1
|
Li H, Zhang L, Jiao J, Zhang H, Si X, Huang Y, Chen W. Distinct roles of the circMKNK2/miR-15a Axis in regulating chicken skeletal muscle development and glucose metabolism. Int J Biol Macromol 2025; 313:144201. [PMID: 40373921 DOI: 10.1016/j.ijbiomac.2025.144201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators of biological processes, but their roles in avian muscle development remain less explored. Here we characterize circMKNK2, a novel circRNA derived from the MKNK2 gene, which is highly expressed in slow-growing Silky chickens compared to fast-growing broilers. Functional studies demonstrate that circMKNK2 acts as a sponge for miR-15a, with overexpression inhibiting myoblast proliferation, differentiation, apoptosis, and glucose metabolism, while miR-15a knockdown produces similar effects except for enhanced glucose uptake. RNA-seq analysis identified 2189 differentially expressed genes regulated by circMKNK2 in chicken primary myoblasts, including key targets of the circMKNK2/miR-15a axis such as PIK3R1 (a core node regulating PI3K-Akt signaling), BHLHE41, KANK1, and ARHGAP20. Pathway analysis revealed modulation of myogenesis through Calcium signaling pathway, ECM-receptor interaction, Neuroactive ligand-receptor interaction and immune-related pathways (Toll-like receptor, cytokine-cytokine receptor interactions). Further analysis highlighted the circMKNK2/miR-15a axis's role in suppressing myogenesis through transcriptional regulation of key factors (e.g., SOX7, MAF) and metabolic reprogramming. Unlike pro-myogenic circRNAs, circMKNK2 uniquely inhibited muscle development and glucose metabolism, suggesting its involvement in breed-specific phenotypic differences. This study provides insights into circRNA-mediated regulation of muscle biology and offers potential targets for improving poultry production through genetic and metabolic modulation.
Collapse
Affiliation(s)
- Huihong Li
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jingya Jiao
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Xuemeng Si
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
2
|
Choi J, Shakeri M, Bowker B, Zhuang H, Kong B. Differentially abundant proteins, metabolites, and lipid molecules in spaghetti meat compared to normal chicken breast meat: Multiomics analysis. Poult Sci 2025; 104:105165. [PMID: 40286572 DOI: 10.1016/j.psj.2025.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Spaghetti meat (SM), a recently emerging muscle myopathy in chicken breast meat, is characterized by a loss of muscle fiber integrity, resulting in a spaghetti-like appearance. Understanding the differences in proteins, metabolites, and lipids through a multiomics approach in SM can identify its quality traits and elucidate its exact causes. The purpose of this study was to investigate differentially abundant proteins, metabolites, and lipid molecules in SM compared to normal chicken breast meat (Control). The supernatant from sample homogenates was subjected to ultra-high performance liquid chromatography (UHPLC) analysis for multiomic profiling. A total of 16 chicken breast fillets (Pectoralis major) representing Control (n = 8) and SM (n = 8) groups were collected from a commercial slaughterhouse. A total of 2593 molecules were identified and composed of 1903 proteins, 506 lipids, 181 compounds and 3 electrolytes. There were 632 differential molecules composed of 503 proteins, 76 lipids, 50 metabolites, and 3 electrolytes. In comparing SM and Control, the protein, metabolite, and lipid molecules with the greatest fold change were calponin, decanoylcarnitine, and ceramide [N‑hydroxy-sphingosine] (Cer[NS]) d18:1_26:1, respectively. Plasmenylphosphatidylcholine (Plasmenyl-PC) and triglycerides (TG) were significantly decreased and increased, respectively, in SM compared to Control. Acylcarnitines (AC) were significantly decreased in SM compared to Control. Decanoylcarnitine, lauroylcarnitine, linoleyl-carnitine, oleoyl-carnitine, hexanoylcarnitine were downregulated in SM compared to Control, and adenosine 5'-diphosphoribose and nicotinamide adenine dinucleotide (NAD) were downregulated in SM. Carbon metabolism, glycolysis/glucogenesis, ribosome, biosynthesis of amino acids, and aminoacyl-tRNA biosynthesis were selected in the top 10 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, identified by using differential proteins. Hence, SM had different proteins, metabolites, and lipid molecules related to β-oxidation, carbon and energy metabolism, lipid formation, and protein and amino acid metabolism compared to Control. Results from this study showed physiological alterations found in SM myopathy. Therefore, to mitigate SM in broilers, interventions should: 1) increase NAD and carnitines, 2) reduce triglycerides, and 3) modulate β-oxidation and energy metabolism via nutritional, genetic, or systemic approaches.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Majid Shakeri
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA.
| |
Collapse
|
3
|
Støle TP, Romaine A, Kleiberg T, Høst V, Lunde M, Hasic A, Lintvedt TA, Sanden KW, Kolset SO, Wold JP, Pisconti A, Rønning SB, Carlson CR, Pedersen ME. Cardiac implications of chicken wooden breast myopathy. Front Physiol 2025; 16:1547661. [PMID: 40110183 PMCID: PMC11919848 DOI: 10.3389/fphys.2025.1547661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Wooden breast disease is a myopathy of the skeletal muscle in chickens of commercial breeding. Although the underlying pathophysiology remains unknown, we and others have previously shown that affected broilers display varying degrees of fibrosis, extracellular matrix (ECM) remodeling, inflammation, and alterations in various molecular signaling pathways. Other myopathy conditions, such as Duchenne muscular dystrophy, also affect the cardiac muscle and are associated with fibrosis and reduced cardiac function. To determine potential cardiac implications of wooden breast disease and identify whether molecular and fibrotic changes were similar to what we have previously found in the breast, we have investigated the hearts of commercial Ross 308 broilers. Methods Hearts from male Ross 308 broiler chickens from mildly and severely wooden breast-affected chickens categorized in previous studies were analyzed. Ventricles from the hearts were analyzed by immunoblotting, real-time qPCR, near-infrared spectroscopy, Raman spectroscopy, and Masson`s trichrome histology. RNA sequencing was also conducted to identify the molecular footprint of the mildly and severely wooden breast-affected chickens. Results Compared to mildly affected chickens, the severely wooden breast-affected chickens did not show an increase in heart weight, water-binding capacity, or macronutrient composition. The hearts did also not display any differences in fibrosis development, extracellular matrix gene expression, or typical cardiac and inflammatory markers. The severely affected chickens did, however, show a reduction in protein levels of biglycan and fibromodulin, as well as alterations in matrix metalloproteinase 2, Wnt ligands, mTOR signaling, heat shock protein 70, and muscle LIM protein. Functional enrichment analysis of RNA sequencing also suggested a different molecular footprint of biological processes and pathways between the two groups. Conclusion Hearts from wooden breast-affected chickens did not display the same fibrotic alterations as those previously found in the breast. Despite few alterations detected in the markers and signaling molecules tested, RNA sequencing indicated a different molecular footprint in the hearts of severely compared to mildly wooden breast-affected chickens.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thea Kleiberg
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Vibeke Høst
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | | | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | | | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Vafaeinia M, Yalcin S. Temperature manipulation during incubation: effect on embryo development and incidence of white striping and expression of related genes in broiler chickens from two commercial breeds. Br Poult Sci 2025; 66:71-80. [PMID: 39212244 DOI: 10.1080/00071668.2024.2383940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
1. This study evaluated the effects of cyclic eggshell temperature between 10 and 14 d of embryogenesis on traits viz. the expression of MYOZ2, PPARγ and GPx7 in breast muscle, meat quality and incidence of white striping at slaughter age.2. Eggs were obtained from Cobb and Ross broiler breeders to investigate the response of breeds to eggshell temperature, which regulated air temperature. A total of 784 eggs were incubated at either the control eggshell temperature (37.8°C) from 0 to 18 d or exposed to cyclic high eggshell temperature (CHT) at 38.8°C for 6 h/d between 10 and 14 d of incubation. The temperature was 36.8°C between 18 and 21 d. Hatched chicks were reared under optimum rearing conditions. The birds were sampled at 19 d of incubation, at hatch and at 42 d post-hatch.3. There was no effect of eggshell temperature on yolk-free body weight and residual yolk sac weight. The CHT chicks had wider breasts on the day of hatching.4. At hatch and 42d post-hatch, PPARγ expression in Cobb-CHT was upregulated 4.78-fold and downregulated 3.28-fold, respectively, compared to the Cobb-control. At slaughter age, chickens from Ross-CHT had 1.98- and 2.33-fold upregulated PPARγ and GPX7 expressions, respectively, compared to Ross-control. The CHT increased GPx7 expression in the Cobb-CHT day-old chicks compared to the Cobb-control. On ED19, MYOZ2 expression was upregulated in Cobb and downregulated in Ross by CHT.5. The effects of breed and eggshell temperature on pH15, L*, a*, expressible juice and cooking loss were not significant. The CHT increased the incidence of severe white striping lesions in Ross chickens.6. It was concluded eggshell temperature modulated embryo development, incidence of white striping and expression of related genes differently in the two commercial breeds.
