1
|
Araújo Salvino C, Hernandéz-Morales C, Daza JD, Nunes PMS. Comparative anatomy and evolution of the atlantoaxial complex in the fossorial lineage Amphisbaenia (Squamata: Lacertoidea). Anat Rec (Hoboken) 2024; 307:3623-3648. [PMID: 38618897 DOI: 10.1002/ar.25448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
The atlas and axis are the first two vertebrae from the cervical series; these two vertebrae are responsible for neck flexion, extension, and rotation movements, while providing insertion points for muscles and tendons. Amphisbaenia is a group of fossorial squamates known for having four distinctive head shapes, which are related to different excavation methods. However, little is known about the relationship between these different digging patterns and the anatomy and evolution of the atlantoaxial complex. In this study, we used computed microtomography data to describe in detail of the atlantoaxial complex for 15 species, belonging to all six current families of Amphisbaenia. Furthermore, we evaluate evolutionary scenarios of selected characters related to the atlantoaxial complex in the most recent phylogeny for Amphisbaenia, using the criteria of parsimony and maximum likelihood. Our results indicate that the evolutionary pattern of the atlantoaxial complex presents a diversification in its morphology that is not always correlated with the shape of the head. This analysis reinforces the hypothesis of remarkable morphological convergences in the evolutionary history of Amphisbaenia. Additionally, some of the characters studied may represent independent evolution through convergence in some cases (e.g., horizontal axis of the neural column) and parallelism in others (e.g., present or absent from the transverse process).
Collapse
Affiliation(s)
- Clara Araújo Salvino
- Graduate Program in Animal Biology, Department of Zoology, Federal University of Pernambuco, Recife, Brazil
| | | | - Juan Diego Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Pedro M Sales Nunes
- Graduate Program in Animal Biology, Department of Zoology, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Hillan EJ, Roberts LE, Criswell KE, Head JJ. Conservation of rib skeleton regionalization in the homoplastic evolution of the snake-like body form in squamates. Proc Biol Sci 2024; 291:20241160. [PMID: 39379001 DOI: 10.1098/rspb.2024.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Squamates have independently evolved an elongate, limb-reduced body form numerous times. This transition has been proposed to involve either changes to regulatory gene expression or downstream modification of target enhancers to produce a homogeneous, deregionalized axial skeleton. Analysis of vertebral morphology has suggested that regionalization is maintained in snake-like body forms, but morphological variation in the other primary component of the axial skeleton, the dorsal ribs, has not been previously examined. We quantified rib morphology along the anterior-posterior axis in limbed and snake-like squamates to test different regionalization models. We find that the relative position of regional boundaries remains consistent across taxa of differing body types, including in the homoplastic evolution of snake-like body forms. The consistent retention of regional boundaries in this primaxial domain is uncorrelated with more plastic abaxial region markers. Rather than loss of regions, rib shape at the anterior and posterior of the axis converges on those in the middle, resulting in axial regions being distinguishable by allometric shape changes rather than by discrete morphologies. This complexity challenges notions of deregionalization, revealing a nuanced evolutionary history shaped by shared functions.
