1
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Ho TAT, Downing PA, Schou MF, Bechsgaard J, Thomsen PF, Jorgensen TH, Bilde T. The relationship between neutral genetic diversity and performance in wild arthropod populations. J Evol Biol 2024; 37:1170-1180. [PMID: 39119920 DOI: 10.1093/jeb/voae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Larger effective populations (Ne) are characterized by higher genetic diversity, which is expected to predict population performance (average individual performance that influences fitness). Empirical studies of the relationship between neutral diversity and performance mostly represent species with small Ne, while there is limited data from the species-rich and ecologically important arthropods that are assumed to have large Ne but are threatened by massive declines. We performed a systematic literature search and used meta-analytical models to test the prediction of a positive association between neutral genetic diversity and performance in wild arthropods. From 14 relevant studies of 286 populations, we detected a weak (r = 0.15) but nonsignificant positive association both in the full data set (121 effect sizes) and a reduced data set accounting for dependency (14 effect sizes). Theory predicts that traits closely associated with fitness show a relatively stronger correlation with neutral diversity; this relationship was upheld for longevity and marginally for reproduction. Our analyses point to major knowledge gaps in our understanding of relationships between neutral diversity and performance. Future studies using genome-wide data sets across populations could guide more powerful designs to evaluate relationships between adaptive, deleterious and neutral diversity and performance.
Collapse
Affiliation(s)
- Tammy Ai Tian Ho
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mads F Schou
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Philip Francis Thomsen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tove H Jorgensen
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Centre for Ecological Genetics, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Lago DC, Nora LC, Hasselmann M, Hartfelder K. Positive selection in cytochrome P450 genes is associated with gonad phenotype and mating strategy in social bees. Sci Rep 2023; 13:5921. [PMID: 37041178 PMCID: PMC10090045 DOI: 10.1038/s41598-023-32898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The honey bee, Apis mellifera differs from all other social bees in its gonad phenotype and mating strategy. Honey bee queens and drones have tremendously enlarged gonads, and virgin queens mate with several males. In contrast, in all the other bees, the male and female gonads are small, and the females mate with only one or very few males, thus, suggesting an evolutionary and developmental link between gonad phenotype and mating strategy. RNA-seq comparisons of A. mellifera larval gonads revealed 870 genes as differentially expressed in queens versus workers and drones. Based on Gene Ontology enrichment we selected 45 genes for comparing the expression levels of their orthologs in the larval gonads of the bumble bee Bombus terrestris and the stingless bee, Melipona quadrifasciata, which revealed 24 genes as differentially represented. An evolutionary analysis of their orthologs in 13 solitary and social bee genomes revealed four genes with evidence of positive selection. Two of these encode cytochrome P450 proteins, and their gene trees indicated a lineage-specific evolution in the genus Apis, indicating that cytochrome P450 genes may be involved in the evolutionary association of polyandry and the exaggerated gonad phenotype in social bees.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luísa Czamanski Nora
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Klaus Hartfelder
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Gibson AK. Genetic diversity and disease: The past, present, and future of an old idea. Evolution 2022; 76:20-36. [PMID: 34796478 PMCID: PMC9064374 DOI: 10.1111/evo.14395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023]
Abstract
Why do infectious diseases erupt in some host populations and not others? This question has spawned independent fields of research in evolution, ecology, public health, agriculture, and conservation. In the search for environmental and genetic factors that predict variation in parasitism, one hypothesis stands out for its generality and longevity: genetically homogeneous host populations are more likely to experience severe parasitism than genetically diverse populations. In this perspective piece, I draw on overlapping ideas from evolutionary biology, agriculture, and conservation to capture the far-reaching implications of the link between genetic diversity and disease. I first summarize the development of this hypothesis and the results of experimental tests. Given the convincing support for the protective effect of genetic diversity, I then address the following questions: (1) Where has this idea been put to use, in a basic and applied sense, and how can we better use genetic diversity to limit disease spread? (2) What new hypotheses does the established disease-diversity relationship compel us to test? I conclude that monitoring, preserving, and augmenting genetic diversity is one of our most promising evolutionarily informed strategies for buffering wild, domesticated, and human populations against future outbreaks.
Collapse
Affiliation(s)
- Amanda Kyle Gibson
- Department of Biology University of Virginia Charlottesville Virginia 22903
| |
Collapse
|