1
|
Ruman H, Kawaharada Y. A New Classification of Lysin Motif Receptor-Like Kinases in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2023; 64:176-190. [PMID: 36334262 DOI: 10.1093/pcp/pcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Lysin motif receptor-like kinases (LysM-RLKs) are a plant-specific receptor protein family that sense components from soil microorganisms, regulating innate immunity and symbiosis. Every plant species possesses multiple LysM-RLKs in order to interact with a variety of soil microorganisms; however, most receptors have not been characterized yet. Therefore, we tried to identify LysM-RLKs from diverse plant species and proposed a new classification to indicate their evolution and characteristics, as well as to predict new functions. In this study, we have attempted to explore and update LysM-RLKs in Lotus japonicus using the latest genome sequencing and divided 20 LysM-RLKs into 11 clades based on homolog identity and phylogenetic analysis. We further identified 193 LysM-RLKs from 16 Spermatophyta species including L. japonicus and divided these receptors into 14 clades and one out-group special receptor based on the classification of L. japonicus LysM-RLKs. All plant species not only have clade I receptors such as Nod factor or chitin receptors but also have clade III receptors where most of the receptors are uncharacterized. We also identified dicotyledon- and monocotyledon-specific clades and predicted evolutionary trends in LysM-RLKs. In addition, we found a strong correlation between plant species that did not possess clade II receptors and those that lost symbiosis with arbuscular mycorrhizal fungi. A clade II receptor in L. japonicus Lys8 was predicted to express during arbuscular mycorrhizal symbiosis. Our proposed new inventory classification suggests the evolutionary pattern of LysM-RLKs and might help in elucidating novel receptor functions in various plant species.
Collapse
Affiliation(s)
- Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| | - Yasuyuki Kawaharada
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| |
Collapse
|
2
|
Zhang L, Li S, Fang X, An H, Zhang X. Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2023; 13:1105591. [PMID: 36756233 PMCID: PMC9900028 DOI: 10.3389/fpls.2022.1105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The cultivated octoploid strawberry (Fragaria × ananassa) is an economically important fruit that is planted worldwide. The lysin motif (LysM) protein family is composed of the major class of plant pattern recognition receptors, which play important roles in sensing pathogen-associated molecular patterns (PAMPs), and subsequently triggers downstream plant immunity. In the present study, a comprehensive, genome-wide analysis of F. × ananassa LysM (FaLysM) genes was performed to investigate gene structures, phylogenic relationships, chromosome location, collinear relationships, transcription factor binding sites, and protein model analysis. We aimed to identify the LysM genes involved in the defense against plant pathogens. A total of 14 FaLysM genes were identified in the F. × ananassa genome and divided into 2 subgroups (LYP and LYK) on the basis of the phylogenetic analysis. The Ka/Ks ratio for the duplicated pair of most FaLysM genes was less than 1, which indicates that the selection pressure was mostly subject to the purifying selection during evolution. The protein model analysis revealed that FaLysM2-10 contain conserved mode of chitin binding, which suggest the potential role of FaLysM2-10 in pathogen perception and plant immunity. The RNA-Seq results showed the differential regulation of 14 FaLysM genes in response to Colletotrichum fructicola infection, implying the complex interaction between C. fructicola and strawberry. Knockout of candidate effector gene CfLysM2, which was previously proved to be highly expressed during C. fructicola infection, resulted in the up-regulation of six FaLysM genes (FaLysM1, FaLysM2, FaLysM3, FaLysM7, FaLysM8, and FaLysM12), indicating the competitive relations between CfLysM2 and FaLysM genes. Overall, this study provides fundamental information on the roles of LysM proteins in octoploid strawberry and its interaction with C. fructicola, laying useful information for further investigation on the C. fructicola-strawberry interaction and strawberry resistance breeding.
Collapse
Affiliation(s)
| | | | | | - Haishan An
- *Correspondence: Haishan An, ; Xueying Zhang,
| | | |
Collapse
|
3
|
Ren W, Zhang C, Wang M, Zhang C, Xu X, Huang Y, Chen Y, Lin Y, Lai Z. Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.). Gene X 2022; 845:146849. [PMID: 36044944 DOI: 10.1016/j.gene.2022.146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
LysM (Lysin motif), in response to pathogenic molecular stresses, is a crucial signal recognition gene. To understand the molecular characteristics of banana LysM gene family members, we used a series of bioinformatics methods. Based on the genomic databases of Musa acuminata, Musa balbisiana and Musa itinerans, a total of 53 genes and 55 proteins were identified, with 21 genes and 23 proteins in the M.acuminata, 16 genes and 16 proteins in each of M.balbisiana and M.itinerans, respectively. According to the conserved structural domains, LysM can be divided into five classes, namely LysM&MltD, LYK, LYP, LysMn, and LysMe. The LysM gene was relatively highly conserved in the evolution of the three genomes of banana, and some differences occurred. Expression analysis revealed that MaLysM4-5 was relatively highly expressed under high-temperature stress, low-temperature stress and pathogen infection; at the same time, about one-third of the members were down-regulated under low-temperature stress and high-temperature stress, while the expression of MaLysM10-1 and MaLysM4-5 were up-regulated. After the banana wilt fungus FocTR4 infected the banana roots, MaLysM1 was down-regulated and MaLysM11-1 was up-regulated. In conclusion, our study suggests that MaLysMs may be necessary in the response to high- and low-temperature stresses, as well as the banana wilt fungus infestation. Overall, this paper found that LysM genes may be involved in biotic and abiotic stresses in banana, and provided helpful information about LysM's evolution, expression and properties, which will provide theoretical references for further studies on the functions of LysM genes and resistance breeding in the future.