Collapse
Affiliation(s)
- M Vafaeinia
- Faculty of Agriculture, Department of Animal Science, Ege University, Izmir, Turkey
| | - S Yalcin
- Faculty of Agriculture, Department of Animal Science, Ege University, Izmir, Turkey
| |
Collapse
|
5
|
Li D, Hou T, Du X, Zhao L, Zhang L, Gao F, Xing T. Integrated analysis of miRNA and mRNA expression profiles associated with wooden breast myopathy in broiler chickens. Int J Biol Macromol 2025; 284:137990. [PMID: 39603286 DOI: 10.1016/j.ijbiomac.2024.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Wooden breast (WB) myopathy has raised a worldwide concern among broiler industry during the past decade. Despite progress in understanding its etiology from transcriptional regulation, post-transcriptional mechanisms including the regulation of microRNAs (miRNAs) remain largely unknown. In the current study, we described an integrative analysis between mRNA and miRNA expression profiles of pectoralis major muscle from normal and WB myopathic broilers. A total of 1983 differentially expressed mRNAs (DEmRNAs) and 155 DEmiRNAs were identified in WB. We screened crucial biological processes and core DEmRNAs enriched in functional pathways, and established the protein-protein interaction network. DEmiRNAs and negatively correlated DEmRNAs regulatory networks were constructed, including 44 exist DEmiRNAs and 478 DEmRNAs, forming 772 miRNA-mRNA pairs. Upregulated DEmiRNAs including gga-miR-21-3p, gga-miR-460a-5p and gga-miR-6631-5p, as well as downregulated DEmiRNAs including gga-miR-182-5p, gga-miR-183 and gga-miR-96-5p were identified as hub miRNAs. Meanwhile, functional enrichment analysis indicated that upregulated DEmRNAs in the network were enriched in biological processes of response to stimulus, inflammatory response, extracellular matrix organization, whereas downregulated DEmRNAs were enriched in carbohydrate, amino acid and nucleotide metabolic processes. Collectively, our integrative miRNA and mRNA analysis highlighted candidate miRNAs and mRNAs, as well as potential miRNA-mRNA regulatory mechanisms involved in WB myopathy in broiler chicken.
Collapse
Affiliation(s)
- Duanduan Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Taijiang Hou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Zhou H, Quach A, Nair M, Abasht B, Kong B, Bowker B. Omics based technology application in poultry meat research. Poult Sci 2025; 104:104643. [PMID: 39662255 PMCID: PMC11697050 DOI: 10.1016/j.psj.2024.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Omics techniques, including genomics, transcriptomics, proteomics, metabolomics, and lipidomics, analyze entire sets of biological molecules to seek comprehensive knowledge on a particular phenotype. These approaches have been extensively utilized to identify both biomarkers and biological mechanisms for various physiological conditions in livestock and poultry. The purpose of this symposium was not only to focus on how recent omics technologies can be used to gather, integrate, and interpret data produced by various methodologies in poultry research, but also to highlight how omics and bioinformatics have increased our understanding of poultry meat quality problems and other complex traits. This Poultry Science Association symposium paper includes 5 sections that cover: 1) functional annotation of cis-regulatory elements in the genome informs genetic control of complex traits in poultry, 2) mass spectrometry for proteomics, metabolomics, and lipidomics, 3) proteomic approaches to investigate meat quality, 4) spatial transcriptomics and metabolomics studies of wooden breast disease, and 5) multiomics analyses on chicken meat quality and spaghetti meat. These topics provide insights into the molecular components that contribute to the structure, function, and dynamics of the underlying mechanisms influencing meat quality traits, including chicken breast myopathies. This information will ultimately contribute to improving the quality and composition of poultry products.
Collapse
Affiliation(s)
- Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Mahesh Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Byungwhi Kong
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA.
| | - Brian Bowker
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| |
Collapse
|
7
|
Fatemi SA, Levy AW, Peebles ED. The Expressions of the Immunity- and Muscle Development-Related Genes of 40-Day-Old Broilers Are Promoted in Response to the In Ovo and Dietary Supplemental Administration of Calcidiol in Conjunction with the In Ovo Administration of Marek's Disease Vaccine. Animals (Basel) 2024; 15:10. [PMID: 39794953 PMCID: PMC11718904 DOI: 10.3390/ani15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Effects of in ovo and dietary sources of calcidiol (25(OH)D3), combined with Marek's disease vaccine (MDV), on the expression of genes involved with the antioxidant activity, muscle deposition, and immunity in the pectoralis major (P. major) muscle and spleen of 40 d of age (doa) broilers were investigated. The in ovo treatments were as follows: (1) non-injected; (2) the injection of 50 μL of commercial MDV, (3) MDV + 1.2, or (4) 2.4 μg of 25(OH)D3. All birds received either a commercial diet containing no supplemental 25(OH)D3 (control) or the same diet supplemented with an additional 69 µg of 25(OH)D3 per kg of feed (Hy-D diet). At 40 doa, the pectoralis major (P. major) muscle and spleen of 48 birds (six replicates per diet x in ovo treatment combination) were collected. When compared to un-supplemented commercial diet-fed birds, in birds that were fed the Hy-D diet, the expression of the TGF-β4 gene in the spleen and P. major muscle, and the GSH-P1, GSH-P7, SOD2, MyoG, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, whereas the expression of the IL-1β, IL-8, and CYP24A1 genes in the spleen and P. major muscle were down-regulated. Nevertheless, birds that received any of the in ovo injection doses of 25(OH)D3 exhibited a higher expression of the IL-10, TGF-β4, and CYP27B1 genes in the spleen and P. major muscle. Furthermore, in comparison to the MDV-injected control group, the CAT, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, and the expression of the INF-γ, IL-1β and CYP24A1 genes in the spleen and the IL-8, and IL-1β genes in the P. major muscle were down-regulated. In conclusion, a significant improvement in the expression of genes responsible for enzymatic antioxidant activity, protein synthesis, and inflammatory reactions in 40-day-old broilers occurred in response to in ovo and dietary supplemental 25(OH)D3, and supplemental 25OHD3 provided via either route was used to enhance the expression of genes linked to vitamin D activity (CYP27B1, CYP24A1).
Collapse
|
8
|
Khalfi B, Buyse K, Khan I, Carvalho CL, Soster P, Antonissen G, Tuyttens FAM. Cooled Multifunctional Platforms to Alleviate Heat Stress in Broiler Chickens: Effects on Performance, Carcass and Meat Quality Traits. Animals (Basel) 2024; 14:3448. [PMID: 39682411 DOI: 10.3390/ani14233448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Platforms have been shown to be a suitable environmental enrichment for broiler chickens, accommodating their motivation to roost and rest at an elevated position. In order to increase the animal welfare benefits, we designed prototype elevated platforms with additional functionalities: a local cooling system, a sheltered area underneath the platform and collection trays underneath the platform that prevent manure from falling on the litter. This study assessed the effects of these multifunctional platforms during thermoneutral and heat stress conditions on two key determinants of their commercial uptake potential, namely production performance, carcass and meat quality. In each of the three experimental rounds, 560 one-day-old male chicks (Ross 308) were equally assigned to four pens and reared for 43 days. The barn was divided into two compartments (thermoneutral and heat), each containing one enriched and one barren pen. To induce heat stress, the ambient temperature was increased to 32 °C during 6 h/day when the birds were 29-40 d old. The platforms did not compromise broiler performance. Heat stress negatively impacted body weight (p = 0.008), average daily gain (p = 0.009) and feed intake (p < 0.001) and improved the feed conversion ratio (p = 0.026). The platforms reduced mortality rate under heat stress but not under thermoneutral conditions (heat × enrichment p = 0.025), likely due to the cooling functionality. No major effects of the platforms on overall carcass and meat quality were observed, except for a reduction in the risk of breast muscle myopathies (p < 0.001), which could enhance consumer acceptance and improve profitability. To conclude, the use of cooled platforms under the conditions of this experiment mitigated the adverse effects of heat stress on mortality, reduced the risk of breast muscle myopathies and did not compromise any other production or carcass and meat quality parameters.
