1
|
Doherty ML, Johnson JV, Goodbody-Gringley G. Widespread coral bleaching and mass mortality during the 2023-2024 marine heatwave in Little Cayman. PLoS One 2025; 20:e0322636. [PMID: 40315251 PMCID: PMC12047782 DOI: 10.1371/journal.pone.0322636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
The increased frequency and intensity of marine heatwaves (MHWs) induced by continued global warming are the greatest threat to tropical coral reefs, causing mass bleaching events and widespread mortality of reef building corals. In 2023, the isolated and well-protected reefs around Little Cayman experienced a MHW of > 17 Degree Heating Weeks (DHW), far exceeding any DHW measure previously captured. During the peak of the heatwave, ~ 80% of all corals were either bleached or showing signs of mortality. On the final survey date ~54% of all corals surveyed were recorded as dead. However, we identified significant differences in bleaching susceptibility and mortality across taxonomic groups, related to different life history strategies. Notably, weedy coral taxa such as Agaricia spp., Porites astreoides, and Porites porites, experienced high bleaching and suffered extensive mortality. Meanwhile, stress-tolerant reef building taxa such as Orbicella spp., experienced bleaching, but suffered low mortality. Given Little Cayman reefs have not been exposed to previous thermal stress events, the highly sensitive weedy taxa disproportionately contributed to coral abundance. Thus, the occurrence of a high magnitude - long duration heatwave resulted in catastrophic mortality of corals in Little Cayman, despite ~57% of the coastal environment being classified as no-take Marine Protected Areas. These findings underscore that the global stressor of global climate change, which drives MHWs, cannot be mitigated by local protection and isolation, thus highlighting the need to directly tackle the cause of coral decline (i.e., global climate change).
Collapse
Affiliation(s)
- Matthew L. Doherty
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Jack V. Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | - Gretchen Goodbody-Gringley
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| |
Collapse
|
2
|
Smith JG, Lopazanski C, Free CM, Brun J, Anderson C, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Gill DA, Hamilton SL, Kaschner K, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Malone D, Marraffini ML, Parsons-Field A, Spiecker B, Yeager M, Nickols KJ, Caselle JE. Conservation benefits of a large marine protected area network that spans multiple ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14435. [PMID: 39786314 DOI: 10.1111/cobi.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025]
Abstract
Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance. Using a meta-analytic framework, we evaluated the ability of MPAs to conserve fish biomass, richness, and diversity. At the scale of the network and for 3 of 4 regions, the biomass of species targeted by fishing was positively associated with the level of regulatory protection and was greater inside no-take MPAs, whereas species not targeted by fishing had similar biomass in MPAs and areas open to fishing. In contrast, species richness and diversity were not as strongly enhanced by MPA protection. The key features of conservation effectiveness included MPA age, preimplementation fisheries pressure, and habitat diversity. Important drivers of MPA effectiveness for single MPAs were consistent across MPAs in the network, spanning regions and ecosystems. With international targets aimed at protecting 30% of the world's oceans by 2030, MPA design and assessment frameworks should consider conservation performance at multiple ecologically relevant scales, from individual MPAs to MPA networks.
