1
|
Peters L, Rakateli L, Huchzermeier R, Bonnin-Marquez A, Maas SL, Lin C, Jans A, Geng Y, Gorter A, Gijbels M, Rensen S, Olinga P, Hendrikx T, Krawczyk M, Brisbois M, Jankowski J, Bidzhekov K, Weber C, Biessen EAL, Shiri-Sverdlov R, Houben T, Doering Y, Bartneck M, van der Vorst E. MicroRNA-26b protects against MASH development in mice and can be efficiently targeted with lipid nanoparticles. eLife 2025; 13:RP97165. [PMID: 40261813 PMCID: PMC12014130 DOI: 10.7554/elife.97165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing, urging more research into the underlying mechanisms. MicroRNA-26b (Mir26b) might play a role in several MASH-related pathways. Therefore, we aimed to determine the role of Mir26b in MASH and its therapeutic potential using Mir26b mimic-loaded lipid nanoparticles (LNPs). Apoe-/-Mir26b-/-, Apoe-/-Lyz2creMir26bfl/fl mice, and respective controls were fed a Western-type diet to induce MASH. Plasma and liver samples were characterized regarding lipid metabolism, hepatic inflammation, and fibrosis. Additionally, Mir26b mimic-loaded LNPs were injected in Apoe-/-Mir26b-/- mice to rescue the phenotype and key results were validated in human precision-cut liver slices. Finally, kinase profiling was used to elucidate underlying mechanisms. Apoe-/-Mir26b-/- mice showed increased hepatic lipid levels, coinciding with increased expression of scavenger receptor a and platelet glycoprotein 4. Similar effects were found in mice lacking myeloid-specific Mir26b. Additionally, hepatic TNF and IL-6 levels and amount of infiltrated macrophages were increased in Apoe-/-Mir26b-/- mice. Moreover, Tgfb expression was increased by the Mir26b deficiency, leading to more hepatic fibrosis. A murine treatment model with Mir26b mimic-loaded LNPs reduced hepatic lipids, rescuing the observed phenotype. Kinase profiling identified increased inflammatory signaling upon Mir26b deficiency, which was rescued by LNP treatment. Finally, Mir26b mimic-loaded LNPs also reduced inflammation in human precision-cut liver slices. Overall, our study demonstrates that the detrimental effects of Mir26b deficiency in MASH can be rescued by LNP treatment. This novel discovery leads to more insight into MASH development, opening doors to potential new treatment options using LNP technology.
Collapse
Affiliation(s)
- Linsey Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtNetherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
| | - Andrea Bonnin-Marquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
| | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
| | - Cheng Lin
- Department of Rheumatology and Shanghai Institute of Rheumatology, RenjiShanghaiChina
- Department of Medicine III, University Hospital AachenAachenGermany
| | - Alexander Jans
- Department of Rheumatology and Shanghai Institute of Rheumatology, RenjiShanghaiChina
| | - Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of GroningenGroningenNetherlands
| | - Alan Gorter
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of GroningenGroningenNetherlands
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtNetherlands
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndrome; Amsterdam Infection and Immunity: Inflammatory diseases; Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
| | - Sander Rensen
- Department of Surgery, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtNetherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of GroningenGroningenNetherlands
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University ViennaViennaAustria
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of DuisburgEssenGermany
| | - Malvina Brisbois
- Department of Medicine II, Saarland University Medical Center, Saarland UniversityHomburgGermany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtNetherlands
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität MünchenMunichGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtNetherlands
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM)MunichGermany
| | - Erik AL Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtNetherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of MaastrichtMaastrichtNetherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of MaastrichtMaastrichtNetherlands
| | - Yvonne Doering
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität MünchenMunichGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany
- Swiss Cardiovascular Center, Division of Angiology, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Matthias Bartneck
- Department of Rheumatology and Shanghai Institute of Rheumatology, RenjiShanghaiChina
- DWI – Leibniz Institute for Interactive MaterialsAachenGermany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen UniversityAachenGermany
| | - Emiel van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen UniversityAachenGermany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen UniversityAachenGermany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität MünchenMunichGermany
- Department of Internal Medicine I - Cardiology, University Hospital, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38683565 PMCID: PMC11059818 DOI: 10.1167/iovs.65.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Thanh V. Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - David S. Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| |
Collapse
|
3
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
4
|
Peters LJF, Baaten CCFMJ, Maas SL, Lu C, Nagy M, Jooss NJ, Bidzhekov K, Santovito D, Moreno-Andrés D, Jankowski J, Biessen EAL, Döring Y, Heemskerk JWM, Weber C, Kuijpers MJE, van der Vorst EPC. MicroRNA-26b Attenuates Platelet Adhesion and Aggregation in Mice. Biomedicines 2022; 10:983. [PMID: 35625720 PMCID: PMC9138361 DOI: 10.3390/biomedicines10050983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Platelets are key regulators of haemostasis, making platelet dysfunction a major driver of thrombosis. Numerous processes that determine platelet function are influenced by microRNAs (miRs). MiR-26b is one of the highest-expressed miRs in healthy platelets, and its expression in platelets is changed in a diseased state. However, the exact effect of this miR on platelet function has not been studied yet. In this study, we made use of a whole-body knockout of miR-26b in ApoE-deficient mice in order to determine its impact on platelet function, thrombus formation and platelet signalling both ex vivo and in vivo. We show that a whole-body deficiency of miR-26b exacerbated platelet adhesion and aggregation ex vivo. Additionally, in vivo, platelets adhered faster, and larger thrombi were formed in mice lacking miR-26b. Moreover, isolated platelets from miR-26b-deficient mice showed a hyperactivated Src and EGFR signalling. Taken together, we show here for the first time that miR-26b attenuates platelet adhesion and aggregation, possibly through Src and EGFR signalling.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52056 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
| | - Constance C. F. M. J. Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52056 Aachen, Germany
| | - Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands;
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
| | - Natalie J. Jooss
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80337 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20090 Milan, Italy
| | - Daniel Moreno-Andrés
- Department of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52056 Aachen, Germany;
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands;
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20090 Milan, Italy
- Swiss Cardiovascular Center, Division of Angiology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
- Synapse Research Institute, Kon. Emmaplein 7, 6217 Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20090 Milan, Italy
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands; (M.N.); (N.J.J.); (J.W.M.H.); (M.J.E.K.)
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52056 Aachen, Germany; (L.J.F.P.); (C.C.F.M.J.B.); (S.L.M.); (J.J.); (E.A.L.B.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52056 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 Maastricht, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (K.B.); (D.S.); (Y.D.); (C.W.)
| |
Collapse
|
5
|
van der Vorst EPC, Pepe MAA, Peters LJF, Haberbosch M, Jansen Y, Naumann R, Stathopoulos GT, Weber C, Bidzhekov K. Correction to: Transcriptome signature of miRNA-26b KO mouse model suggests novel targets. BMC Genom Data 2021; 22:36. [PMID: 34544360 PMCID: PMC8451125 DOI: 10.1186/s12863-021-00990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany. .,Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany. .,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | | | - Linsey J F Peters
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Markus Haberbosch
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|