Collapse
Affiliation(s)
- Bassem Khalfi
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Kobe Buyse
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), 9090 Melle, Belgium
| | - Imad Khan
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Camila Lopes Carvalho
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Patricia Soster
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Poulpharm, Prins Albertlaan 112, 8870 Izegem, Belgium
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Frank André Maurice Tuyttens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), 9090 Melle, Belgium
| |
Collapse
|
9
|
Mott AC, Blaschka C, Mott A, Falker-Gieske C. Transcriptional profiling of the M. complexus in naked neck chickens suggest a direct pleiotropic effect of GDF7 on feathering and reduced hatchability. BMC Genomics 2024; 25:1092. [PMID: 39548399 PMCID: PMC11566174 DOI: 10.1186/s12864-024-10965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The locus for naked neck (Na) in chickens reduces feather coverage and leads to increased heat dissipation from the body surface resulting in better adaptability to hot conditions. However, the Na gene is linked to significantly lower hatchability due to an increased late embryonic mortality. It has been argued that the causative gene GDF7 may have a direct pleiotropic effect on hatchability via its effect on muscle development. Thus, the study presented here analyses the transcriptome of the hatching muscle (M. complexus) and shows how GDF7 impacts development leading to reduced hatching rates in Na chickens. RESULTS Using 12 chicken embryos (6 x wildtype (Wt) and 6 x Na) RNA was extracted from the M. complexus of each embryo and sequenced. The resulting differential expression analyses led to the discovery of 461 differentially expressed (DE) genes in the M. complexus of the experimental group. Among those, 77 genes were of uncertain function (LOC symbols), with 31 were classified as uncharacterised. The regulation of a number of pathways involved in normal embryonic development, were found to be negatively influenced by the Na genotype. Further pathways involved in cell-cell adhesion, cell signalling pathways, and amino acid (AA) metabolism/transport were also observed. GDF7 (alias BMP12), whose localised overexpression in the neck skin causes the Na/Na phenotype, was significantly overexpressed in the M. complexus of Na/Na embryos, and shows a significant increase in the number of binding sites for the transcription factor PITX2 was also observed. CONCLUSION In Na chickens, GDF7 is under the control of a mutated cis-regulatory element, whose actions are known to suppress the development and distribution of feathers through the sensitizing action of retinoic acid. In this study, a number of DE genes with over 10 retinoic acid response elements (RAREs) in close proximity were observed, indicating changes to the retinol metabolism. With the understanding that the Na/Na mutation leads to increased retinoic acid activity, this indicates a high likelihood of GDF7 excerpting a direct pleiotropic effect, not just in the observed reduction in feather patterning, but also impacting the development of the M.complexus, and consequently leading to the reduced hatchability observed in birds with the Na/Na genotype. Furthermore, the enrichment of PITX2 binding sites in proximity to DE genes in the M. complexus, also indicates that muscle development is still ongoing in Na embryos. This suggests that the M. complexus is not yet fully developed, further increasing the potential for late embryonic mortality in Na chicks at hatching.
Collapse
Affiliation(s)
| | - Carina Blaschka
- Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Andrea Mott
- Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Jin H, Wang H, Wu J, Hu M, Zhou X, Yang S, Zhao A, He K. Asparagine synthetase regulates the proliferation and differentiation of chicken skeletal muscle satellite cells. Anim Biosci 2024; 37:1848-1862. [PMID: 39210809 PMCID: PMC11541025 DOI: 10.5713/ab.24.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Asparagine synthetase (ASNS) is an aminotransferase responsible for the biosynthesis of aspartate by using aspartic acid and glutamine. ASNS is highly expressed in fast-growing broilers, but few studies have reported the regulatory role of ASNS in muscle development. METHODS To explore the function of ASNS in chicken muscle development, the expression of ASNS in different chicken breeds and tissues were first performed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Then, using real-time quantitative RT-PCR, western blot, EdU assay, cell cycle assay and immunofluorescence, the effects of ASNS on the proliferation and differentiation of chicken skeletal muscle satellite cell (SMSC) were investigated. Finally, potential mechanisms by which ASNS influences chicken muscle fiber differentiation were identified through RNA-Seq. RESULTS The mRNA expression pattern of ASNS in muscles mirrors trends in muscle fiber cross-sectional area, average daily weight gain, and muscle weight across different breeds. ASNS knockdown inhibited SMSC proliferation, while overexpression showed the opposite. Moreover, ASNS attenuated SMSC differentiation by activating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway. Additionally, 5-aminoimidazole4-carboxamide1-β-D-ribofuranoside (AICAR) treatment suppressed the cell differentiation induced by siRNA-ASNS. RNA-Seq identified 1,968 differentially expressed genes (DEGs) during chicken SMSC differentiation when overexpression ASNS. Gene ontology (GO) enrichment analysis revealed that these DEGs primarily participated in 8 biological processes, 8 cellular components, and 4 molecular functions. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis identified several significantly enriched signaling pathways, such as the JAK-STAT signaling pathway, tumor necrosis factor signaling pathway, toll-like receptor signaling pathway, and PI3K-Akt signaling pathway. CONCLUSION ASNS promotes proliferation while inhibits the differentiation of chicken SMSCs. This study provides a theoretical basis for studying the role of ASNS in muscle development.
Collapse
Affiliation(s)
- Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| |
Collapse
|
11
|
Rimmer LA, Zumbaugh MD. Skeletal muscle metabolic characteristics and fresh meat quality defects associated with wooden breast. Front Physiol 2024; 15:1501362. [PMID: 39539953 PMCID: PMC11557563 DOI: 10.3389/fphys.2024.1501362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Wooden breast (WB) is a myopathy that occurs in pectoralis major (PM) muscles, predominately affecting large, fast-growing broilers. Severe myodegeneration, increased hypoxia, reduced blood flow, and increased collagen deposition are hallmark characteristics of WB that culminate in unsatisfactory fresh meat quality attributes, such as poor water-holding capacity, tenderness, and processing characteristics. Therefore, WB meat is often downgraded resulting in economic losses for the United States poultry industry. Although WB has been well characterized, its etiology remains undefined. As the scientific community continues to resolve mechanisms responsible for WB onset, understanding biochemical changes associated with WB may facilitate solutions to negate its poor meat quality attributes. Given changes in metabolism of living muscle can alter biochemical processes during the conversion of muscle to meat, this review aims to summarize and discuss the current knowledge of WB muscle and meat biochemistry. For example, it appears metabolic pathways that support combating stress are upregulated in WB muscle at the expense of glycolytic flux, which presumably contributes to the high ultimate pH of WB meat. Further, perturbed function of WB mitochondria, such as altered calcium handling, impacts aspects of postmortem metabolism and proteolysis. Collectively, metabolic dysfunction of WB muscle alters the biochemical processes that occur during the conversion of muscle to meat, and thus contributes to the poor WB meat quality.
Collapse
Affiliation(s)
| | - Morgan D. Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
12
|
Lu J, Yuan H, Liu S, Liu Y, Qin Z, Han W, Zhang R. Gene coexpression network analysis reveals the genes and pathways in pectoralis major muscle and liver associated with wooden breast in broilers. Poult Sci 2024; 103:104056. [PMID: 39094498 PMCID: PMC11342257 DOI: 10.1016/j.psj.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Wooden breast (WB) is a myopathy mainly affecting pectoralis major (PM) muscle in modern commercial broiler chickens, causing enormous economic losses in the poultry industry. Recent studies have observed hepatic and PM muscle injury in broilers affected by WB, but the relationships between WB and the 2 tissues are mostly unclear. In the current study, the RNA-seq raw data of PM muscle and liver were downloaded from GSE144000, and we constructed the gene coexpression networks of PM muscle and liver to explore the relationships between WB and the 2 tissues using the weighted gene coexpression network analysis (WGCNA) method. Six and 2 gene coexpression modules were significantly correlated with WB in the PM muscle and liver networks, respectively. TGF-beta signaling, Toll-like receptor signaling and mTOR signaling pathways were significantly enriched in the genes within the 6 gene modules of PM muscle network. Meanwhile, mTOR signaling pathway was significantly enriched in the genes within the 2 gene modules of liver network. In the consensus gene coexpression network across the 2 tissues, salmon module (r = -0.5 and p = 0.05) was significantly negatively correlated with WB, in which Toll-like receptor signaling, apoptosis, and autophagy pathways were significantly enriched. The genes related with the 3 pathways, myeloid differentiation primary response 88 (MYD88), interferon regulatory factor 7 (IRF7), mitogen-activated protein kinase 14 (MAPK14), FBJ murine osteosarcoma viral oncogene homolog (FOS), jun proto-oncogene (JUN), caspase-10, unc-51 like autophagy activating kinase 2 (ULK2) and serine/threonine kinase 11 (LKB1), were identified in salmon module. In this current study, we found that the signaling pathways related with cell inflammation, apoptosis and autophagy might influence WB across 2 tissues in broilers.
