1
|
Yang S, Tang X, Yan F, Yang H, Xu L, Jian Z, Deng H, He Q, Zhu G, Wang Q. A time-course transcriptome analysis revealing the potential molecular mechanism of early gonadal differentiation in the Chinese giant salamander. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101200. [PMID: 38320446 DOI: 10.1016/j.cbd.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
The Chinese giant salamander (CGS) Andrias davidianus is the largest extant amphibian and has recently become an important species for aquaculture with high economic value. Meanwhile, its wild populations and diversity are in urgent need of protection. Exploring the mechanism of its early gonadal differentiation will contribute to the development of CGS aquaculture and the recovery of its wild population. In this study, transcriptomic and phenotypic research was conducted on the critical time points of early gonadal differentiation of CGS. The results indicate that around 210 days post-hatching (dph) is the critical window for female CGS's gonadal differentiation, while 270 dph is that of male CGS. Besides, the TRPM1 gene may be the crucial gene among many candidates determining the sex of CGS. More importantly, in our study, key genes involved in CGS's gonadal differentiation and development are identified and their potential pathways and regulatory models at early stage are outlined. This is an initial exploration of the molecular mechanisms of CGS's early gonadal differentiation at multiple time points, providing essential theoretical foundations for its captive breeding and offering unique insights into the conservation of genetic diversity in wild populations from the perspective of sex development.
Collapse
Affiliation(s)
- Shijun Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Fan Yan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Han Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lishan Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qu He
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangxiang Zhu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
2
|
Harmon IP, McCabe EA, Vergun MR, Weinstein J, Graves HL, Boldt CM, Bradley DD, Lee J, Maurice JM, Solomon-Lane TK. Multiple behavioral mechanisms shape development in a highly social cichlid fish. Physiol Behav 2024; 278:114520. [PMID: 38492910 DOI: 10.1016/j.physbeh.2024.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Early-life social experiences shape adult phenotype, yet the underlying behavioral mechanisms remain poorly understood. We manipulated early-life social experience in the highly social African cichlid fish Astatotilapia burtoni to investigate the effects on behavior and stress axis function in juveniles. Juveniles experienced different numbers of social partners in stable pairs (1 partner), stable groups (6 fish; 5 partners), and socialized pairs (a novel fish was exchanged every 5 days; 5 partners). Treatments also differed in group size (groups vs. pairs) and stability (stable vs. socialized). We then measured individual behavior and water-borne cortisol to identify effects of early-life experience. We found treatment differences in behavior across all assays: open field exploration, social cue investigation, dominant behavior, and subordinate behavior. Treatment did not affect cortisol. Principal components (PC) analysis revealed robust co-variation of behavior across contexts, including with cortisol, to form behavioral syndromes sensitive to early-life social experience. PC1 (25.1 %) differed by social partner number: juveniles with more partners (groups and socialized pairs) were more exploratory during the social cue investigation, spent less time in the territory, and were more interactive as dominants. PC5 (8.5 %) differed by stability: socialized pairs were more dominant, spent less time in and around the territory, were more socially investigative, and had lower cortisol than stable groups or pairs. Observations of the home tanks provided insights into the social experiences that may underlie these effects. These results contribute to our understanding of how early-life social experiences are accrued and exert strong, lasting effects on phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - June Lee
- Claremont McKenna College, Claremont, CA, USA
| | | | | |
Collapse
|
3
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
4
|
Böhne A, Oğuzhan Z, Chrysostomakis I, Vitt S, Meuthen D, Martin S, Kukowka S, Thünken T. Evidence for selfing in a vertebrate from whole-genome sequencing. Genome Res 2023; 33:2133-2142. [PMID: 38190641 PMCID: PMC10760518 DOI: 10.1101/gr.277368.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
A growing number of recent genomic studies report asexual parthenogenetic reproduction in a wide range of taxa, including vertebrate species from the reptile, bird, and fish lineages. Yet, self-fertilization (selfing) has been recorded only in a single vertebrate, the mangrove killifish Kryptolebias marmoratus In cichlid fishes, sex determination is notably diverse and can be influenced by the environment, and sequential hermaphroditism has been reported for some species. Here, we present evidence for a case of facultative selfing in the cichlid fish Benitochromis nigrodorsalis, which is otherwise known as biparentally reproducing ovophilic mouthbrooder from Western Africa. Our laboratory observations revealed that a wild-caught individual produced repeatedly viable offspring in absence of a mating partner. By analyzing genome-wide single-nucleotide polymorphism (SNP) data, we compare that individual and two of its offspring to shed light on its reproductive mode. First, our results confirm uniparental reproduction. Second, overall heterozygosity is reduced in the offspring compared with outbred individuals. Retained maternal heterozygosity in the offspring is ∼51%, which is close to the theoretically expected value of a heterozygosity reduction of 50% by selfing. Heterozygosity patterns along individual chromosomes do not point to alternative parthenogenetic reproductive mechanisms like automixis by terminal or central fusion. Facultative selfing may represent an adaptive strategy ensuring reproduction when mating partners are absent and, hence, contribute to the cichlids' enormous evolutionary success.
