1
|
Singh S, Agarwal J, Das A, Trivedi M, Dubey KD, Athish Pranav KV, Dwivedi M. Leveraging molecular dynamics, physicochemical, and structural analysis to explore OMP33-36 protein as a drug target in Acinetobacter baumannii: An approach against nosocomial infection. J Mol Graph Model 2025; 136:108956. [PMID: 39862464 DOI: 10.1016/j.jmgm.2025.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A. baumannii and the regulatory potential of phytocompounds using an in-silico drug screening approach. Omp33-36 protein receptor was retrieved from the protein data bank and characterized as a receptor protein. The possible compounds (ligands) from three plants namely Andrographis paniculata, Cascabela thevetia, and Prosopis cineraria, were evaluated for their potential against bacterial infections based on prior investigations and selected for further analysis. Initially, seventy potential phytocompounds were identified and retrieved from IMPPAT database, followed by Physio-chemical characterizations and toxicity assessment using swissADME and ProTox server respectively. 15 compounds have shown significant drug-likeliness and were implemented for their interaction analysis with Omp33-36 using Autodock Vina. The docking study presented seven compounds with the best binding affinities, ranging from -7.2 kcal/mol to -7.9 kcal/mol and further, based on the potential of these compounds, 4 phytocompounds were introduced for molecular dynamic simulation for 200ns. During MD simulation, compounds Prosogerin, Quercitin and Tamarixetin have shown a substantial affinity for the Omp33-36 protein and binding energy ranging from -18 to -33 kcal/mol. Overall, the analysis depicted the two compounds, Quercitin and Tamarixetin, with the most consistent interactions and indicated promise as drug leads in regulating A. baumannii infection. However, in-vitro and in-vivo experimental validation are required to propose the selected phytomolecules as a therapeutic lead against A. baumannii.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India
| | - Jyotsna Agarwal
- Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Anupam Das
- Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India
| | - Kshatresh D Dubey
- Department of Chemistry, Shiv Nadar University, Greater Noida, 201314, India
| | - K V Athish Pranav
- Department of Chemistry, Shiv Nadar University, Greater Noida, 201314, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, India.
| |
Collapse
|
2
|
Mansouri M, Sadeghpoor M, Abdollahi M, Vafaei AJ, Jalali Nadoushan M, Rasooli I. Synergistic immunoprotection by Oma87 and Bap against Acinetobacter baumannii sepsis model. Int Immunopharmacol 2023; 122:110650. [PMID: 37454632 DOI: 10.1016/j.intimp.2023.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Acinetobacter baumannii is the leading cause of nosocomial infection. A surface protein commonly known as biofilm associate protein (Bap) has been identified in a bloodstream isolate of A. baumannii. Bap of A. baumannii is involved in intercellular adhesion within the mature biofilm. Outer membrane protein Acinetobacter 87 kDa (Oma87) or β-barrel assembly machinery A (BamA) has been introduced as an immunogenic outer membrane protein via in silico reverse vaccinology. Current research examines the synergistic effect of immunization of mice with both recombinant proteins viz., Oma87 and Bap. Antibodies were raised to the proteins. The mice were challenged with A. baumannii ATCC 19606 and the bacterial burden was enumerated in the mice's livers, spleens, and lungs followed by histological examination. IgG levels significantly increased, and a significant (p < 0.0001) difference was observed between bacterial burdens in the internal organs of the actively and passively immunized groups. Female BALB/c mice weighing 20-25 g, were divided into 4 groups of 14 mice each viz., control, Oma87, Bap, Oma87-Bap groups. The proteins were individually immunogenic, but the combination of both proteins had a synergistic protection property. This is further supported by the histological examination. Based on the results, the combination of Oma87 and Bap may be considered a promising vaccine candidate against A. baumannii .