Collapse
Affiliation(s)
- Emily J Hillan
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lucy E Roberts
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- The Natural History Museum, London, UK
| | - Katharine E Criswell
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Biology, Saint Francis University, Loretto, PA, USA
| | - Jason J Head
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Camaiti M, Hutchinson MN, Hipsley CA, Aguilar R, Black J, Chapple DG, Evans AR. Patterns of girdle shape and their correlates in Australian limb-reduced skinks. Proc Biol Sci 2024; 291:20241653. [PMID: 39353558 PMCID: PMC11444766 DOI: 10.1098/rspb.2024.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
The evolution of limb reduction in squamates is a classic example of convergence, but the skeletal morphological patterns associated with it are underexplored. To provide insights on the biomechanical and developmental consequences of transitions to limb reduction, we use geometric morphometrics to examine the morphology of pectoral and pelvic girdles in 90 species of limb-reduced skinks and their fully limbed relatives. Clavicle shapes converge towards an acute anterior bend when forelimbs are lost but hindlimbs are retained-a morphology typical of sand-swimmers. This may either indicate functional adaptations to locomotion in fine substrates, or a developmental consequence of complete limb loss. The shape of limb-bearing elements of both girdles (coracoid and pelvis) instead closely mirrors limb reduction, becoming more simplified as undulation replaces limbed locomotion. Integration between girdles decreases in taxa lacking elements of the forelimbs but not hindlimbs, indicating differential selection on each girdle in response to distinct locomotory strategies. However, this pattern becomes less clear when considering phylogenetic history, perhaps because it is limited to one specific clade (Lerista). We show how the functional demands of locomotion can induce changes at different levels of organismal organization, including both external and internal structures.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Life Sciences, Natural History Museum, LondonSW7 5BD, UK
| | - Mark N. Hutchinson
- South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Science and Engineering, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | | | - Rocio Aguilar
- Department of Sciences, Museums Victoria, Carlton, Victoria, Australia
| | - Jay Black
- School of Earth Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - David G. Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Paiva CL, Hipsley CA, Müller J, Zaher H, Costa HC. Comparative skull osteology of Amphisbaena arda and Amphisbaena vermicularis (Squamata: Amphisbaenidae). J Morphol 2024; 285:e21702. [PMID: 38693678 DOI: 10.1002/jmor.21702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
The skull anatomy of amphisbaenians directly influences their capacity to burrow and is crucial for the study of their systematics, which ultimately contributes to our comprehension of their evolution and ecology. In this study, we employed three-dimensional X-ray computed tomography to provide a detailed description and comprehensive comparison of the skull anatomy of two amphisbaenian species with similar external morphology, Amphisbaena arda and Amphisbaena vermicularis. Our findings revealed some differences between the species, especially in the sagittal crest of the parietal bone, the ascendant process, and the transverse occipital crest of the occipital complex. We also found intraspecific variation within A. vermicularis, with some specimens displaying morphology that differed from their conspecifics but not from A. arda. The observed intraspecific variation within A. vermicularis cannot be attributed to soil features because all specimens came from the same locality. Specimen size and soil type may play a role in the observed differences between A. arda and A. vermicularis, as the single A. arda specimen is the largest of our sample and soil type and texture differ between the collection sites of the two species.
Collapse
Affiliation(s)
- Carolina L Paiva
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Christy A Hipsley
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo City, São Paulo, Brazil
| | - Henrique C Costa
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
5
|
Bell CJ, Cadena C, Meza A, Rudie L, Lewis PJ. Cranial anatomy of the "round-headed" Amphisbaenian Zygaspis quadrifrons (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. Anat Rec (Hoboken) 2024; 307:495-532. [PMID: 37849246 DOI: 10.1002/ar.25304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 10/19/2023]
Abstract
Amphisbaenians are a poorly understood clade of fossorial lizards. Because of their derived anatomy and relative scarcity, the systematics of the clade and its placement within squamates has long been controversial. Traditional approaches grouped species into four assemblages according to burrowing behavior and cranial morphology, resulting in the recognition of "shovel-headed," "round-headed," "keel-headed," and "spade-headed" morphotypes. Recent phylogenetic analyses do not support the monophyly of the taxa that share those morphotypes. Detailed analyses of cranial osteology were previously accomplished using high-resolution x-ray computed tomography (HRXCT) for the "shovel-headed" Rhineura hatcherii (Rhineruidae) and the "spade-headed" Diplometopon zarudnyi (Trogonophidae). A detailed description of the "round-headed" Amphisbaena alba was previously completed based upon traditional "dry" skeletal specimens. Seven species of the "round-headed" Blanus (Blanidae) were also analyzed using HRXCT. The goal of that project was a comparative analysis of all extant species of Blanus rather than a detailed, bone-by-bone description of one species, but certainly is useful for comparison with another "round-headed" taxon. The "round-headed" morphotype is by far the most common among amphisbaenians and is much in need of further documentation. We use HRXCT imagery to provide additional data about the disparity in cranial morphology among amphisbaenians. Those data allow us to provide another detailed description of a "round-headed" amphisbaenian, the poorly known southern African species Zygaspis quadrifrons. HRXCT is ideal for this relatively rare and diminutive species. We are able to visualize and describe a detailed reconstruction of the entire skull as well as individual cranial elements. Comparisons with other species that were described in similar detail-D. zarudnyi, Spathorhynchus fossorium, R. hatcherii, and A. alba-and to a lesser degree with Blanus, reveal a complex mosaic of morphological features of the skull in Zygaspis. Preliminary data suggest that intraspecific variation is present within Z. quadrifrons, and interspecific variation among other species of Zygaspis may be sufficient for species-level recognition based on cranial osteology. Our description is, therefore, also intended to serve as a baseline for comparative analysis of other specimens of Z. quadrifrons and of other species within the genus.