Collapse
Affiliation(s)
- Wenhui Ren
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengge Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuji Huang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
García YH, Zamora OR, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021; 26:molecules26216513. [PMID: 34770922 PMCID: PMC8587247 DOI: 10.3390/molecules26216513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Large volumes of fruit and vegetable production are lost during postharvest handling due to attacks by necrotrophic fungi. One of the promising alternatives proposed for the control of postharvest diseases is the induction of natural defense responses, which can be activated by recognizing molecules present in pathogens, such as chitin. Chitin is one of the most important components of the fungal cell wall and is recognized through plant membrane receptors. These receptors belong to the receptor-like kinase (RLK) family, which possesses a transmembrane domain and/or receptor-like protein (RLP) that requires binding to another RLK receptor to recognize chitin. In addition, these receptors have extracellular LysM motifs that participate in the perception of chitin oligosaccharides. These receptors have been widely studied in Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa); however, it is not clear how the molecular recognition and plant defense mechanisms of chitin oligosaccharides occur in other plant species or fruits. This review includes recent findings on the molecular recognition of chitin oligosaccharides and how they activate defense mechanisms in plants. In addition, we highlight some of the current advances in chitin perception in horticultural crops.
Collapse
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Orlando Reyes Zamora
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
- Correspondence:
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Calle de las Américas y Josefa Ortiz de Domínguez, Culiacán C.P. 80013, Mexico;
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnología en Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico;
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| |
Collapse
|
5
|
Shumayla, Madhu, Singh K, Upadhyay SK. LysM domain-containing proteins modulate stress response and signalling in Triticum aestivum L. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 189:104558. [DOI: 10.1016/j.envexpbot.2021.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
6
|
Kahlon PS, Stam R. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102040. [PMID: 33882435 DOI: 10.1016/j.pbi.2021.102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Genetic polymorphisms are the basis of the natural diversity seen in all life on earth, also in plant-pathogen interactions. Initially, studies on plant-pathogen interaction focused on reporting phenotypic variation in resistance properties and on the identification of underlying major genes. Nowadays, the field of plant-pathogen interactions is moving from focusing on families of single dominant genes involved in gene-for-gene interactions to an understanding of the plant immune system in the context of a much more complex signaling network and quantitative resistance. Simultaneously, studies on pathosystems from the wild and genome analyses advanced, revealing tremendous variation in natural plant populations. It is now imperative to place studies on genetic diversity and evolution of plant-pathogen interactions in the appropriate molecular biological, as well as evolutionary, context.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Remco Stam
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany.
| |
Collapse
|
7
|
Gong Z, Han GZ. Flourishing in water: the early evolution and diversification of plant receptor-like kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:174-184. [PMID: 33423360 DOI: 10.1111/tpj.15157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases (RLKs) play significant roles in mediating innate immunity and development of plants. The evolution of plant RLKs has been characterized by extensive variation in copy numbers and domain configurations. However, much remains unknown about the origin, evolution, and early diversification of plant RLKs. Here, we perform phylogenomic analyses of RLKs across plants (Archaeplastida), including embryophytes, charophytes, chlorophytes, prasinodermophytes, glaucophytes, and rhodophytes. We identify the presence of RLKs in all the streptophytes (land plants and charophytes), nine out of 18 chlorophytes, one prasinodermophyte, and one glaucophyte, but not in rhodophytes. Interestingly, the copy number of RLKs increased drastically in streptophytes after the split of the clade of Mesostigmatophyceae and Chlorokybophyceae and other streptophytes. Moreover, phylogenetic analyses suggest RLKs from charophytes form diverse distinct clusters, and are dispersed along the diversity of land plant RLKs, indicating that RLKs have extensively diversified in charophytes and charophyte RLKs seeded the major diversity of land plant RLKs. We identify at least 81 and 76 different kinase-associated domains for charophyte and land plant RLKs, 23 of which are shared, suggesting that RLKs might have evolved in a modular fashion through frequent domain gains or losses. We also detect signatures of positive selection for many charophyte RLK groups, indicating potential functions in host-microbe interaction. Taken together, our findings provide significant insights into the early evolution and diversification of plant RLKs and the ancient evolution of plant-microbe symbiosis.