Collapse
Affiliation(s)
- Jun Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hui Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Shengnan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yuan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Ziwen Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wenpeng Han
- Department of Biotechnology, Jieyang Polytechnic, Jieyang City 522000, Guangdong Province, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
13
|
de Souza C, de Souza C, Campos FP, Savaris VDL, Wachholz L, Kaufmann C, Broch J, Comin GN, Calderano AA, Tesser GLS, Starkey JD, Eyng C, Nunes RV. Effect of arginine, glycine + serine concentrations, and guanidinoacetic acid supplementation in vegetable-based diets for chickens. Poult Sci 2024; 103:104105. [PMID: 39153445 PMCID: PMC11378898 DOI: 10.1016/j.psj.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024] Open
Abstract
The study investigated guanidinoacetic acid (GAA) supplementation with varying dietary digestible arginine (Arg) and glycine+serine (Gly+Ser) concentrations in the starter phase, exploring respective carry-over effects on growth performance, blood chemistry, incidence of pectoral myopathies and proximate composition in broilers. A total of 2,800 one-day-old male broiler chicks were distributed in a central composite design with 2 factors and double experimental mesh, represented by supplementation or omission of 0.6 g per kg of GAA, with a central point represented by 107% of Arg and 147% of Gly+Ser, 4 factorial points (combinations of Arg/Gly+Ser concentrations: 96.4/132.5%; 117.6/132.5%; 96.4/161.5%, and 117.6/132.5%), and 4 axial points (combinations of axial points estimated for Arg and Gly+Ser, with the central points of 92/147%; 122/147%; 107/126.5, and 107/167.5%), totaling 18 treatments, 4 repetitions to factorial and axial points, 24 replicates to the central point, and 25 birds per pen. Feed conversion ratio (FCR) from d 1 to 10 had a linear response (P = 0.009) for the decreasing Arg content and a quadratic response (P = 0.047) for Gly+Ser concentrations. Broilers supplemented GAA had lower FCR compared with nonsupplemented groups from d 1 to 10 (P = 0.048) and d 1 to 42 (P = 0.026). Aspartate aminotransferase (AST) exhibited increasing and decreasing linear effects as a function of Arg (P = 0.008) and Gly+Ser (P = 0.020) concentrations, respectively. Guanidinoacetic acid decreased serum AST (P = 0.028). Guanidinoacetic acid reduced moderate + severe (P = 0.039) and mild (P = 0.015) Wooden Breast scores. The occurrence of normal White Striping increased (P = 0.002), while severe score was reduced (P = 0.029) with GAA supplementation. In conclusion, increased digestible Arg:Lys and 14% and 6% above the recommendations (107% and 147%), respectively, provided improved FCR during the starter phase. Dietary GAA supplementation (0.6 g per kg) improved FCR, reduced severity of breast myopathies and appears to have reduced muscle damage in broilers fed plant-based diets.
Collapse
Affiliation(s)
- Cleison de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cleverson de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Felipe P Campos
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Vaneila D L Savaris
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Lucas Wachholz
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cristine Kaufmann
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Jomara Broch
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Gabriel N Comin
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Arele A Calderano
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Jessica D Starkey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, US
| | - Cinthia Eyng
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Ricardo V Nunes
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil.
| |
Collapse
|
14
|
Zhang X, Xing T, Zhao L, Zhang L, Gao F. Transcriptomic meta-analysis and exploration of differentially expressed gene functions in wooden breast myopathy of broilers. Poult Sci 2024; 103:104047. [PMID: 39068695 PMCID: PMC11332813 DOI: 10.1016/j.psj.2024.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Although extensive research on WB has been conducted using transcriptomics, effectively screening and analyzing key target information remains a challenge. In this present study, 5 transcriptomic datasets obtained from the National Center for Biotechnology Information (NCBI) were used. A meta-analysis was conducted to identify meta-differentially expressed genes (meta-DEGs) involved in the response of broilers to WB myopathy. These meta-DEGs were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA), supplemented by protein-protein interaction (PPI) network construction to pinpoint hub genes. These analyses help to reveal key genes, pathways, and biological processes associated with WB myopathy. The results showed that 645 up-regulated and 99 down-regulated significant meta-DEGs (|log2FC| ≥0.6, P-Meta < 0.05, and present in at least 4 datasets) were identified. GO analysis showed that multiple fibrosis-related pathways/biological processes, such as cell adhesion, connective tissue development, and collagen-rich extracellular matrix, as well as calcium ion binding were significantly upregulated. PPI analysis identified TGFB3, COL1A1, COL1A2, and COL3A1 as central hub genes involved in the fibrotic processes. KEGG analysis revealed significant upregulation of apoptosis and lysosomal pathways, with an enrichment of Ca2+-related signals and lysosomal cathepsins within the apoptosis pathway. Additionally, GSEA indicated a suppression of the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain (ETC) in WB myopathy, with PPI analysis also identifying specific hub genes associated with these pathways. In conclusion, our comprehensive analysis of meta-DEGs elucidated key biological processes and pathways implicated in WB myopathy, including fibrosis, apoptosis, altered calcium signaling, and metabolic disruption. The identification of specific hub genes offers avenues for further investigation into the pathogenesis of this condition, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China.
| |
Collapse
|
15
|
İpek E, Ahsan U, Özsoy B, Ekren Aşıcı GS, Tatar M, Özpilavcı BN, Epikmen ET, Özsoy ŞY, Khamseh EK, Petracci M. Endoplasmic reticulum stress and associated apoptosis are linked with the pathogenesis of white striping in broiler breast muscles. Poult Sci 2024; 103:104103. [PMID: 39094495 PMCID: PMC11345576 DOI: 10.1016/j.psj.2024.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
White striping (WS) that appears as white stripes parallel to the muscle fibrils is an emerging growth-related abnormality of broiler breast meat. The pathomechanism of this defect has not been fully understood despite intensive studies over the past decade. In the present study, endoplasmic reticulum (ER) stress and its associated apoptotic pathways were investigated to elucidate the potential role of these pathways in the development of WS. To this end, a total of 60 Pectoralis major (Pm) muscle samples were collected from 55-d-old Ross 308 male broiler chickens according to the severity of gross WS lesions (normal, mild, and severe). Histopathological and molecular analyses were conducted to evaluate the lesions and genes involved in the ER stress and related apoptosis. All the Pm samples, both with and without macroscopic WS lesions, showed varying degrees of myodegenerative lesions. Molecular analysis revealed that the transcript abundances of many components related to protein kinase R-like ER kinase (PERK) and inositol-requiring enzyme type 1 (IRE-1) signals of the ER stress response were significantly greater in severely WS-affected breast tissues compared to their mildly affected and normal counterparts. Similarly, the transcript abundances of apoptotic markers related to both signaling pathways were significantly greater in severe WS lesions than those of mildly affected and normal Pm tissues. Besides these, a significant increase in caspase-3 transcript abundance was seen in severe WS lesions in comparison with mild WS and normal breast muscles. Findings of this study suggest that ER stress response and its related apoptotic pathways are possibly activated in the breast muscle of broiler chickens with severe WS lesions. Based on these findings, it is speculated that ER stress-mediated apoptosis occupies a central role in the progression of WS in broiler chickens.
Collapse
Affiliation(s)
- Emrah İpek
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye; Center for Agriculture, Livestock and Food Research Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Bülent Özsoy
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Gamze Sevri Ekren Aşıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye
| | - Beyza Nur Özpilavcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Erkmen Tuğrul Epikmen
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Şule Yurdagül Özsoy
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Ehsan Karimiyan Khamseh
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
16
|
Zhang D, Xu F, Liu Y. Research progress on regulating factors of muscle fiber heterogeneity in poultry: a review. Poult Sci 2024; 103:104031. [PMID: 39033575 PMCID: PMC11295477 DOI: 10.1016/j.psj.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Control of meat quality traits is an important goal of any farm animal production, including poultry. A better understanding of the biochemical properties of muscle fiber properties that drive muscle development and ultimately meat quality constitutes one of the major challenging topics in animal production and meat science. In this paper, the existing classification methods of skeletal muscle fibers in poultry were reviewed and the relationship between contractile and metabolic characteristics of muscle fibers and poultry meat quality was described. Finally, a comprehensive review of multiple potential factors affecting muscle fiber distribution and conversion is presented, including breed, sex, hormones, growth performance, diet, muscle position, exercise, and ambient temperature. We emphasize that knowledge of muscle fiber typing is essential to better understand how to control muscle characteristics throughout the life cycle of animals to better manage the final quality of poultry meat.