Collapse
Affiliation(s)
- Mobina Mansouri
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Masoomeh Sadeghpoor
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Marziyeh Abdollahi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Amir Javad Vafaei
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
3
|
Sung K, Park M, Chon J, Kweon O, Khan SA, Shen A, Paredes A. Concentration-Dependent Global Quantitative Proteome Response of Staphylococcus epidermidis RP62A Biofilms to Subinhibitory Tigecycline. Cells 2022; 11:3488. [PMID: 36359886 PMCID: PMC9655631 DOI: 10.3390/cells11213488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Staphylococcus epidermidis is a leading cause of biofilm-associated infections on implanted medical devices. During the treatment of an infection, bacterial cells inside biofilms may be exposed to sublethal concentrations of the antimicrobial agents. In the present study, the effect of subinhibitory concentrations of tigecycline (TC) on biofilms formed by S. epidermidis strain RP62A was investigated using a quantitative global proteomic technique. Sublethal concentrations of TC [1/8 (T1) and 1/4 minimum inhibitory concentration (MIC) (T2)] promoted biofilm production in strain RP62A, but 1/2 MIC TC (T3) significantly inhibited biofilm production. Overall, 413, 429, and 518 proteins were differentially expressed in biofilms grown with 1/8 (T1), 1/4 (T2), and 1/2 (T3) MIC of TC, respectively. As the TC concentration increased, the number of induced proteins in each Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway increased. The TC concentration dependence of the proteome response highlights the diverse mechanisms of adaptive responses in strain RP62A biofilms. In both COG and KEGG functional analyses, most upregulated proteins belong to the metabolism pathway, suggesting that it may play an important role in the defense of strain RP62A biofilm cells against TC stress. Sub-MIC TC treatment of strain RP62A biofilms led to significant changes of protein expression related to biofilm formation, antimicrobial resistance, virulence, quorum sensing, ABC transporters, protein export, purine/pyrimidine biosynthesis, ribosomes, and essential proteins. Interestingly, in addition to tetracycline resistance, proteins involved in resistance of various antibiotics, including aminoglycosides, antimicrobial peptides, β-lactams, erythromycin, fluoroquinolones, fusidic acid, glycopeptides, lipopeptides, mupirocin, rifampicin and trimethoprim were differentially expressed. Our study demonstrates that global protein expression profiling of biofilm cells to antibiotic pressure may improve our understanding of the mechanisms of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Jungwhan Chon
- Companion Animal Health, Inje University, Gimhae 50834, Korea
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Saeed A. Khan
- Division of Microbiology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Andrew Shen
- Division of Neurotoxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | - Angel Paredes
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| |
Collapse
|
4
|
Dollery SJ, Zurawski DV, Bushnell RV, Tobin JK, Wiggins TJ, MacLeod DA, Tasker NJPER, Alamneh YA, Abu-Taleb R, Czintos CM, Su W, Escatte MG, Meeks HN, Daly MJ, Tobin GJ. Whole-cell vaccine candidates induce a protective response against virulent Acinetobacter baumannii. Front Immunol 2022; 13:941010. [PMID: 36238282 PMCID: PMC9553005 DOI: 10.3389/fimmu.2022.941010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii causes multi-system diseases in both nosocomial settings and a pre-disposed general population. The bacterium is not only desiccation-resistant but also notoriously resistant to multiple antibiotics and drugs of last resort including carbapenem, colistin, and sulbactam. The World Health Organization has categorized carbapenem-resistant A. baumannii at the top of its critical pathogen list in a bid to direct urgent countermeasure development. Several early-stage vaccines have shown a range of efficacies in healthy mice, but no vaccine candidates have advanced into clinical trials. Herein, we report our findings that both an ionizing γ-radiation-inactivated and a non-ionizing ultraviolet C-inactivated whole-cell vaccine candidate protects neutropenic mice from pulmonary challenge with virulent AB5075, a particularly pathogenic isolate. In addition, we demonstrate that a humoral response is sufficient for this protection via the passive immunization of neutropenic mice.