Collapse
Affiliation(s)
- Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany;
| | - Zeynep Oğuzhan
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Ioannis Chrysostomakis
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Simon Vitt
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
| | - Denis Meuthen
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sandra Kukowka
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Timo Thünken
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
5
|
Lichilín N, Salzburger W, Böhne A. No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni. G3 (BETHESDA, MD.) 2023; 13:6989787. [PMID: 36649174 PMCID: PMC9997565 DOI: 10.1093/g3journal/jkad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Sex determination (SD) is not conserved among teleost fishes and can even differ between populations of the same species. Across the outstandingly species-rich fish family Cichlidae, more and more SD systems are being discovered. Still, the picture of SD evolution in this group is far from being complete. Lake Tanganyika and its affluent rivers are home to Astatotilapia burtoni, which belongs to the extremely successful East African cichlid lineage Haplochromini. Previously, in different families of an A. burtoni laboratory strain, an XYW system and an XY system have been described. The latter was also found in a second laboratory strain. In a laboratory-reared family descending from a population of the species' southern distribution, a second XY system was discovered. Yet, an analysis of sex chromosomes for the whole species distribution is missing. Here, we examined the genomes of 11 natural populations of A. burtoni, encompassing a wide range of its distribution, for sex-linked regions. We did not detect signs of differentiated sex chromosomes and also not the previously described sex chromosomal systems present in laboratory lines, suggesting different SD systems in the same species under natural and (long-term) artificial conditions. We suggest that SD in A. burtoni is more labile than previously assumed and consists of a combination of non-genetic, polygenic, or poorly differentiated sex chromosomes.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| |
Collapse
|
6
|
Solomon-Lane TK, Butler RM, Hofmann HA. Vasopressin mediates nonapeptide and glucocorticoid signaling and social dynamics in juvenile dominance hierarchies of a highly social cichlid fish. Horm Behav 2022; 145:105238. [PMID: 35932752 DOI: 10.1016/j.yhbeh.2022.105238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Early-life social experience can strongly affect adult behavior, yet the behavioral mechanisms underlying developmental trajectories are poorly understood. Here, we use the highly social cichlid, Burton's Mouthbrooder (Astatotilapia burtoni) to investigate juvenile social status and behavior, as well as the underlying neuroendocrine mechanisms. We placed juveniles in pairs or triads and found that they readily establish social status hierarchies, with some group structural variation depending on group size, as well as the relative body size of the group members. Next, we used intracerebroventricular injections to test the hypothesis that arginine vasopressin (AVP) regulates juvenile social behavior and status, similar to adult A. burtoni. While we found no direct behavioral effects of experimentally increasing (via vasotocin) or decreasing (via antagonist Manning Compound) AVP signaling, social interactions directed at the treated individual were significantly altered. This group-level effect of central AVP manipulation was also reflected in a significant shift in whole brain expression of genes involved in nonapeptide signaling (AVP, oxytocin, and oxytocin receptor) and the neuroendocrine stress axis (corticotropin-releasing factor (CRF), glucocorticoid receptors (GR) 1a and 1b). Further, social status was associated with the expression of genes involved in glucocorticoid signaling (GR1a, GR1b, GR2, mineralocorticoid receptor), social interactions with the dominant fish, and nonapeptide signaling activity (AVP, AVP receptor V1aR2, OTR). Together, our results considerably expand our understanding of the context-specific emergence of social dominance hierarchies in juveniles and demonstrate a role for nonapeptide and stress axis signaling in the regulation of social status and social group dynamics.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Rebecca M Butler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Cell & Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
7
|
Kocher TD, Behrens KA, Conte MA, Aibara M, Mrosso HDJ, Green ECJ, Kidd MR, Nikaido M, Koblmüller S. New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini). Genes (Basel) 2022; 13:804. [PMID: 35627189 PMCID: PMC9141883 DOI: 10.3390/genes13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
African cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.