Collapse
Affiliation(s)
- Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
17
|
Che S, Hall P. Spaghetti meat and woody breast myopathies in broiler chickens: similarities and differences. Front Physiol 2024; 15:1453322. [PMID: 39253020 PMCID: PMC11381254 DOI: 10.3389/fphys.2024.1453322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Sunoh Che
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Parker Hall
- Perdue Foods LLC, Salisbury, MD, United States
| |
Collapse
|
18
|
Padilha SF, Ibelli AMG, Peixoto JO, Cantão ME, Moreira GCM, Fernandes LT, Tavernari FC, Morés MAZ, Bastos APA, Dias LT, Teixeira RA, Ledur MC. Novel Candidate Genes Involved in an Initial Stage of White Striping Development in Broiler Chickens. Animals (Basel) 2024; 14:2379. [PMID: 39199913 PMCID: PMC11350825 DOI: 10.3390/ani14162379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
White striping (WS) is a myopathy characterized by the appearance of white stripes parallel to the muscle fibers in the breast of broiler chickens, composed of adipose and connective tissues. This condition causes economic losses and, although common, its etiology remains poorly understood. Hence, the objective was to identify genes and biological mechanisms involved in the early stages of WS using a paternal broiler line that grows slightly slower than commercial ones, at 35 days of age, through the RNA sequencing of the pectoralis major muscle. Thirty genes were differentially expressed between normal and WS-affected chickens, with 23 upregulated and 7 downregulated in the affected broilers. Of these, 14 genes are novel candidates for WS and are implicated in biological processes related to muscle development (CEPBD, DUSP8, METTL21EP, NELL2, and UBE3D), lipid metabolism (PDK4, DDIT4, FKBP5, DGAT2, LIPG, TDH, and RGCC), and collagen (COL4A5 and COL4A6). Genes related to changes in muscle fiber type and the processes of apoptosis, autophagy, proliferation, and differentiation are possibly involved with the initial stage of WS development. In contrast, the genes linked to lipid metabolism and collagen may have their expression altered due to the progression of the myopathy.
Collapse
Affiliation(s)
- Suelen Fernandes Padilha
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Jane Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | | | - Lana Teixeira Fernandes
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | - Fernando Castro Tavernari
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó 89815-630, SC, Brazil
| | - Marcos Antônio Zanella Morés
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Laila Talarico Dias
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Rodrigo Almeida Teixeira
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó 89815-630, SC, Brazil
| |
Collapse
|
19
|
Jung U, Kim M, Voy BH. Fibroadipogenic progenitors: a potential target for preventing breast muscle myopathies in broilers. Front Physiol 2024; 15:1458151. [PMID: 39193441 PMCID: PMC11347355 DOI: 10.3389/fphys.2024.1458151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Genetic selection for high growth rate, breast muscle yield, and feed efficiency in modern broilers has been a double-edged sword. While it has resulted in marked benefits in production, it has also introduced widespread incidence of breast muscle myopathies. Broiler myopathies are phenotypically characterized by myodegeneration and fibrofatty infiltration, which compromise meat quality. These lesions resemble those of various myopathies found in humans, such as Duchenne muscular dystrophy, Limb-girdle muscular dystrophy, and sarcopenia. Fibroadipogenic progenitors (FAPs) are interstitial muscle-resident mesenchymal stem cells that are named because of their ability to differentiate into both fibroblasts and adipocytes. This cell population has clearly been established to play a role in the development and progression of myopathies in mice and humans. Gene expression studies of wooden breast and other related disorders have implicated FAPs in broilers, but to our knowledge this cell population have not been characterized in chickens. In this review, we summarize the evidence that FAPs may be a novel, new target for interventions that reduce the incidence and development of chicken breast muscle myopathies.
Collapse
Affiliation(s)
| | | | - Brynn H. Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
20
|
Li B, Kalmu N, Dong X, Zhang Y, Puolanne E, Ertbjerg P. Relationship between wooden breast severity in broiler chicken, antioxidant enzyme activity and markers of energy metabolism. Poult Sci 2024; 103:103877. [PMID: 38843563 PMCID: PMC11216010 DOI: 10.1016/j.psj.2024.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024] Open
Abstract
This study aims to provide new insight on the association between the development of wooden breast myopathy and mitochondrial and glycolytic activity under oxidative stress. Myopathic muscle had higher oxidative stress together with altered glycolytic metabolism and tricarboxylic acid (TCA) cycle. This was evidenced by significantly elevated antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase), decreased citrate synthase activity and postmortem glycolytic potential with increasing wooden breast severity. In addition, affected muscles also exhibited higher initial and ultimate pH values as well as reduced total glucose and lactate contents. Citrate synthase activity was negatively correlated to antioxidant enzyme activities. Taken together, we propose that the development of the wooden breast lesion is a chronic process that may be related to the failure of muscle fibers to defend against the excessively generated oxidative products promoted by mitochondrial damage accompanied by impaired TCA cycle. Furthermore, there was a positive correlation between citrate synthase activity and glycolytic potential, which suggests that the wooden breast condition is linked to the overall altered energy metabolism of the muscle, including the oxidative phosphorylation and glycolytic pathways.
Collapse
Affiliation(s)
- Binbin Li
- Department of Food and Nutrition, University of Helsinki, Helsinki 00014, Finland
| | - Niina Kalmu
- Department of Food and Nutrition, University of Helsinki, Helsinki 00014, Finland
| | - Xinyue Dong
- Department of Food and Nutrition, University of Helsinki, Helsinki 00014, Finland
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki 00014, Finland
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
21
|
Kong B, Shakeri M, Choi J, Zhuang H, Bowker B. Molecular and gene expression analyses of chicken oncomodulin and their association with breast myopathies in broilers. Poult Sci 2024; 103:103862. [PMID: 38843562 PMCID: PMC11216011 DOI: 10.1016/j.psj.2024.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024] Open
Abstract
Oncomodulins (OCMs), also known as non-α-parvalbumins, are small molecules known for their high-affinity binding of Ca2+ ions. They play crucial roles as Ca2+ buffers and participate in signaling pathways within muscle and neuron cells. In chickens, 3 oncomodulin molecules have been identified at the protein level and are named chicken oncomodulin 1 (OCM1), -3 (OCM3), and alpha-parvalbumin (PVALB). OCM4 was newly assigned by genome annotation. A gene cluster containing OCM1, OCM3, and OCM4 is located in chromosome 14, while a single gene of PVALB is on chromosome 1. The Ca2+ signaling pathway may be a potential contributor to the onset of chicken breast myopathies. However, chicken OCMs have not been extensively studied in muscle tissues. In this study, the genetic specifications, tissue-specific and differential expression of OCM1, OCM3, OCM4, and PVALB in the context of chicken breast myopathies were investigated. OCM1 exhibited moderate expression in the liver, intestine, and kidney. OCM3 was highly expressed in thymus and breast muscle. A long noncoding RNA (lncRNA) transcribed from the antisense strand of the OCM3 gene was found to be expressed in liver, lung, heart, intestine, and kidney tissues. OCM4 was barely expressed in thymus, thigh-, and breast muscle. PVALB exhibited high expression across all tissues examined. Results of quantitative PCR (qPCR) indicated that the expression of OCM3 was significantly increased (4.4 ± 0.7 fold; P-value = 0.03) in woody breast (WB) muscle and even greater (8.5 ± 0.6 fold; P-value = 0.004) in WB/white striping (WS) muscles. The expression of PVALB showed no difference in WB muscle, but it was notably higher (4.6 ± 0.7 fold; P-value = 0.054) in WB/WS muscle, although statistical significance was not reached. These findings suggest that increased expression of OCM3 and PVALB may be linked to chicken breast myopathies with regard to disruption of Ca2+ buffering.