Collapse
Affiliation(s)
- Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
8
|
Hu SP, Li JJ, Dhar N, Li JP, Chen JY, Jian W, Dai XF, Yang XY. Lysin Motif (LysM) Proteins: Interlinking Manipulation of Plant Immunity and Fungi. Int J Mol Sci 2021; 22:ijms22063114. [PMID: 33803725 PMCID: PMC8003243 DOI: 10.3390/ijms22063114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
The proteins with lysin motif (LysM) are carbohydrate-binding protein modules that play a critical role in the host-pathogen interactions. The plant LysM proteins mostly function as pattern recognition receptors (PRRs) that sense chitin to induce the plant's immunity. In contrast, fungal LysM blocks chitin sensing or signaling to inhibit chitin-induced host immunity. In this review, we provide historical perspectives on plant and fungal LysMs to demonstrate how these proteins are involved in the regulation of plant's immune response by microbes. Plants employ LysM proteins to recognize fungal chitins that are then degraded by plant chitinases to induce immunity. In contrast, fungal pathogens recruit LysM proteins to protect their cell wall from hydrolysis by plant chitinase to prevent activation of chitin-induced immunity. Uncovering this coevolutionary arms race in which LysM plays a pivotal role in manipulating facilitates a greater understanding of the mechanisms governing plant-fungus interactions.
Collapse
Affiliation(s)
- Shu-Ping Hu
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (S.-P.H.); (J.-P.L.); (W.J.)
| | - Jun-Jiao Li
- c/o State Key Laboratory for Biology of Plant Diseases and Insect Pests, Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-J.L.); (J.-Y.C.)
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California Davis, Salinas, CA 93905, USA;
| | - Jun-Peng Li
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (S.-P.H.); (J.-P.L.); (W.J.)
| | - Jie-Yin Chen
- c/o State Key Laboratory for Biology of Plant Diseases and Insect Pests, Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-J.L.); (J.-Y.C.)
| | - Wei Jian
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (S.-P.H.); (J.-P.L.); (W.J.)
| | - Xiao-Feng Dai
- c/o State Key Laboratory for Biology of Plant Diseases and Insect Pests, Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-J.L.); (J.-Y.C.)
- Correspondence: (X.-F.D.); (X.-Y.Y.)
| | - Xing-Yong Yang
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (S.-P.H.); (J.-P.L.); (W.J.)
- Correspondence: (X.-F.D.); (X.-Y.Y.)
| |
Collapse
|
9
|
Chen Q, Li Q, Qiao X, Yin H, Zhang S. Genome-wide identification of lysin motif containing protein family genes in eight rosaceae species, and expression analysis in response to pathogenic fungus Botryosphaeria dothidea in Chinese white pear. BMC Genomics 2020; 21:612. [PMID: 32894061 PMCID: PMC7487666 DOI: 10.1186/s12864-020-07032-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Lysin motif-containing proteins (LYP), which act as pattern-recognition receptors, play central roles in growth, node formation, and responses to biotic stresses. The sequence of Chinese white pear genome (cv. 'Dangshansuli') along with the seven other species of Rosaceae has already been reported. Although, in these fruit crops, there is still a lack of clarity regarding the LYP family genes and their evolutionary history. RESULTS In the existing study, eight Rosaceae species i.e., Pyrus communis, Prunus persica, Fragaria vesca, Pyrus bretschneideri, Prunus avium, Prunus mume, Rubus occidentalis, and Malus × domestica were evaluated. Here, we determined a total of 124 LYP genes from the underlined Rosaceae species. While eighteen of the genes were from Chinese white pear, named as PbrLYPs. According to the LYPs structural characteristics and their phylogenetic analysis, those genes were classified into eight groups (group LYK1, LYK2, LYK3, LYK4/5, LYM1/3, LYM2, NFP, and WAKL). Dispersed duplication and whole-genome duplication (WGD) were found to be the most contributing factors of LYP family expansion in the Rosaceae species. More than half of the duplicated PbrLYP gene pairs were dated back to the ancient WGD (~ 140 million years ago (MYA)), and PbrLYP genes have experienced long-term purifying selection. The transcriptomic results indicated that the PbrLYP genes expression was tissue-specific. Most PbrLYP genes showed differential expression in leaves under fungal pathogen infection with two of them located in the plasmalemma. CONCLUSION A comprehensive analysis identified 124 LYP genes in eight Rosaceae species. Our findings have provided insights into the functions and characteristics of the Rosaceae LYP genes and a guide for the identification of other candidate LYPs for further genetic improvements for pathogen-resistance in higher plants.
Collapse
Affiliation(s)
- Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|