Collapse
Affiliation(s)
- Christopher J Bell
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Cristhian Cadena
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Antonio Meza
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Lauren Rudie
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Patrick J Lewis
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| |
Collapse
|
6
|
Nishimura R, Hashimoto T, Yano T, Bo H, Maeda K, Okabe M, Miyawaki T. Variations in the Extensor Pollicis Brevis-Extensor Pollicis Longus Tendon Complex. Cureus 2024; 16:e52249. [PMID: 38352083 PMCID: PMC10863478 DOI: 10.7759/cureus.52249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Despite several reports on the running of the extensor pollicis brevis (EPB) tendons, the classification of tendon insertions remains ununified due to differences in reports. This diversity in tendon patterning is attributed to the process of tendon development. In this study, we assessed the running of the EPB tendons of 44 cadaver hands fixed in ethanol/formalin in detail and examined the existing classification method. The specimens were obtained from 15 women and seven men, with an average age of 86 years. Consistent with previous reports, we observed a wide diversity in the running of the EPB tendons. Further, we found that EPB tendon insertions showed diverse variations in the proportion and running of fibers, making it difficult to classify them into independent patterns. It is speculated that the EPB tendon develops through a different process than that of the muscle body of the EPB and that the entire muscle-tendon module of the EPB is evolving. The diversity of the EPB tendons observed in this study may reflect the ongoing process of evolution. In clinical practice, a wide variation in the running of the EPB tendons should be considered.
Collapse
Affiliation(s)
- Reiji Nishimura
- Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, JPN
| | - Tohru Hashimoto
- Anatomy, The Jikei University School of Medicine, Tokyo, JPN
| | - Tohru Yano
- Anatomy, The Jikei University School of Medicine, Tokyo, JPN
| | - Hideaki Bo
- Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, JPN
| | - Kazuhiro Maeda
- Orthopedics, The Jikei University School of Medicine, Tokyo, JPN
| | - Masataka Okabe
- Anatomy, The Jikei University School of Medicine, Tokyo, JPN
| | - Takeshi Miyawaki
- Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, JPN
| |
Collapse
|
7
|
Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion. DIVERSITY 2021. [DOI: 10.3390/d13100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sternum is part of the forelimb appendicular skeleton found in most terrestrial vertebrates and has become adapted across tetrapods for distinctive modes of locomotion. We review the regulatory mechanisms underlying sternum and forelimb development and discuss the possible gene expression modulation that could be responsible for the sternal adaptations and associated reduction in the forelimb programme found in flightless birds. In three phylogenetically divergent vertebrate lineages that all undertake powered flight, a ventral extension of the sternum, named the keel, has evolved independently, most strikingly in volant birds. In flightless birds, however, the sternal keel is absent, and the sternum is flattened. We review studies in a variety of species that have analysed adaptations in sterna morphology that are related to the animal’s mode of locomotion on land, in the sky and in water.
Collapse
|
8
|
Smith‐Paredes D, Griffith O, Fabbri M, Yohe L, Blackburn DG, Siler CD, Bhullar BS, Wagner GP. Hidden limbs in the "limbless skink" Brachymeles lukbani: Developmental observations. J Anat 2021; 239:693-703. [PMID: 33870497 PMCID: PMC8349411 DOI: 10.1111/joa.13447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction in Chalcides and limb reduction in Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake-like species Brachymeles lukbani show no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos of B. lukbani in early stages of development, on the other hand, show a truncated but well-developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole-mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb of B. lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well-developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that "limbless" lizards that possess these muscles may have or have had at least transient developing limbs, as we find in B. lukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation called cryptomelia. The results of this work add to our growing understanding of clade-specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.