Collapse
Affiliation(s)
- Byungwhi Kong
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA.
| | - Majid Shakeri
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Janghan Choi
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Hong Zhuang
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Brian Bowker
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| |
Collapse
|
22
|
Bordini M, Wang Z, Soglia F, Petracci M, Schmidt CJ, Abasht B. RNA-sequencing revisited data shed new light on wooden breast myopathy. Poult Sci 2024; 103:103902. [PMID: 38908127 PMCID: PMC11246058 DOI: 10.1016/j.psj.2024.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy.
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
23
|
Chen Y, Chen L, Huang S, Yang L, Wang L, Yang F, Huang J, Ding X. Predicting novel biomarkers for early diagnosis and dynamic severity monitoring of human ulcerative colitis. Front Genet 2024; 15:1429482. [PMID: 39144720 PMCID: PMC11321978 DOI: 10.3389/fgene.2024.1429482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background Ulcerative colitis is an emerging global health concern that poses a significant threat to human health and can progress to colorectal cancer if not diagnosed and treated promptly. Currently, the biomarkers used clinically for diagnosis and dynamic severity monitoring lack disease specificity. Methods Mouse models induced with 2%, 2.5%, and 3% DSS were utilized to simulate human UC with varying severities of inflammation. Transcriptome sequencing technology was employed to identify differentially expressed genes (DEGs) between the control group and each treatment group. Functional enrichment analysis of the KEGG database was performed for shared DEGs among the three treatment groups. DEGs that were significantly and strongly correlated with DSS concentrations were identified using Spearman correlation analysis. Human homologous genes of the interested DEGs were searched in the HomoloGene database, and their regulation patterns in UC patients were validated using the GSE224758 dataset. These genes were then submitted to the DisGeNET database to identify their known associations with human diseases. Online tools, including SignalP 6.0 and DeepTMHMM 1.0, were used to predict signal peptides and transmembrane helices in the amino acid sequences of human genes homologous to the DEGs of interest. Results A total of 1,230, 995, and 2,214 DEGs were identified in the 2%, 2.5%, and 3% DSS-induced groups, respectively, with 668 DEGs common across all three groups. These shared DEGs were primarily associated with signaling transport, pathogenesis, and immune response. Through extensive screening, LGI2 and PRSS22 were identified as potentially novel biomarkers with higher specificity and ease of detection for the early diagnosis and dynamic severity monitoring of human UC, respectively. Conclusion We have identified two potentially novel biomarkers, LGI2 and PRSS22, which are easy of detection and more specific for human UC. These findings provide new insights into the accurate diagnosis and dynamic monitoring of this persistent disease.
Collapse
Affiliation(s)
- Yu Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Li Wang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xiuliang Ding
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
24
|
Zhang X, Xing T, Zhang L, Zhao L, Gao F. Hypoxia-mediated programmed cell death is involved in the formation of wooden breast in broilers. J Anim Sci Biotechnol 2024; 15:77. [PMID: 38840220 PMCID: PMC11155070 DOI: 10.1186/s40104-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy. RESULTS Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO2 and sO2 in the blood, were significantly decreased (P < 0.01), while the levels of pCO2 and TCO2 in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle. CONCLUSIONS The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
25
|
Kong B, Owens C, Bottje W, Shakeri M, Choi J, Zhuang H, Bowker B. Proteomic analyses on chicken breast meat with white striping myopathy. Poult Sci 2024; 103:103682. [PMID: 38593545 PMCID: PMC11016796 DOI: 10.1016/j.psj.2024.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
White striping (WS) is an emerging myopathy that results in significant economic losses as high as $1 billion (combined with losses derived from other breast myopathies including woody breast and spaghetti meat) to the global poultry industry. White striping is detected as the occurrence of white lines on raw poultry meat. The exact etiologies for WS are still unclear. Proteomic analyses of co-expressed WS and woody breast phenotypes previously demonstrated dysfunctions in carbohydrate metabolism, protein synthesis, and calcium buffering capabilities in muscle cells. In this study, we conducted shotgun proteomics on chicken breast fillets exhibiting only WS that were collected at approximately 6 h postmortem. After determining WS severity, protein extractions were conducted from severe WS meat with no woody breast (WB) condition (n = 5) and normal non-affected (no WS) control meat (n = 5). Shotgun proteomics was conducted by Orbitrap Lumos, tandem mass tag (TMT) analysis. As results, 148 differentially abundant proteins (|fold change|>1.4; p-value < 0.05) were identified in the WS meats compared with controls. The significant canonical pathways included BAG2 signaling pathway, glycogen degradation II, isoleucine degradation I, aldosterone signaling in epithelial cells, and valine degradation I. The potential upstream regulators include LIPE, UCP1, ATP5IF1, and DMD. The results of this study provide additional insights into the cellular mechanisms on the WS myopathy and meat quality.
Collapse
Affiliation(s)
- Byungwhi Kong
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA.
| | - Casey Owens
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Walter Bottje
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Majid Shakeri
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Janghan Choi
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Hong Zhuang
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Brian Bowker
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| |
Collapse
|
26
|
Lebednikaitė E, Sutkevičienė N, Vilkonienė T, Balčiauskienė Ž, Kučinskas K, Anskienė L, Pockevičius A. Serum Biochemical Parameters of Broilers Affected by Wooden Breast Myopathy. Animals (Basel) 2024; 14:1499. [PMID: 38791716 PMCID: PMC11117279 DOI: 10.3390/ani14101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Wooden breast (WB) myopathy is a pathology of the pectoralis major muscle. Wooden breast is caused by multiple factors. The exact etiopathogenesis of this myodegenerative pathology is still unclear. Fast-growing commercial lines of broilers that are selected for high breast muscle yields are more susceptible to this myopathy. The biochemical analysis of blood is used to diagnose pathologies and understand disease processes. Therefore, the objective of this research was to determine and compare the changes in the blood serum biochemical parameters of Ross 308 chicken broilers without myopathy and those affected by WB myopathy. Blood samples were collected from male and female Ross 308 broilers that were 43 days old, with an average live weight of 2.98-3.09 kg. Representative blood samples were selected from broilers with WB (n = 33) and without WB (n = 33). In the laboratory, the blood was centrifugated, and biochemical tests were performed with an automated computerized biochemistry analyzer. The research results showed that broilers with WB had elevated blood serum levels of creatine kinase (CK) (p = 0.018), potassium (p = 0.010), and alanine aminotransferase (ALT) (p = 0.012). In conclusion, elevated serum levels of CK and potassium indicated that skeletal muscle cells were damaged. Moreover, increased ALT levels suggested a possible association between WB myopathy and liver damage. Additionally, these research findings underscore the diagnostic significance of CK and hint at its potential as a WB biomarker.
Collapse
Affiliation(s)
- Eglė Lebednikaitė
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania;
| | - Neringa Sutkevičienė
- Animal Reproduction Laboratory, Large Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania
| | - Toma Vilkonienė
- Animal Reproduction Laboratory, Large Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania
| | - Žana Balčiauskienė
- Vilnius Department of the State Food and Veterinary Service, Konstitucijos 23b, 08105 Vilnius, Lithuania
| | - Kęstutis Kučinskas
- Kaunas Department of the State Food and Veterinary Service, Veterinaru 14, Biruliskiu vil., Karmelavos p., 54469 Kaunas, Lithuania
| | - Lina Anskienė
- Department of Animal Breeding, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania;
| | - Alius Pockevičius
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes 18, 47181 Kaunas, Lithuania;
| |
Collapse
|
27
|
Walk CL, Mullenix GJ, Maynard CW, Greene ES, Maynard C, Ward N, Dridi S. Novel 4th-generation phytase improves broiler growth performance and reduces woody breast severity through modulation of muscle glucose uptake and metabolism. Front Physiol 2024; 15:1376628. [PMID: 38559573 PMCID: PMC10978611 DOI: 10.3389/fphys.2024.1376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The objective of the present study was to determine the effect of a novel (4th generation) phytase supplementation as well as its mode of action on growth, meat quality, and incidence of muscle myopathies. One-day old male broilers (n = 720) were weighed and randomly allocated to 30 floor pens (24 birds/pen) with 10 replicate pens per treatment. Three diets were fed from hatch to 56- days-old: a 3-phase corn-soy based diet as a positive control (PC); a negative control (NC) formulated to be isocaloric and isonitrogenous to the PC and with a reduction in Ca and available P, respectively; and the NC supplemented with 2,000 phytase units per kg of diet (NC + P). At the conclusion of the experiment, birds fed with NC + P diet were significantly heavier and had 2.1- and 4.2-points better feed conversion ratio (FCR) compared to birds offered NC and PC diets, respectively. Processing data showed that phytase supplementation increased live weight, hot carcass without giblets, wings, tender, and skin-on drum and thigh compared to both NC and PC diets. Macroscopic scoring showed that birds fed the NC + P diet had lower woody breast (WB) severity compared to those fed the PC and NC diets, however there was no effect on white striping (WS) incidence and meat quality parameters (pH, drip loss, meat color). To delineate its mode of action, iSTAT showed that blood glucose concentrations were significantly lower in birds fed NC + P diet compared to those offered PC and NC diets, suggesting a better glucose uptake. In support, molecular analyses demonstrated that the breast muscle expression (mRNA and protein) of glucose transporter 1 (GLUT1) and glucokinase (GK) was significantly upregulated in birds fed NC + P diet compared to those fed the NC and PC diets. The expression of mitochondrial ATP synthase F0 subunit 8 (MT-ATP8) was significantly upregulated in NC + P compared to other groups, indicating intracellular ATP abundance for anabolic pathways. This was confirmed by the reduced level of phosphorylated-AMP-activated protein kinase (AMPKα1/2) at Thr172 site, upregulation of glycogen synthase (GYS1) gene and activation of mechanistic target of rapamycin and ribosomal protein S6 kinase (mTOR-P70S6K) pathway. In conclusion, this is the first report showing that in-feed supplementation of the novel phytase improves growth performance and reduces WB severity in broilers potentially through enhancement of glucose uptake, glycolysis, and intracellular ATP production, which used for muscle glycogenesis and protein synthesis.