Collapse
Affiliation(s)
- Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Kristen A. Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Matthew A. Conte
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Mitsuto Aibara
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (M.A.); (M.N.)
| | - Hillary D. J. Mrosso
- Mwanza Fisheries Research Center, Tanzania Fisheries Research Institute (TAFIRI), Mwanza P.O. Box 475, Tanzania;
| | - Elizabeth C. J. Green
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA; (E.C.J.G.); (M.R.K.)
| | - Michael R. Kidd
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA; (E.C.J.G.); (M.R.K.)
| | - Masato Nikaido
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (M.A.); (M.N.)
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria;
| |
Collapse
|
8
|
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. SCIENCE ADVANCES 2021; 7:eabe8215. [PMID: 34516923 PMCID: PMC8442896 DOI: 10.1126/sciadv.abe8215] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sex is a fundamental trait determined by environmental and/or genetic factors, including sex chromosomes. Sex chromosomes are studied in species scattered across the tree of life, yet little is known about tempo and mode of sex chromosome evolution among closely related species. Here, we examine sex chromosome evolution in the adaptive radiation of cichlid fishes in Lake Tanganyika. Through the analysis of male and female genomes from 244 cichlid taxa (189 described species with 5 represented with two local variants/populations; 50 undescribed species) and of 396 multitissue transcriptomes from 66 taxa, we identify signatures of sex chromosomes in 79 taxa, involving 12 linkage groups. We find that Tanganyikan cichlids have the highest rates of sex chromosome turnover and heterogamety transitions known to date. We show that sex chromosome recruitment is not at random. Moreover convergently emerged sex chromosomes in cichlids support the “limited options” hypothesis of sex chromosome evolution.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding author.
| |
Collapse
|
9
|
Driscoll RMH, Faber-Hammond JJ, O'Rourke CF, Hurd PL, Renn SCP. Epigenetic regulation of gonadal and brain aromatase expression in a cichlid fish with environmental sex determination. Gen Comp Endocrinol 2020; 296:113538. [PMID: 32585214 DOI: 10.1016/j.ygcen.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
A fit animal must develop testes or ovaries, with brain and physiology to match. In species with alternative male morphs this coordination of development across tissues operates within sexes as well as between. For Pelvicachromis pulcher, an African cichlid in which early pH exposure influences both sex and alternative male morph, we sequence both copies of aromatase (cyp19a1), a key gene for sex determination. We analyze gene expression and epigenetic state, comparing gonad and brain tissue from females, alternative male morphs, and fry. Relative to brain, we find elevated expression of the A-copy in the ovaries but not testes. Methylation analysis suggests strong epigenetic regulation, with one region specifying sex and another specifying tissue. We find elevated brain expression of the B-copy with no sex or male morph differences. B-copy methylation follows that of the A-copy rather than corresponding to B-copy expression. In 30-day old fry, we see elevated B-copy expression in the head, but we do not see the expected elevated A-copy expression in the trunk that would reflect ovarian development. Interestingly, the A-copy epialleles that distinguish ovaries from testes are among the most explanatory patterns for variation among fry, suggesting epigenetic marking of sex prior to differentiation and thus laying the groundwork for mechanistic studies of epigenetic regulation of sex and morph differentiation.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, Reed College, Portland, OR, USA; Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA.
| |
Collapse
|
10
|
Solomon-Lane TK, Hofmann HA. Early-life social environment alters juvenile behavior and neuroendocrine function in a highly social cichlid fish. Horm Behav 2019; 115:104552. [PMID: 31276665 DOI: 10.1016/j.yhbeh.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early-life experiences can shape adult behavior, with consequences for fitness and health, yet fundamental questions remain unanswered about how early-life social experiences are translated into variation in brain and behavior. The African cichlid fish Astatotilapia burtoni, a model system in social neuroscience, is well known for its highly plastic social phenotypes in adulthood. Here, we rear juveniles in either social groups or pairs to investigate the effects of early-life social environments on behavior and neuroendocrine gene expression. We find that both juvenile behavior and neuroendocrine function are sensitive to early-life effects. Behavior robustly co-varies across multiple contexts (open field, social cue investigation, and dominance behavior assays) to form a behavioral syndrome, with pair-reared juveniles towards the end of syndrome that is less active and socially interactive. Pair-reared juveniles also submit more readily as subordinates. In a separate cohort, we measured whole brain expression of stress and sex hormone genes. Expression of glucocorticoid receptor 1a was elevated in group-reared juveniles, supporting a highly-conserved role for the stress axis mediating early-life effects. The effect of rearing environment on androgen receptor α and estrogen receptor α expression was mediated by treatment duration (1 vs. 5 weeks). Finally, expression of corticotropin-releasing factor and glucocorticoid receptor 2 decreased significantly over time. Rearing environment also caused striking differences in gene co-expression, such that expression was tightly integrated in pair-reared juveniles but not group-reared or isolates. Together, this research demonstrates the important developmental origins of behavioral phenotypes and identifies potential behavioral and neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
