huang Q, Hoffmann AA, Wei SJ. Similar Gut Bacterial Microbiota in Two Fruit-Feeding Moth Pests Collected from Different Host Species and Locations. INSECTS 2020; 11:insects11120840. [PMID: 33260684 PMCID: PMC7759971 DOI: 10.3390/insects11120840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary The peach fruit moth, Carposina sasakii, and the oriental fruit moth, Grapholita molesta are two co-occurring pests in orchards. Larvae of both species bore into fruits and cause damage to fruit production. Understanding the gut microbes, as well as the influencing factors between these co-occurring pests, may provide insight into their occurrence and control. In this study, we found that the two pests shared many bacteria in their gut from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. The composition of the gut microbiota is similar between the two species collected from the same host plant and orchard; however, the gut microbiota of individuals collected from different orchards of the same host plant can be different within pest species. These results show that the two fruit moth pests have similar gut bacteria and varied environment in orchards can influence their gut microbiota. Abstract Numerous gut microbes are associated with insects, but their composition remains largely unknown for many insect groups, along with factors influencing their composition. Here, we compared gut bacterial microbiota of two co-occurring agricultural pests, the peach fruit moth (PFM), Carposina sasakii, and the oriental fruit moth (OFM), Grapholita molesta, collected from different orchards and host plant species. Gut microbiota of both species was mainly composed of bacteria from Proteobacteria, followed by Firmicutes. The two species shared bacteria from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. When we compared two pairs of PFM and OFM populations collected from the same host species and the same orchard, there is no difference in alpha and beta diversity in gut microbiota. When we compared gut microbiota of the same species and host plant from different orchards, alpha and beta diversity was different in populations of PFM collected from two pear orchards but not in other comparisons. Our study suggests that the two pests share many features of gut microbiota and environment in orchards is a main factor influencing their gut microbiota.
Collapse
Affiliation(s)
- Qiang Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Li-Na Sun
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Department of Forestry Protection, Beijing Forestry University, Beijing 100083, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - De-Qiang Pu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qiong Huang
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Ary Anthony Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia;
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Correspondence: ; Tel.: +86-1051503439
| |
Collapse
|
8
|
Cao LJ, Song W, Yue L, Guo SK, Chen JC, Gong YJ, Hoffmann AA, Wei SJ. Chromosome-level genome of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae) provides a resource for evolutionary studies on moths. Mol Ecol Resour 2020; 21:834-848. [PMID: 33098233 DOI: 10.1111/1755-0998.13288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023]
Abstract
The peach fruit moth (PFM), Carposina sasakii Matsumura, is a major phytophagous orchard pest widely distributed across Northeast Asia. Here, we report the chromosome-level genome for the PFM, representing the first genome for the family Carposinidae, from the lepidopteran superfamily Copromorphoidea. The genome was assembled into 404.83 Mb sequences using PacBio long-read and Illumina short-read sequences, including 275 contigs, with a contig N50 length of 2.62 Mb. All contigs were assembled into 31 linkage groups assisted by the Hi-C technique, including 30 autosomes and a Z chromosome. BUSCO analysis showed that 98.3% of genes were complete and 0.4% of genes were fragmented, while 1.3% of genes were missing in the assembled genome. In total, 21,697 protein-coding genes were predicted, of which 84.80% were functionally annotated. Because of the importance of diapause triggered by photoperiod in PFM, five circadian genes in the PFM as well as in the other related species were annotated, and potential genes related to diapause and photoperiodic reaction were also identified from transcriptome sequencing. In addition, manual annotation of detoxification gene families was undertaken and showed a higher number of glutathione S-transferase (GST) gene in PFM than in most other lepidopterans, in contrast to a lower number of uridine diphosphate (UDP)-glycosyltransferase (UGT) gene, carboxyl/cholinesterases (CCE) gene and cytochrome P450 monooxygenase (P450) gene, suggesting different detoxication pathways in this moth. The high-quality genome provides a resource for comparative evolutionary studies of this moth and its relatives within the context of radiations across Lepidoptera.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Song
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Yue
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shao-Kun Guo
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Vic, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
9
|
Liu Y, Shen Z, Yu J, Li Z, Liu X, Xu H. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. PEST MANAGEMENT SCIENCE 2020; 76:1353-1362. [PMID: 31605420 DOI: 10.1002/ps.5646] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Microbiota that live in the gut of insects have a wide range of effects on host nutrition, physiology, and behavior. They may shape the adaptation of their hosts to different habitats and lifestyles. To characterize the gut microbiota of fruit borers comprehensively, we compared bacterial communities among Grapholita molesta, Conogethes punctiferalis, Carposina sasakii, and Cydia pomonella, which are serious lepidopteran pests. We selected G. molesta as a representative pest to more explicitly test the influence of host dietary niche on the insect gut microbiome, and compared the bacterial microbial communities of G. molesta fed different diets (peach shoots and apple) using Illumina high-throughput sequencing technology. RESULTS The results show that Proteobacteria and Firmicutes are dominant in their gut microbiota. The C. sasakii had the highest richness values and G. molesta (shoot-feeding) had the highest diversity, whereas C. pomonella and G. molesta (fruit-feeding) had the lowest bacterial richness and diversity, respectively. The ANOSIM analysis revealed significant differences in the structure of gut microbiota among different insects. In addition, G. molesta with a different feeding diet had significant differences in gut microbiota composition. PICRUSt analysis indicated that most functional prediction categories were related to metabolism. CONCLUSION Our results show that gut microbiota composition is affected significantly not only by host species but also host diets. An enhanced understanding of these herbivore-associated microbial symbionts is essential for understanding the biology and ecology of the host insect, and may offer new possibilities to improve integrated pest-management strategies for efficient control of fruit borers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianmei Yu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huanli Xu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
The Effects of Locality and Host Plant on the Body Size of Aeolothrips intermedius (Thysanoptera: Aeolothripidae) in the Southwest of Poland. INSECTS 2019; 10:insects10090266. [PMID: 31443520 PMCID: PMC6780419 DOI: 10.3390/insects10090266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022]
Abstract
Aeolothrips intermedius is a thrips predator often found in phytocoenoses worldwide. Both the adults and larvae of this species prey on small invertebrates, including phytophagous species from Thysanoptera group. The aim of this study was to determine the morphological variability of the A. intermedius relative to the locality and, indirectly, to the species of host plant. Insects were collected from five localities in southwest Poland and five different host plants. For each of the sexes, six morphometric features were assessed: body length, length of antennae, wing length, head length, head width and length of pronotum. Additionally, the body mass for each individual was estimated. The findings revealed that in females, both the locality and host plant had a significant impact on almost all of these features. In males, the morphometric features under study correlated strongly with locality and only moderately with the host plant. Certain differences were observed between males and females, mainly in terms of antennae length. The results show that A. intermedius exhibits significant variability in this respect, which is indicative of the species’ phenotypic plasticity. The body length was the trait with the most distinct response to the locality and host plant.
Collapse
|
11
|
Yadav S, Stow AJ, Dudaniec RY. Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (Phaulacridium vittatum). Mol Ecol 2019; 28:3395-3412. [DOI: 10.1111/mec.15146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Adam J. Stow
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|