Collapse
Affiliation(s)
| | - Garrett J. Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elisabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Clay Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nelson Ward
- DSM Nutritional Products, Jerusalem, OH, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
28
|
Jia L, Hsu CY, Zhang X, Li X, Schilling MW, Peebles ED, Kiess AS, Wamsley KGS, Zhang L. Changes in gene expression in the intestinal mucus of broilers with woody breast myopathy. Poult Sci 2024; 103:103398. [PMID: 38194832 PMCID: PMC10792639 DOI: 10.1016/j.psj.2023.103398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Previous work has shown that dietary treatments affect woody breast (WB) incidence differently, which indicates that gut conditions such as gut barrier function, inflammation, and oxidative stress are likely related to WB. In this study, dietary supplementation with antibiotics (bacitracin) or probiotics (Bacillus subtilis) was investigated for their effects on the expression of transcripts related to gut barrier function, inflammation, and oxidative stress in the mucus lining of the jejunum from broilers with or without WB. A split-plot experimental design was used in this study. The dietary treatments served as the main plot factor and the breast muscle condition was the subplot factor. On d 41, jejunum mucus was collected from 1 bird from each of 3 replicate pens in each 3 dietary treatment groups that exhibited WB and an additional bird that contained a normal breast (3 biological replicates/treatment/phenotype; 3 × 3 × 2, total N = 18). Total RNA was extracted using a commercial RNA extraction kit. The expression levels of CLDN1, MUC6, TLR2A, TLR2B, TLR4, IFN-γ, IL-1β, IL-8L1, IL-10, NOS2, and SOD were determined using 2-step RT-qPCR analysis. The gene expression difference in ΔCt values was determined after normalizing with the chicken 18S rRNA gene. When the significant differences occurred between treatments, the relative fold change was calculated using the ΔΔCt method and the significance level was calculated. The PROC GLM procedure of SAS 9.4 was used, and the level of significance was set at P ≤ 0.05. There were no significant interactive effects between diet and the breast muscle condition on the expression of any of the genes tested. However, birds with WB exhibited higher MUC6 (P < 0.0001) gene expression levels than birds with normal breast muscles. In addition, the expression of SOD decreased in birds that were fed the antibiotic diet when compared to birds that were fed the probiotic diet (P = 0.014). In conclusion, WB identified in broilers tested in the current study is attributed to increased expression of mucin, indicating a correlation between WB incidence and gel-forming mucin secretion and pathogen signaling.
Collapse
Affiliation(s)
- Linan Jia
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xue Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xiaofei Li
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - M Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - E David Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Kelley G S Wamsley
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
29
|
Wang Z, Khondowe P, Brannick E, Abasht B. Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens. Sci Rep 2024; 14:3450. [PMID: 38342952 PMCID: PMC10859375 DOI: 10.1038/s41598-024-53904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Paul Khondowe
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Erin Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
30
|
Pizzol MSD, Ibelli AMG, Cantão ME, Campos FG, de Oliveira HC, de Oliveira Peixoto J, Fernandes LT, de Castro Tavernari F, Morés MAZ, Bastos APA, Ledur MC. Differential expression of miRNAs associated with pectoral myopathies in young broilers: insights from a comparative transcriptome analysis. BMC Genomics 2024; 25:104. [PMID: 38262955 PMCID: PMC10807067 DOI: 10.1186/s12864-024-09983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for contemporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two conditions are still unclear. The aim of this study was to identify miRNAs differentially expressed (DE) between normal and WS and WB-affected broilers, and to verify the possible role of these miRNAs in metabolic pathways related to the manifestation of these pectoral myopathies in 28-day-old broilers. RESULTS Five miRNAs were DE in the WS vs control (gga-miR-375, gga-miR-200b-3p, gga-miR-429-3p, gga-miR-1769-5p, gga-miR-200a-3p), 82 between WB vs control and 62 between WB vs WS. Several known miRNAs were associated with WB, such as gga-miR-155, gga-miR-146b, gga-miR-222, gga-miR-146-5p, gga-miR- 29, gga-miR-21-5p, gga-miR-133a-3p and gga-miR-133b. Most of them had not previously been associated with the development of this myopathy in broilers. We also have predicted 17 new miRNAs expressed in the broilers pectoral muscle. DE miRNA target gene ontology analysis enriched 6 common pathways for WS and WB compared to control: autophagy, insulin signaling, FoxO signaling, endocytosis, and metabolic pathways. The WS vs control contrast had two unique pathways, ERBB signaling and the mTOR signaling, while WB vs control had 14 unique pathways, with ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing being the most significant. CONCLUSIONS We found miRNAs DE between normal broilers and those affected with breast myopathies at 28 days of age. Our results also provide novel evidence of the miRNAs role on the regulation of WS and in the differentiation of both WS and WB myopathies. Overall, our study provides insights into miRNA-mediated and pathways involved in the occurrence of WS and WB helping to better understand these chicken growth disorders in an early age. These findings can help developing new approaches to reduce these complex issues in poultry production possibly by adjustments in nutrition and management conditions. Moreover, the miRNAs and target genes associated with the initial stages of WS and WB development could be potential biomarkers to be used in selection to reduce the occurrence of these myopathies in broiler production.
Collapse
Affiliation(s)
- Mariane Spudeit Dal Pizzol
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
- Present Address: Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Francelly Geralda Campos
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Haniel Cedraz de Oliveira
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | | | - Fernando de Castro Tavernari
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | | | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil.
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil.