Collapse
Affiliation(s)
- Stephen J. Dollery
- Biological Mimetics, Inc., Frederick, MD, United States
- *Correspondence: Stephen J. Dollery,
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - John K. Tobin
- Biological Mimetics, Inc., Frederick, MD, United States
| | | | | | | | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christine M. Czintos
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wanwen Su
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mariel G. Escatte
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather N. Meeks
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
5
|
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10:e0232821. [PMID: 35234505 PMCID: PMC8941935 DOI: 10.1128/spectrum.02328-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii needs to adapt to hypoxia during infection. Understanding its proteome regulation during infection would allow us to determine new targets to develop novel treatments. iTRAQ proteomic analysis of A549 cell infection by the ATCC 17978 strain was performed. A total of 175 proteins were differentially expressed under hypoxia versus normoxia. We selected the hypoxia-downregulated protein OmpW to analyze its role as a virulence factor. The loss of OmpW decreased the adherence and invasion of A. baumannii in these host cells, without affecting its bacterial growth. Moreover, A549 cell viability with ΔOmpW infection was higher than that with the wild-type strain. ΔOmpW presented less biofilm formation. Finally, the minimum lethal dose required by the ΔOmpW mutant was higher than that of the wild-type strain in a murine peritoneal sepsis model, with lower bacterial loads in tissues and fluids. Therefore, OmpW seems to be a virulence factor necessary for A. baumannii pathogenesis. IMPORTANCE Acinetobacter baumannii causes infections that are very difficult to treat due to the high rate of resistance to most and sometimes all of the antimicrobials used in the clinical setting. There is an important need to develop new strategies to combat A. baumannii infections. One alternative could be blocking specific bacterial virulence factors that this pathogen needs to infect cells. Pathogens modulate their protein expression as a function of the environment, and several studies have reported that hypoxia occurs in a wide range of infections. Therefore, it would be interesting to determine the proteome of A. baumannii under hypoxia in order to find new virulence factors, such as the outer membrane protein OmpW, as potential targets for the design of novel therapies.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Medicine, University of Seville, Sevilla, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
6
|
Kho ZY, Azad MAK, Han ML, Zhu Y, Huang C, Schittenhelm RB, Naderer T, Velkov T, Selkrig J, Zhou Q(T, Li J. Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages. PLoS Pathog 2022; 18:e1010308. [PMID: 35231068 PMCID: PMC8887720 DOI: 10.1371/journal.ppat.1010308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhi Ying Kho
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mohammad A. K. Azad
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute, Infection Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
7
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
8
|
McConnell MJ, Martín-Galiano AJ. Designing Multi-Antigen Vaccines Against Acinetobacter baumannii Using Systemic Approaches. Front Immunol 2021; 12:666742. [PMID: 33936107 PMCID: PMC8085427 DOI: 10.3389/fimmu.2021.666742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines and monoclonal antibodies are promising approaches for preventing and treating infections caused by multidrug resistant Acinetobacter baumannii. However, only partial protection has been achieved with many previously tested protein antigens, which suggests that vaccines incorporating multiple antigens may be necessary in order to obtain high levels of protection. Several aspects that use the wealth of omic data available for A. baumannii have not been fully exploited for antigen identification. In this study, the use of fractionated proteomic and computational data from ~4,200 genomes increased the number of proteins potentially accessible to the humoral response to 8,824 non-redundant proteins in the A. baumannii panproteome. Among them, 59% carried predicted B-cell epitopes and T-cell epitopes recognized by two or more alleles of the HLA class II DP supertype. Potential cross-reactivity with human proteins was detected for 8.9% of antigens at the protein level and 2.7% at the B-cell epitope level. Individual antigens were associated with different infection types by genomic, transcriptomic or functional analyses. High intra-clonal genome density permitted the identification of international clone II as a “vaccitype”, in which 20% of identified antigens were specific to this clone. Network-based centrality measurements were used to identify multiple immunologic nodes. Data were formatted, unified and stored in a data warehouse database, which was subsequently used to identify synergistic antigen combinations for different vaccination strategies. This study supports the idea that integration of multi-omic data and fundamental knowledge of the pathobiology of drug-resistant bacteria can facilitate the development of effective multi-antigen vaccines against these challenging infections.