11
|
El Taher A, Lichilín N, Salzburger W, Böhne A. Time matters! Developmental shift in gene expression between the head and the trunk region of the cichlid fish Astatotilapia burtoni. BMC Genomics 2019; 20:39. [PMID: 30642242 PMCID: PMC6332847 DOI: 10.1186/s12864-018-5321-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differential gene expression can be translated into differing phenotypic traits. Especially during embryogenesis, specific gene expression networks regulate the development of different body structures. Cichlid fishes, with their impressive phenotypic diversity and propensity to radiate, are an emerging model system in the genomics era. Here we set out to investigate gene expression throughout development in the well-studied cichlid fish Astatotilapia burtoni, native to Lake Tanganyika and its affluent rivers. RESULTS Combining RNA-sequencing from different developmental time points as well as integrating adult gene expression data, we constructed a new genome annotation for A. burtoni comprising 103,253 transcripts (stemming from 52,584 genomic loci) as well as a new reference transcriptome set. We compared our transcriptome to the available reference genome, redefining transcripts and adding new annotations. We show that about half of these transcripts have coding potential. We also characterize transcripts that are not present in the genome assembly. Next, using our newly constructed comprehensive reference transcriptome, we characterized differential gene expression through time and showed that gene expression is shifted between different body parts. We constructed a gene expression network that identified connected genes responsible for particular phenotypes and made use of it to focus on genes under potential positive selection in A. burtoni, which were implicated in fin development and vision. CONCLUSIONS We provide new genomic resources for the cichlid fish Astatotilapia burtoni, which will contribute to its further establishment as a model system. Tracing gene expression through time, we identified gene networks underlying particular functions, which will help to understand the genetic basis of phenotypic diversity in cichlids.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Nicolás Lichilín
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
12
|
Li R, Zhang L, Li W, Zhang Y, Li Y, Zhang M, Zhao L, Hu X, Wang S, Bao Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front Physiol 2018; 9:1166. [PMID: 30246781 PMCID: PMC6113668 DOI: 10.3389/fphys.2018.01166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/24/2023] Open
Abstract
Sex determination and differentiation have long been a research hotspot in metazoans. However, little is known about when and how sex differentiation occurs in most mollusks. In this study, we conducted a combined morphological and molecular study on sex differentiation in the Yesso scallop Patinopecten yessoensis. Histological examination on gonads from 5- to 13-month-old juveniles revealed that the morphological sex differentiation occurred at 10 months of age. To determine the onset of molecular sex differentiation, molecular markers were screened for early identification of sex. The gonadal expression profiles of eight candidate genes for sex determination or differentiation showed that only two genes displayed sexually dimorphic expression, with FOXL2 being abundant in ovaries and DMRT1L in testes. In situ hybridization revealed that both of them were detected in germ cells and follicle cells. We therefore developed LOG10(DMRT1L/FOXL2) for scallop sex identification and confirmed its feasibility in differentiated individuals. By tracing its changes in 5- to 13-month-old juveniles, molecular sex differentiation time was determined: some scallops differentiate early in September when they are 7 months old, and some do late in December when they are 10 months old. Two kinds of coexpression patterns were found between FOXL2 and DMRT1L: expected antagonism after differentiation and unexpected coordination before differentiation. Our results revealed that scallop sex differentiation co-occurs with the formation of follicles, and molecular sex differentiation is established prior to morphological sex differentiation. Our study will assist in a better understanding of the molecular mechanism underlying bivalve sex differentiation.
Collapse
Affiliation(s)
- Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Feulner PGD, Schwarzer J, Haesler MP, Meier JI, Seehausen O. A Dense Linkage Map of Lake Victoria Cichlids Improved the Pundamilia Genome Assembly and Revealed a Major QTL for Sex-Determination. G3 (BETHESDA, MD.) 2018; 8:2411-2420. [PMID: 29760203 PMCID: PMC6027883 DOI: 10.1534/g3.118.200207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 01/09/2023]
Abstract
Genetic linkage maps are essential for comparative genomics, high quality genome sequence assembly and fine scale quantitative trait locus (QTL) mapping. In the present study we identified and genotyped markers via restriction-site associated DNA (RAD) sequencing and constructed a genetic linkage map based on 1,597 SNP markers of an interspecific F2 cross of two closely related Lake Victoria cichlids (Pundamilia pundamilia and P sp. 'red head'). The SNP markers were distributed on 22 linkage groups and the total map size was 1,594 cM with an average marker distance of 1.01 cM. This high-resolution genetic linkage map was used to anchor the scaffolds of the Pundamilia genome and estimate recombination rates along the genome. Via QTL mapping we identified a major QTL for sex in a ∼1.9 Mb region on Pun-LG10, which is homologous to Oreochromis niloticus LG 23 (Ore-LG23) and includes a well-known vertebrate sex-determination gene (amh).