Collapse
Affiliation(s)
- Daniel Smith‐Paredes
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Oliver Griffith
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Matteo Fabbri
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Laurel Yohe
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Daniel G. Blackburn
- Department of Biology, and Electron Microscopy CenterTrinity CollegeHartfordCTUSA
| | - Cameron D. Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOKUSA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Günter P. Wagner
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
9
|
Camaiti M, Evans AR, Hipsley CA, Chapple DG. A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev Camb Philos Soc 2021; 96:1035-1050. [PMID: 33538028 DOI: 10.1111/brv.12690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Elongated snake-like bodies associated with limb reduction have evolved multiple times throughout vertebrate history. Limb-reduced squamates (lizards and snakes) account for the vast majority of these morphological transformations, and thus have great potential for revealing macroevolutionary transitions and modes of body-shape transformation. Here we present a comprehensive review on limb reduction, in which we examine and discuss research on these dramatic morphological transitions. Historically, there have been several approaches to the study of squamate limb reduction: (i) definitions of general anatomical principles of snake-like body shapes, expressed as varying relationships between body parts and morphometric measurements; (ii) framing of limb reduction from an evolutionary perspective using morphological comparisons; (iii) defining developmental mechanisms involved in the ontogeny of limb-reduced forms, and their genetic basis; (iv) reconstructions of the evolutionary history of limb-reduced lineages using phylogenetic comparative methods; (v) studies of functional and biomechanical aspects of limb-reduced body shapes; and (vi) studies of ecological and biogeographical correlates of limb reduction. For each of these approaches, we highlight their importance in advancing our understanding, as well as their weaknesses and limitations. Lastly, we provide suggestions to stimulate further studies, in which we underscore the necessity of widening the scope of analyses, and of bringing together different perspectives in order to understand better these morphological transitions and their evolution. In particular, we emphasise the importance of investigating and comparing the internal morphology of limb-reduced lizards in contrast to external morphology, which will be the first step in gaining a deeper insight into body-shape variation.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Alistair R Evans
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Sciences, Museums Victoria, 11 Nicholson St, Carlton, Melbourne, VIC, 3053, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
10
|
Fidalgo G, Paiva K, Mendes G, Barcellos R, Colaço G, Sena G, Pickler A, Mota CL, Tromba G, Nogueira LP, Braz D, Silva HR, Colaço MV, Barroso RC. Synchrotron microtomography applied to the volumetric analysis of internal structures of Thoropa miliaris tadpoles. Sci Rep 2020; 10:18934. [PMID: 33144603 PMCID: PMC7641268 DOI: 10.1038/s41598-020-75993-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Amphibians are models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change due to their sensitivity and vulnerability to changes in the environment. Developmental series of amphibians are informative about their biology, and X-ray based 3D reconstruction holds promise for quantifying morphological changes during growth—some with a direct impact on the possibility of an experimental investigation on several of the ecological topics listed above. However, 3D resolution and discrimination of their soft tissues have been difficult with traditional X-ray computed tomography, without time-consuming contrast staining. Tomographic data were initially performed (pre-processing and reconstruction) using the open-source software tool SYRMEP Tomo Project. Data processing and analysis of the reconstructed tomography volumes were conducted using the segmentation semi-automatic settings of the software Avizo Fire 8, which provide information about each investigated tissues, organs or bone elements. Hence, volumetric analyses were carried out to quantify the development of structures in different tadpole developmental stages. Our work shows that synchrotron X-ray microtomography using phase-contrast mode resolves the edges of the internal tissues (as well as overall tadpole morphology), facilitating the segmentation of the investigated tissues. Reconstruction algorithms and segmentation software played an important role in the qualitative and quantitative analysis of each target structure of the Thoropa miliaris tadpole at different stages of development, providing information on volume, shape and length. The use of the synchrotron X-ray microtomography setup of the SYRMEP beamline of Elettra Synchrotron, in phase-contrast mode, allows access to volumetric data for bone formation, eye development, nervous system and notochordal changes during the development (ontogeny) of tadpoles of a cycloramphid frog Thoropa miliaris. As key elements in the normal development of these and any other frog tadpole, the application of such a comparative ontogenetic study, may hold interest to researchers in experimental and environmental disciplines.
Collapse
Affiliation(s)
- G Fidalgo
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - K Paiva
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Mendes
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Barcellos
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Colaço
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Sena
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Pickler
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C L Mota
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Tromba
- Elettra/Sincrotrone Trieste S.C.P.a., Trieste, Italy
| | - L P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - D Braz
- Nuclear Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Silva
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M V Colaço
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R C Barroso
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|