Collapse
Affiliation(s)
- Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
9
|
Gallagher P, Baker S. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii. J Infect 2020; 81:857-861. [DOI: 10.1016/j.jinf.2020.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
|
10
|
Abstract
Acinetobacter baumannii is nowadays a relevant nosocomial pathogen characterized by multidrug resistance (MDR) and concomitant difficulties to treat infections. OmpA is the most abundant A. baumannii outer membrane (OM) protein, and is involved in virulence, host-cell recognition, biofilm formation, regulation of OM stability, permeability and antibiotic resistance. OmpA members are two-domain proteins with an N-terminal eight-stranded β-barrel domain with four external loops (ELs) interacting with the environment, and a C-terminal periplasmic domain binding non-covalently to the peptidoglycan. Here, we combined data from genome sequencing, phylogenetic and multilocus sequence analyses from 975 strains/isolates of the Acinetobacter calcoaceticus/Acinetobacter baumannii complex (ACB), 946 from A. baumannii, to explore ompA microevolutionary divergence. Five major ompA variant groups were identified (V1 to V5) in A. baumannii, encompassing 52 different alleles coding for 23 different proteins. Polymorphisms were concentrated in five regions corresponding to the four ELs and the C-terminal end, and provided evidence for intra-genic recombination. ompA variants were not randomly distributed across the A. baumannii phylogeny, with the most frequent V1(lct)a1 allele found in most clonal complex 2 (CC2) strains and the second most frequent V2(lct)a1 allele in the majority of CC1 strains. Evidence was found for assortative exchanges of ompA alleles not only between separate A. baumannii lineages, but also different ACB species. The overall results have implications for A. baumannii evolution, epidemiology, virulence and vaccine design.
Collapse
Affiliation(s)
- Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | | |
Collapse
|
11
|
Orihuela CJ, Maus UA, Brown JS. Can animal models really teach us anything about pneumonia? Pro. Eur Respir J 2020; 55:55/1/1901539. [DOI: 10.1183/13993003.01539-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023]
|
12
|
Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress. Sci Rep 2019; 9:17251. [PMID: 31754169 PMCID: PMC6872806 DOI: 10.1038/s41598-019-53847-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a feared, drug-resistant pathogen, characterized by its ability to resist extreme environmental and nutrient-deprived conditions. Previously, we showed that human serum albumin (HSA) can increase foreign DNA acquisition specifically and alter the expression of genes associated with pathogenicity. Moreover, in a recent genome-wide transcriptomic study, we observed that pleural fluid (PF), an HSA-containing fluid, increases DNA acquisition, can modulate cytotoxicity, and control immune responses by eliciting changes in the A. baumannii metabolic profile. In the present work, using more stringent criteria and focusing on the analysis of genes related to pathogenicity and response to stress, we analyzed our previous RNA-seq data and performed phenotypic assays to further explore the impact of PF on A. baumannii's microbial behavior and the strategies used to overcome environmental stress. We observed that PF triggered differential expression of genes associated with motility, efflux pumps, antimicrobial resistance, biofilm formation, two-component systems (TCSs), capsule synthesis, osmotic stress, and DNA-damage response, among other categories. Phenotypic assays of A. baumannii A118 and two other clinical A. baumannii strains, revealed differences in their responses to PF in motility, biofilm formation, antibiotic susceptibility, osmotic stress, and outer membrane vesicle (OMV) production, suggesting that these changes are strain specific. We conclude that A. baumannii's pathoadaptive responses is induced by HSA-containing fluids and must be part of this bacterium armamentarium to persist in hostile environments.
Collapse
|
13
|
McClure RS, Wendler JP, Adkins JN, Swanstrom J, Baric R, Kaiser BLD, Oxford KL, Waters KM, McDermott JE. Unified feature association networks through integration of transcriptomic and proteomic data. PLoS Comput Biol 2019; 15:e1007241. [PMID: 31527878 PMCID: PMC6748406 DOI: 10.1371/journal.pcbi.1007241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different-omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease.