Collapse
Affiliation(s)
- Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
- Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Marcel P Haesler
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| |
Collapse
|
14
|
Rosenfeld CS. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not? Front Neurosci 2017; 11:632. [PMID: 29200993 PMCID: PMC5696354 DOI: 10.3389/fnins.2017.00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differentiation, but this can be overridden in males by early exposure to estrogenic chemicals. Testes development in mammals requires a Y chromosome and testis determining gene SRY (in humans)/Sry (all other therian mammals), although there are notable exceptions. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (Tokudaia tokunoshimensis) and two species of mole voles (Ellobius lutescens and Ellobius tancrei), lack a Y chromosome/Sry and possess an XO chromosome system in both sexes. Such rodent species, prototherians (monotremes, who also lack Sry), and fish and reptile species that demonstrate temperature sex determination (TSD) seemingly call into question the requirement of Sry for brain sexual differentiation. This review will consider brain regions expressing SRY/Sry in humans and rodents, respectively, and potential roles of SRY/Sry in the brain will be discussed. The evidence from various taxa disputing the requirement of Sry for brain sexual differentiation in mammals (therians and prototherians) and certain fish and reptilian species will be examined. A comparative approach to address this question may elucidate other genes, pathways, and epigenetic modifications stimulating brain sexual differentiation in vertebrate species, including humans.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Biomedical Sciences, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:883. [PMID: 27821061 PMCID: PMC5100337 DOI: 10.1186/s12864-016-3178-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Sex chromosomes change more frequently in fish than in mammals or birds. However, certain chromosomes or genes are repeatedly used as sex determinants in different members of the teleostean lineage. East African cichlids are an enigmatic model system in evolutionary biology representing some of the most diverse extant vertebrate adaptive radiations. How sex is determined and if different sex-determining mechanisms contribute to speciation is unknown for almost all of the over 1,500 cichlid species of the Great Lakes. Here, we investigated the genetic basis of sex determination in a cichlid from Lake Tanganyika, Astatotilapia burtoni, a member of the most species-rich cichlid lineage, the haplochromines. Results We used RAD-sequencing of crosses for two populations of A. burtoni, a lab strain and fish caught at the south of Lake Tanganyika. Using association mapping and comparative genomics, we confirmed male heterogamety in A. burtoni and identified different sex chromosomes (LG5 and LG18) in the two populations of the same species. LG5, the sex chromosome of the lab strain, is a fusion chromosome in A. burtoni. Wnt4 is located on this chromosome, representing the best candidate identified so far for the master sex-determining gene in our lab strain of A. burtoni. Conclusions Cichlids exemplify the high turnover rate of sex chromosomes in fish with two different chromosomes, LG5 and LG18, containing major sex-determining loci in the two populations of A. burtoni examined here. However, they also illustrate that particular chromosomes are more likely to be used as sex chromosomes. Chromosome 5 is such a chromosome, which has evolved several times as a sex chromosome, both in haplochromine cichlids from all Great Lakes and also in other teleost fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3178-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
16
|
Roberts NB, Juntti SA, Coyle KP, Dumont BL, Stanley MK, Ryan AQ, Fernald RD, Roberts RB. Polygenic sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:835. [PMID: 27784286 PMCID: PMC5080751 DOI: 10.1186/s12864-016-3177-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. RESULTS Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. CONCLUSIONS We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution of genetic sex determination and sexual conflicts in East African cichlids.
Collapse
Affiliation(s)
- Natalie B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Scott A. Juntti
- Department of Biology, Stanford University, Stanford, CA USA
| | - Kaitlin P. Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Bethany L. Dumont
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - M. Kaitlyn Stanley
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Allyson Q. Ryan
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | | | - Reade B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
17
|
Abstract
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics of Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
18
|
Göppert C, Harris RM, Theis A, Boila A, Hohl S, Rüegg A, Hofmann HA, Salzburger W, Böhne A. Inhibition of Aromatase Induces Partial Sex Change in a Cichlid Fish: Distinct Functions for Sex Steroids in Brains and Gonads. Sex Dev 2016; 10:97-110. [DOI: 10.1159/000445463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
|