1
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
2
|
Schmidt DA, Galbreath KE, Russello MA. Phylogenomics of American pika (Ochotona princeps) lineage diversification. Mol Phylogenet Evol 2024; 193:108030. [PMID: 38341008 DOI: 10.1016/j.ympev.2024.108030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Quaternary climate oscillations have profoundly influenced current species distributions. For many montane species, these fluctuations were a prominent driver in species range shifts, often resulting in intraspecific diversification, as has been the case for American pikas (Ochotona princeps). Range shifts and population declines in this thermally-sensitive lagomorph have been linked to historical and contemporary environmental changes across its western North American range, with previous research reconstructing five mitochondrial DNA lineages. Here, we paired genome-wide data (25,244 SNPs) with range-wide sampling to re-examine the number and distribution of intra-specific lineages, and investigate patterns of within- and among-lineage divergence and diversity. Our results provide genomic evidence of O. princeps monophyly, reconstructing six distinct lineages that underwent multiple rounds of divergence (0.809-2.81 mya), including a new Central Rocky Mountain lineage. We further found evidence for population differentiation across multiple spatial scales, and reconstructed levels of standing variation comparable to those found in other small mammals. Overall, our findings demonstrate the influence of past glacial cycles on O. princeps lineage diversification, suggest that current subspecific taxonomy may need to be revisited, and provide an important framework for investigations of American pika adaptive potential in the face of anthropogenic climate change.
Collapse
Affiliation(s)
- Danielle A Schmidt
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Klingler KB, Nichols LB, Hekkala ER, Stewart JAE, Peacock MM. Life on the edge-a changing genetic landscape within an iconic American pika metapopulation over the last half century. PeerJ 2023; 11:e15962. [PMID: 37790628 PMCID: PMC10542391 DOI: 10.7717/peerj.15962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Declines and extirpations of American pika (Ochotona princeps) populations at historically occupied sites started being documented in the literature during the early 2000s. Commensurate with global climate change, many of these losses at peripheral and lower elevation sites have been associated with changes in ambient air temperature and precipitation regimes. Here, we report on a decline in available genetic resources for an iconic American pika metapopulation, located at the southwestern edge of the species distribution in the Bodie Hills of eastern California, USA. Composed of highly fragmented habitat created by hard rock mining, the ore dumps at this site were likely colonized by pikas around the end of the 19th century from nearby natural talus outcrops. Genetic data extracted from both contemporary samples and archived natural history collections allowed us to track population and patch-level genetic diversity for Bodie pikas across three distinct sampling points during the last half- century (1948-1949, 1988-1991, 2013-2015). Reductions in within-population allelic diversity and expected heterozygosity were observed across the full time period. More extensive sampling of extant patches during the 1988-1991 and 2013-2015 periods revealed an increase in population structure and a reduction in effective population size. Furthermore, census records from the last 51 years as well as archived museum samples collected in 1947 from a nearby pika population in the Wassuk range (Nevada, USA) provide further support of the increasing isolation and genetic coalescence occurring in this region. This study highlights the importance of museum samples and long-term monitoring in contextualizing our understanding of population viability.
Collapse
Affiliation(s)
- Kelly B. Klingler
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Lyle B. Nichols
- Department of Life Sciences, Santa Monica College, Santa Monica, California, United States
| | - Evon R. Hekkala
- Department of Biological Sciences, Fordham University, Bronx, New York, United States
| | - Joseph A. E. Stewart
- Department of Plant Sciences, University of California, Davis, Davis, California, United States
| | - Mary M. Peacock
- Department of Biology, University of Nevada, Reno, Reno, Nevada, United States
| |
Collapse
|
4
|
Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas. Heredity (Edinb) 2021; 127:443-454. [PMID: 34537819 PMCID: PMC8551249 DOI: 10.1038/s41437-021-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the role of adaptation in species' responses to climate change is important for evaluating the evolutionary potential of populations and informing conservation efforts. Population genomics provides a useful approach for identifying putative signatures of selection and the underlying environmental factors or biological processes that may be involved. Here, we employed a population genomic approach within a space-for-time study design to investigate the genetic basis of local adaptation and reconstruct patterns of movement across rapidly changing environments in a thermally sensitive mammal, the American pika (Ochotona princeps). Using genotypic data at 49,074 single-nucleotide polymorphisms (SNPs), we analyzed patterns of genome-wide diversity, structure, and migration along three independent elevational transects located at the northern extent (Tweedsmuir South Provincial Park, British Columbia, Canada) and core (North Cascades National Park, Washington, USA) of the Cascades lineage. We identified 899 robust outlier SNPs within- and among-transects. Of those annotated to genes with known function, many were linked with cellular processes related to climate stress including ATP-binding, ATP citrate synthase activity, ATPase activity, hormone activity, metal ion-binding, and protein-binding. Moreover, we detected evidence for contrasting patterns of directional migration along transects across geographic regions that suggest an increased propensity for American pikas to disperse among lower elevation populations at higher latitudes where environments are generally cooler. Ultimately, our data indicate that fine-scale demographic patterns and adaptive processes may vary among populations of American pikas, providing an important context for evaluating biotic responses to climate change in this species and other alpine-adapted mammals.
Collapse
|
5
|
Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM. Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 2021; 21:2. [PMID: 33514306 PMCID: PMC7853312 DOI: 10.1186/s12862-020-01739-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
Collapse
Affiliation(s)
| | - Joshua P Jahner
- Department of Biology, University of Nevada, Reno, 89557, USA
| | - Thomas L Parchman
- Department of Biology, University of Nevada, Reno, 89557, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Chris Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Mary M Peacock
- Department of Biology, University of Nevada, Reno, 89557, USA. .,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|