Collapse
Affiliation(s)
- Ryan S. McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason P. Wendler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jesica Swanstrom
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooke L. Deatherage Kaiser
- Signatures Science and Technology Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Kristie L. Oxford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, United States of America
| |
Collapse
|
14
|
Haddad N, Johnson N, Kathariou S, Métris A, Phister T, Pielaat A, Tassou C, Wells-Bennik MH, Zwietering MH. Next generation microbiological risk assessment—Potential of omics data for hazard characterisation. Int J Food Microbiol 2018; 287:28-39. [DOI: 10.1016/j.ijfoodmicro.2018.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
|
15
|
Álvarez-Fraga L, Vázquez-Ucha JC, Martínez-Guitián M, Vallejo JA, Bou G, Beceiro A, Poza M. Pneumonia infection in mice reveals the involvement of the feoA gene in the pathogenesis of Acinetobacter baumannii. Virulence 2018; 9:496-509. [PMID: 29334313 PMCID: PMC5955439 DOI: 10.1080/21505594.2017.1420451] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acinetobacter baumannii has emerged in the last decade as an important nosocomial pathogen. To identify genes involved in the course of a pneumonia infection, gene expression profiles were obtained from A. baumannii ATCC 17978 grown in mouse infected lungs and in culture medium. Gene expression analysis allowed us to determine a gene, the A1S_0242 gene (feoA), over-expressed during the pneumonia infection. In the present work, we evaluate the role of this gene, involved in iron uptake. The inactivation of the A1S_0242 gene resulted in an increase susceptibility to oxidative stress and a decrease in biofilm formation, in adherence to A549 cells and in fitness. In addition, infection of G. mellonella and pneumonia in mice showed that the virulence of the Δ0242 mutant was significantly attenuated. Data presented in this work indicated that the A1S_0242 gene from A. baumannii ATCC 17978 strain plays a role in fitness, adhesion, biofilm formation, growth, and, definitively, in virulence. Taken together, these observations show the implication of the feoA gene plays in the pathogenesis of A. baumannii and highlight its value as a potential therapeutic target.
Collapse
Affiliation(s)
- Laura Álvarez-Fraga
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Juan C Vázquez-Ucha
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Marta Martínez-Guitián
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Juan A Vallejo
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Germán Bou
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Alejandro Beceiro
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| | - Margarita Poza
- a Servicio de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universidade (CHUAC), Universidad da Coruña (UDC) , A Coruña , Spain
| |
Collapse
|
16
|
Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist 2018; 16:59-71. [PMID: 30144636 DOI: 10.1016/j.jgar.2018.08.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter spp. are aerobic, rod-shaped, Gram-negative bacteria belonging to the Moraxellaceae family of the class Gammaproteobacteria and are considered ubiquitous organisms. Among them, Acinetobacter baumannii is the most clinically significant species with an extraordinary ability to accumulate antimicrobial resistance and to survive in the hospital environment. Recent reports indicate that A. baumannii has also evolved into a veterinary nosocomial pathogen. Although Acinetobacter spp. can be identified to species level using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) coupled with an updated database, molecular techniques are still necessary for genotyping and determination of clonal lineages. It appears that the majority of infections due to A. baumannii in veterinary medicine are nosocomial. Such isolates have been associated with several types of infection such as canine pyoderma, feline necrotizing fasciitis, urinary tract infection, equine thrombophlebitis and lower respiratory tract infection, foal sepsis, pneumonia in mink, and cutaneous lesions in hybrid falcons. Given the potential multidrug resistance of A. baumannii, treatment of diseased animals is often supportive and should preferably be based on in vitro antimicrobial susceptibility testing results. It should be noted that animal isolates show high genetic diversity and are in general distinct in their sequence types and resistance patterns from those found in humans. However, it cannot be excluded that animals may occasionally play a role as a reservoir of A. baumannii. Thus, it is of importance to implement infection control measures in veterinary hospitals to avoid nosocomial outbreaks with multidrug-resistant A. baumannii.