Collapse
Grants
- R/MPA-43 California Sea Grant, University of California, San Diego
- R/MPA-44 California Sea Grant, University of California, San Diego
- R/MPA-45 California Sea Grant, University of California, San Diego
- R/MPA-46 California Sea Grant, University of California, San Diego
- R/MPA-48 California Sea Grant, University of California, San Diego
- #C0302700 California Ocean Protection Council
- #C0752003 California Ocean Protection Council
- #C0752005 California Ocean Protection Council
- David and Lucile Packard Foundation
- P1970018 California Department of Fish and Wildlife
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Cori Lopazanski
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- Research Data Services, Library, University of California Santa Barbara, Santa Barbara, California, USA
| | - Clarissa Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - David A Gill
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Daniel Malone
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Michelle L Marraffini
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Avrey Parsons-Field
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Barbara Spiecker
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Mallarie Yeager
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
- Habitat Conservation Division, Alaska Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
3
|
Johnson JV, Bruno JF, Le Gall L, Doherty ML, Chequer A, Goodbody Gringley G. Creation of complex reef structures through coral restoration does not affect associated fish populations on a remote, well-protected, Caribbean reef. PeerJ 2024; 12:e17855. [PMID: 39670093 PMCID: PMC11636994 DOI: 10.7717/peerj.17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024] Open
Abstract
Coral reef ecosystems are facing severe degradation due to anthropogenic activities at both local and global scales. In response, extensive restoration efforts are underway, aiming to bolster coral cover and enhance reef fish communities to foster facilitation between fish and corals. This reciprocal relationship is anticipated to improve overall restoration efficacy and enhance coral reef resilience in the face of global warming. Here, we investigate the impact of coral restoration using out-planted Acropora cervicornis colonies attached to raised domes on the associated fish community on the isolated, well-protected reef of Little Cayman Island in the Central Caribbean. Surveys were conducted immediately preceding out-planting, five days later, and 85 days later to capture temporal changes in the fish community. After 85 days of out-planting, there were no changes in fish biomass, abundance, or species richness for the entire fish community. This pattern was consistent for selected fish functional groups. Additionally, no significant differences were observed in the fish community before outplanting, five days after out-planting, or 85 days after out-planting of restoration domes. Our results underscore the limited impact of coral restoration for influencing fish communities in the isolated and highly protected reef of Little Cayman over an 85-day period. Consequently, our findings have implications for using coral restoration as a mechanism to enhance fish populations, particularly in marginally disturbed regions where structural complexity has not been lost. Future restoration programs should therefore incorporate local knowledge of environmental history and restoration needs along with an increased data-driven understanding of the intricate interaction between fish and coral populations to be successful.
Collapse
Affiliation(s)
- Jack V. Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - John F. Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lucas Le Gall
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Matthew Louis Doherty
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Alex Chequer
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | | |
Collapse
|
4
|
Yunus IS, Hudson GA, Chen Y, Gin JW, Kim J, Baidoo EEK, Petzold CJ, Adams PD, Simmons BA, Mukhopadhyay A, Keasling JD, Lee TS. Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida. Metab Eng 2024; 84:69-82. [PMID: 38839037 DOI: 10.1016/j.ymben.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.
Collapse
Affiliation(s)
- Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Camilo JPG, Nunes VFC, Miranda RJ, Sampaio CLS, de Jesus LWO, de Oliveira JM, Pinto TK. Management strategy influences coral oxidative stress responses in a marine protected area in the Southwestern Atlantic. MARINE POLLUTION BULLETIN 2024; 198:115832. [PMID: 38006869 DOI: 10.1016/j.marpolbul.2023.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Coral reefs are experiencing accelerated degradation due to global and local stressors. The understanding of how corals cope with these disturbances is urgent. We focused on elucidating antioxidant capacity responses of the Mussismilia harttii and Siderastrea sp. corals, in reefs with use management in a marine protected area. We tested whether the activity of antioxidant enzymes in healthy colonies is higher at multiple-use reefs than at no-take reef, and whether the activity of antioxidant enzymes is higher for bleached than for healthy Siderastrea sp. colonies. Lipid peroxidation and enzymatic activity found in bleached colonies evidence chronic stress and cellular damage not related to thermal anomalies. Chronic stress in healthy colonies was also found but responses differed among species, being higher at multiple use reefs, mainly for Siderastrea sp. We highlight the role of the local conservation actions in the integrity of coral physiology and reef resilience under global climate changes.