Collapse
|
17
|
Novović K, Mihajlović S, Dinić M, Malešević M, Miljković M, Kojić M, Jovčić B. Acinetobacter spp. porin Omp33-36: Classification and transcriptional response to carbapenems and host cells. PLoS One 2018; 13:e0201608. [PMID: 30071077 PMCID: PMC6072067 DOI: 10.1371/journal.pone.0201608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii has been recognized as one of the most challeging pathogens in clinical settings worldwide. Outer membrane porins play a significant role in Acinetobacter antibiotic resistance and virulence. A. baumannii carbapenem resistance and virulence factor porin Omp33-36 was the subject of this study. We investigated the omp33-36 gene transcriptional response in the growth phase, its response to carbapenems, and the effect of contact with host cells. Additionally, the cytotoxic effect of A. baumannii towards keratinocytes was assessed, as well as correlation between omp33-36 gene transcription and cytotoxicity. Further, Acinetobacter spp. Omp33-36 was classified and its characteristics relevant for vaccine candidature were determined. The level of the omp33-36 gene transcription varied between growth phases, but a common pattern could not be established among different strains. Treatment with subinhibitory concentrations of carbapenems decreased, while contact with keratinocytes increased omp33-36 expression in the analysed A. baumannii strains. Variations in omp33-36 mRNA levels did not correlate with cytotoxicity levels. Decrease of omp33-36 mRNA during treatment with subinhibitory concentrations of carbapenems, indicated the importance of transcriptional changes in reversible resistance to carbapenems due to the absence of Omp33-36. The transcription of omp33-36 increased after contact with keratinocytes, indicating the important role of de novo transcription during the initial phase of A. baumannii infection. Primary structural analysis of Acinetobacter spp. Omp33-36 revealed three distinct groups (among four A. baumannii variants). Although we have shown that Omp33-36 was highly polymorphic, we propose a potential antigen (PLAEAAFL motif) for vaccine development. According to PROVEAN analysis, the highly polymorphic structure of Omp33-36 porin should not influence its function significantly.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sanja Mihajlović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
18
|
Ferrer-Navarro M, Strehlitz A, Medina E, Vila J. Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection. Front Microbiol 2018; 9:928. [PMID: 29867838 PMCID: PMC5952171 DOI: 10.3389/fmicb.2018.00928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anja Strehlitz
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jordi Vila
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Farshadzadeh Z, Taheri B, Rahimi S, Shoja S, Pourhajibagher M, Haghighi MA, Bahador A. Growth Rate and Biofilm Formation Ability of Clinical and Laboratory-Evolved Colistin-Resistant Strains of Acinetobacter baumannii. Front Microbiol 2018; 9:153. [PMID: 29483899 PMCID: PMC5816052 DOI: 10.3389/fmicb.2018.00153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
Two different mechanisms of resistance to colistin in Acinetobacter baumannii have been described. The first involves the total loss of lipopolysaccharide (LPS) due to mutations in the lpxACD operon, which is involved in the lipid A biosynthesis pathway. The second entails the addition of ethanolamine to the lipid A of the LPS resulting from mutations in the PmrAB two-component system. To evaluate the impact of colistin resistance-associated mutations on antimicrobial resistance and virulence properties, four pairs of clinical and laboratory-evolved colistin-susceptible/colistin-resistant (ColS/ColR) A. baumannii isolates were used. Antimicrobial susceptibility, surface motility, in vitro and in vivo biofilm-forming capacity, in vitro and in vivo expression levels of biofilm-associated genes, and in vitro growth rate were analyzed in these strains. Growth rate, in vitro and in vivo biofilm formation ability, as well as expression levels of biofilm-associated gene were reduced in ColR LPS-deficient isolate (the lpxD mutant) when compared with its ColS partner, whereas there were not such differences between LPS-modified isolates (the pmrB mutants) and their parental isolates. Mutation in lpxD was accompanied by a greater reduction in minimum inhibitory concentrations of azithromycin, vancomycin, and rifampin than mutation in pmrB. Besides, loss of LPS was associated with a significant reduction in surface motility without any change in expression of type IV pili. Collectively, colistin resistance through loss of LPS causes a more considerable cost in biological features such as growth rate, motility, and biofilm formation capacity relative to LPS modification. Therefore, ColR LPS-modified strains are more likely to spread and transmit from one patient to another in hospital settings, which results in more complex treatment and control.
Collapse
Affiliation(s)
- Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rahimi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Shoja
- Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Haghighi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Future Directions and Molecular Basis of Ventilator Associated Pneumonia. Can Respir J 2017; 2017:2614602. [PMID: 29162982 PMCID: PMC5661065 DOI: 10.1155/2017/2614602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Mechanical ventilation is a lifesaving treatment and has complications such as ventilator associated pneumonia (VAP) that lead to high morbidity and mortality. Moreover VAP is the second most common hospital-acquired infection in pediatric intensive care units. Although it is still not well understood, understanding molecular pathogenesis is essential for preventing and treating pneumonia. A lot of microbes are detected as a causative agent of VAP. The most common isolated VAP pathogens in pediatric patients are Staphylococcus aureus, Pseudomonas aeruginosa, and other gram negative bacteria. All of the bacteria have different pathogenesis due to their different virulence factors and host reactions. This review article focused on mechanisms of VAP with molecular pathogenesis of the causative bacteria one by one from the literature. We hope that we know more about molecular pathogenesis of VAP and we can investigate and focus on the management of the disease in near future.
Collapse
|
21
|
Analysis of Differentially Expressed Proteins in Mycobacterium avium-Infected Macrophages Comparing with Mycobacterium tuberculosis-Infected Macrophages. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5103803. [PMID: 28573139 PMCID: PMC5442340 DOI: 10.1155/2017/5103803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022]
Abstract
Mycobacterium avium (MA) belongs to the intracellular parasitic bacteria. To better understand how MA survives within macrophages and the different pathogenic mechanisms of MA and Mycobacterium tuberculosis (MTB), tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis have been used to determine the proteins which are differentially expressed in MA-infected and MTB-infected macrophages. 369 proteins were found to be differentially expressed in MA-infected cells but not in MTB-infected cells. By using certain bioinformatics methods, we found the 369 proteins were involved in molecular function, biological process, and cellular component including binding, catalytic activity, metabolic process, cellular process, and cell part. In addition, some identified proteins were involved in multiple signaling pathways. These results suggest that MA probably survive within macrophages by affecting the expression of some crucial proteins.
Collapse
|
22
|
Adaptation to Potassium-Limitation Is Essential forAcinetobacter baumanniiPneumonia Pathogenesis. J Infect Dis 2016; 214:2006-2013. [DOI: 10.1093/infdis/jiw476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023] Open
|
23
|
Ferreira D, Seca AML, C G A D, Silva AMS. Targeting human pathogenic bacteria by siderophores: A proteomics review. J Proteomics 2016; 145:153-166. [PMID: 27109355 DOI: 10.1016/j.jprot.2016.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human bacterial infections are still a major public health problem throughout the world. Therefore it is fundamental to understand how pathogenic bacteria interact with their human host and to develop more advanced drugs or vaccines in response to the increasing bacterial resistance. Since iron is essential to bacterial survival and growth inside the host tissues, these microorganisms have developed highly efficient iron-acquisition systems; the most common one involves the secretion of iron chelators into the extracellular environment, known as siderophores, and the corresponding siderophore-membrane receptors or transporters responsible for the iron uptake. In the past few decades, several biochemical methods and genetic screens have been employed to track down and identify these iron-scavenging molecules. However, compared with the previous "static" approaches, proteomic identification is revealing far more molecules through full protein mapping and becoming more rapid and selective, leading the scientific and medical community to consider standardizing proteomic tools for clinical biomarker detection of bacterial infectious diseases. In this review, we focus on human pathogenic Gram-negative bacteria and discuss the importance of siderophores in their virulence and the available proteomic strategies to identify siderophore-related proteins and their expression level under different growth conditions. The promising use of siderophore antibiotics to overcome bacterial resistance and the future of proteomics in the routine clinical care are also mentioned. SIGNIFICANCE Proteomic strategies to identify siderophore-related proteins and their expression level can be helpful to control and/or find a cure of infectious deseases especially if related with multidrug resistance. Siderophores are low-molecular-weight compounds produced by bacteria which can become clinical biomarkers and/or antibiotics used mainly in "Trojan horse" type strategies. Due to the above mention we think that the promising use of siderophore to overcome bacterial resistance and the future of proteomics in the routine clinical care is a hot topic that should be discussed.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M L Seca
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Technologic Sciences and Development, University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Azores, Portugal
| | - Diana C G A
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
25
|
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics 2016; 13:139-56. [PMID: 26653908 DOI: 10.1586/14789450.2016.1132168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting.