Collapse
Affiliation(s)
| | | | - Ricardo J Miranda
- Laboratório de Biologia Marinha e Conservação, Universidade Federal de Alagoas, Brazil
| | - Cláudio L S Sampaio
- Laboratório de Ictiologia e Conservação, Universidade Federal de Alagoas, Brazil
| | | | - Jerusa Maria de Oliveira
- Laboratório de Morfofisiologia Animal Aplicada, Universidade Federal de Alagoas, Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas, Brazil
| | | |
Collapse
|
6
|
Johnson JV, Chequer AD, Goodbody-Gringley G. Insights from the 2-year-long human confinement experiment in Grand Cayman reveal the resilience of coral reef fish communities. Sci Rep 2023; 13:21806. [PMID: 38071390 PMCID: PMC10710434 DOI: 10.1038/s41598-023-49221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
In March 2020, the world went into lockdown to curb the spread of the novel coronavirus (SARS-CoV-2), with immediate impacts on wildlife across ecosystems. The strict 2-year long lockdown in Grand Cayman provided an unprecedented opportunity to assess how the 'human confinement experiment' influenced the community composition of reef fish. Using a suite of multivariate statistics, our findings revealed a stark increase in reef fish biomass during the 2 years of lockdown, especially among herbivores, including parrotfish, with drastic increases in juvenile parrotfishes identified. Additionally, when comparing baseline data of the community from 2018 to the 2 years during lockdown, over a three-fold significant increase in mean reef fish biomass was observed, with a clear shift in community composition. Our findings provide unique insights into the resilience of reef fish communities when local anthropogenic stressors are removed for an unprecedented length of time. Given the functional role of herbivores including parrotfish, our results suggest that reductions in human water-based activities have positive implications for coral reef ecosystems and should be considered in future management strategies.
Collapse
Affiliation(s)
- Jack V Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands.
| | - Alex D Chequer
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | | |
Collapse
|
7
|
Correction: Marine protected areas do not buffer corals from bleaching under global warming. BMC Ecol Evol 2022; 22:81. [PMID: 35729542 PMCID: PMC9210759 DOI: 10.1186/s12862-022-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Johnson JV, Exton DA, Dick JTA, Oakley J, Jompa J, Pincheira‐Donoso D. The relative influence of sea surface temperature anomalies on the benthic composition of an Indo-Pacific and Caribbean coral reef over the last decade. Ecol Evol 2022; 12:ECE39263. [PMID: 36091340 PMCID: PMC9448965 DOI: 10.1002/ece3.9263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022] Open
Abstract
Rising ocean temperatures are the primary driver of coral reef declines throughout the tropics. Such declines include reductions in coral cover that facilitate the monopolization of the benthos by other taxa such as macroalgae, resulting in reduced habitat complexity and biodiversity. Long-term monitoring projects present rare opportunities to assess how sea surface temperature anomalies (SSTAs) influence changes in the benthic composition of coral reefs across distinct locations. Here, using extensively monitored coral reef sites from Honduras (in the Caribbean Sea), and from the Wakatobi National Park located in the center of the coral triangle of Indonesia, we assess the impact of global warming on coral reef benthic compositions over the period 2012-2019. Bayesian generalized linear mixed effect models revealed increases in the sponge, and hard coral coverage through time, while rubble coverage decreased at the Indonesia location. Conversely, the effect of SSTAs did not predict any changes in benthic coverage. At the Honduras location, algae and soft coral coverage increased through time, while hard coral and rock coverage were decreasing. The effects of SSTA at the Honduras location included increased rock coverage, but reduced sponge coverage, indicating disparate responses between both systems under SSTAs. However, redundancy analyses showed intralocation site variability explained the majority of variance in benthic composition over the course of the study period. Our findings show that SSTAs have differentially influenced the benthic composition between the Honduras and the Indonesian coral reefs surveyed in this study. However, the large intralocation variance that explains the benthic composition at both locations indicates that localized processes have a predominant role in explaining benthic composition over the last decade. The sustained monitoring effort is critical for understanding how these reefs will change in their composition as global temperatures continue to rise through the Anthropocene.
Collapse
Affiliation(s)
- Jack V. Johnson
- Macrobiodiversity Lab, School of Biological SciencesQueen's University BelfastBelfastUK
- Operation WallaceaSpilsbyUK
| | | | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | | | | | | |
Collapse
|