Collapse
Affiliation(s)
- Maja Semanjski
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| | - Boris Macek
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
26
|
Pulido MR, García-Quintanilla M, Gil-Marqués ML, McConnell MJ. Identifying targets for antibiotic development using omics technologies. Drug Discov Today 2015; 21:465-72. [PMID: 26691873 DOI: 10.1016/j.drudis.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022]
Abstract
The lack of new compounds in the antibiotic development pipeline together with the increasing incidence of infections caused by antibiotic-resistant bacteria on a global scale represents an alarming public health problem. Advances in genomic, transcriptomic and proteomic technologies permit the characterization of bacterial physiology at an unprecedented scale, and thus can facilitate the identification of bacterial factors that could serve as targets for the development of new antibiotics. Recent studies employing these technologies have permitted the elucidation of key components in multiple bacterial processes such as bacterial survival, persistence in the host and infection. The continued use of these approaches and the incorporation of emerging omics technologies hold great potential in elucidating high value targets for antibiotic development.
Collapse
Affiliation(s)
- Marina R Pulido
- Biomedical Institute of Seville/University Hospital Virgen del Rocío, Seville, Spain
| | | | - M Luisa Gil-Marqués
- Biomedical Institute of Seville/University Hospital Virgen del Rocío, Seville, Spain
| | - Michael J McConnell
- Biomedical Institute of Seville/University Hospital Virgen del Rocío, Seville, Spain.
| |
Collapse
|
27
|
Song F, Qi D, Liu X, Kong X, Gao Y, Zhou Z, Wu Q. Proteomic analysis of symbiotic proteins of Glomus mosseae and Amorpha fruticosa. Sci Rep 2015; 5:18031. [PMID: 26658758 PMCID: PMC4674871 DOI: 10.1038/srep18031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
Arbuscular mycorrhiza fungi (AMF) can colonize the roots of Amorpha fruticosa, a perennial leguminous woody shrub, and form arbuscular mycorrhiza (AM). AMF have significant promoting effects on A. fruticosa growth as the intensity of fungal colonization increases. Taking AMF-A. fruticosa symbionts as the experimental material, gel-free isobaric tags for relative and absolute quantification (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the expression of A. fruticosa mycorrhizal proteins at the maturation stage. A total of 3,473 proteins were identified, of which 77 showed dramatic changes in their root expression levels; 33 increased, and 44 decreased. We also found nine AMF proteins that were expressed with AMF treatment. The 77 proteins were classified according to function. Plant proteins were assigned into 11 categories: metabolism-related (32%), protein folding and degradation-related (22%), energy-related (10%), protein synthesis-related (8%), stress and defense-related (24%), transcription-related (6%), membrane and transport-related (4%), cellular structure-related (2.5%), signaling transduction-related (11%) and unknown proteins (5%). The results of the study provide a foundation for further investigation of the metabolic characteristics and molecular mechanisms of AM.
Collapse
Affiliation(s)
- Fuqiang Song
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Dandan Qi
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Xuan Liu
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Xiangshi Kong
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Yang Gao
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Zixin Zhou
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Qi Wu
- Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|