| |
Collapse
|
31
|
Che S, Pham PH, Barbut S, Bienzle D, Susta L. Transcriptomic Profiles of Pectoralis major Muscles Affected by Spaghetti Meat and Woody Breast in Broiler Chickens. Animals (Basel) 2024; 14:176. [PMID: 38254345 PMCID: PMC10812457 DOI: 10.3390/ani14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Spaghetti meat (SM) and woody breast (WB) are breast muscle myopathies of broiler chickens, characterized by separation of myofibers and by fibrosis, respectively. This study sought to investigate the transcriptomic profiles of breast muscles affected by SM and WB. Targeted sampling was conducted on a flock to obtain 10 WB, 10 SM, and 10 Normal Pectoralis major muscle samples from 37-day-old male chickens. Total RNA was extracted, cDNA was used for pair-end sequencing, and differentially expressed genes (DEGs) were determined by a false discovery rate of <0.1 and a >1.5-fold change. Principal component and heatmap cluster analyses showed that the SM and WB samples clustered together. No DEGs were observed between SM and WB fillets, while a total of 4018 and 2323 DEGs were found when comparing SM and WB, respectively, against Normal samples. In both the SM and WB samples, Gene Ontology terms associated with extracellular environment and immune response were enriched. The KEGG analysis showed enrichment of cytokine-cytokine receptor interaction and extracellular matrix-receptor interaction pathways in both myopathies. Although SM and WB are macroscopically different, the similar transcriptomic profiles suggest that these conditions may share a common pathogenesis. This is the first study to compare the transcriptomes of SM and WB, and it showed that, while both myopathies had profiles different from the normal breast muscle, SM and WB were similar, with comparable enriched metabolic pathways and processes despite presenting markedly different macroscopic features.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Phuc H. Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Shai Barbut
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| |
Collapse
|
32
|
Bordini M, Mazzoni M, Di Nunzio M, Zappaterra M, Sirri F, Meluzzi A, Petracci M, Soglia F. Time course evaluation of collagen type IV in Pectoralis major muscles of broiler chickens selected for different growth-rates. Poult Sci 2024; 103:103179. [PMID: 37931400 PMCID: PMC10652102 DOI: 10.1016/j.psj.2023.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, 20133, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Jung U, Kim M, Dowker-Key P, Noë S, Bettaieb A, Shepherd E, Voy B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult Sci 2024; 103:103203. [PMID: 37980759 PMCID: PMC10685027 DOI: 10.1016/j.psj.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Presley Dowker-Key
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn Voy
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
34
|
Trithavisup T, Krobthong S, Yingchutrakul Y, Sanpinit P, Malila Y. Impact of Wooden Breast myopathy on in vitro protein digestibility, metabolomic profile, and cell cytotoxicity of cooked chicken breast meat. Poult Sci 2024; 103:103261. [PMID: 37992618 PMCID: PMC10700400 DOI: 10.1016/j.psj.2023.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
This study investigated the impacts of Wooden Breast (WB) abnormality on in vitro protein digestibility and cytotoxicity of cooked chicken breast meat. Chicken breasts without (non-WB, n = 6) or with severe WB condition (WB, n = 6) were cooked and subjected to static in vitro protein digestion. The results showed no significant differences in free-NH2, degree of hydrolysis and distribution of peptide molecular weight between non-WB and WB samples at late intestinal digestion (P5), suggesting no adverse effects of WB on protein digestibility. Based on peptidomic analysis, P5 fraction of WB showed greater content of peptides with oxidative modification than that of non-WB. Untargeted metabolomics did not find any metabolites with potential toxicity either in non-WB and WB. Hydrolyzed non-WB and WB (1.56-100 µg/mL) did not affect viability of Caco-2 and Vero cells but addition of WB samples reduced Caco-2 cell viability compared with non-WB.
Collapse
Affiliation(s)
- Thanatorn Trithavisup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
35
|
Villegas-Cayllahua EA, Dutra DR, de Oliveira RF, Pereira MR, Cavalcanti ÉNF, Ferrari FB, de Souza RA, de Almeida Fidelis H, Giampietro-Ganeco A, de Souza PA, de Mello JLM, Borba H. Concentration of lipids, cholesterol, and fatty acid profile in chicken breast meat affected by wooden breast myopathy frozen for up to 12 mo. Poult Sci 2024; 103:103153. [PMID: 37931395 PMCID: PMC10654245 DOI: 10.1016/j.psj.2023.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
The aim of this study was to examine the effects of frozen storage for 12 mo on the concentrations of lipids and cholesterol and fatty acid profile of wooden chicken breast meat. A total of 120 samples of chicken breasts were selected, according to the degree of "wooden breast" myopathy ["severe," "moderate," and "normal" (absence of myopathy)], from male chickens slaughtered at 42 d of age, from Cobb 500 strain. Part of the samples (n = 20/grade of severity) were evaluated on the day of collection and the remainder were packaged, frozen and stored at -18°C for up to 12 mo. At the beginning (collection day) and at the end of the proposed freezing period (12 mo), analyses of lipid, cholesterol, and fatty acid profile were carried out. Percentage of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids were evaluated. Meats affected by wooden breast myopathy had lower levels of PUFA that exert beneficial effects on health, such as DHA, EPA and ARA, and this profile is impaired by prolonged storage (12 mo), which results in important nutritional losses for the consumer.
Collapse
Affiliation(s)
| | - Daniel Rodrigues Dutra
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Rodrigo Fortunato de Oliveira
- Department of Animal Science at the Federal Institute of Goiano, Rio Verde Campus. Rodovia Sul Goiana, Km 01, Zona Rural, CEP 75901-970, Rio Verde, GO, Brazil
| | - Mateus Roberto Pereira
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | | | - Fábio Borba Ferrari
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Rodrigo Alves de Souza
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | | | - Aline Giampietro-Ganeco
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Pedro Alves de Souza
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | | | - Hirasilva Borba
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
36
|
Gamboa Gonzales NF, Alves Leão AP, Ribeiro Alvarenga R, Zangeronimo MG. The effects of in ovo injection with sulfur amino acids and folic acid on the gene expression, relative organ weights, hematologic parameters, performance, and carcass characteristics of broiler chickens. Anim Biotechnol 2023; 34:2207-2218. [PMID: 35678281 DOI: 10.1080/10495398.2022.2081578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to evaluate the effect of in ovo injection of folic acid (FA) and sulfur amino acids (SAAs) on the mitotic activity of myocytes, performance, relative organ weight, hematological values, and characteristics of broiler chicken carcasses. A total of 1200 fertile eggs from 42-week-old Ross AP© breeders were inoculated in the albumen on the first day of incubation in a completely randomized design with one of the treatments: C-intact eggs; SS: inoculation with 0.5 mL of saline solution; FA: 0.150 mg of FA; SAA: 5.90 mg of L-methionine and 3.40 mg of L-cysteine; or FA/SAA: FA + SAA. The inoculation of SAA did not influence (p > 0.05) the post-hatching characteristics of the chickens. FA inoculation increased (p < 0.05) the expression of the PAX7 and MYF genes in the pectoralis muscle of hatched chicks and reduced (p < 0.05) feed conversion at 42 days of age. The combination of SAA + FA increased (p < 0.05) the depth of the ileal crypt on the 1st day after hatching and the relative weight of the spleen and thymus on the 21st day of life. In conclusion, the inoculation of FA on the 1st day of incubation increases gene expression and improves the performance of broilers.
Collapse
|
37
|
Emambu M, Haron A, Lokshtanov D, Shinder D, Druyan S. Effects of genetic selection for fast growth on the development of wooden breast myopathy in broilers. Br Poult Sci 2023; 64:773-780. [PMID: 37807899 DOI: 10.1080/00071668.2023.2263879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023]
Abstract
1. This study investigated the physiological and molecular mechanisms leading to wooden breast (WB) by comparing growth parameters, oxygen consumption rate, thyroid hormone and gene expression patterns in fast- versus slow-growing broiler lines (Cobb500 and L1986, respectively).2. WB was observed in Cobb500 broilers only and was first diagnosed on d 21 post-hatch. Compared to the slow-growing L1986, Cobb500 showed a significantly higher growth rate, relative breast weight, breast thickness, meat pH and water-retention capacity (drip loss). Correspondingly, there was significantly lower relative heart weight, relative right ventricular weight, triiodothyronine and thyroxine concentrations and oxygen consumption rate.3. Compared to No-WB Cobb500, the WB-affected samples exhibited higher relative breast weight, breast thickness and drip loss and lower plasma total thyroxine (T4) concentrations.4. Selection for fast growth was associated with differential expression of genes involved in hypoxia (PLOD2), energy metabolism (FABP3, FABP4, CD36, and LPL), endoplasmic reticulum stress, muscle regeneration (CSRP3) and fibre-type switching (ANKRD1). WB-affected samples exhibited an upregulation of CSRP3, PLOD2 and ANKRD1, while CD36 was downregulated. Taken together, selection for fast growth and muscle gain is not matched by adequate cardiac and metabolic support systems.
Collapse
Affiliation(s)
- M Emambu
- Institute of Animal Science, Agricultural Research Organisation, Volcani Center, Rishon Le Zion, Israel
- Faculty of Agriculture Food and Environment, The Hebrew University, Rehovot, Israel
| | - A Haron
- Institute of Animal Science, Agricultural Research Organisation, Volcani Center, Rishon Le Zion, Israel
| | - D Lokshtanov
- Institute of Animal Science, Agricultural Research Organisation, Volcani Center, Rishon Le Zion, Israel
| | - D Shinder
- Institute of Animal Science, Agricultural Research Organisation, Volcani Center, Rishon Le Zion, Israel
| | - S Druyan
- Institute of Animal Science, Agricultural Research Organisation, Volcani Center, Rishon Le Zion, Israel
| |
Collapse
|
38
|
Malila Y. In vivo oxidative stress associated with growth-related myopathies in chicken and potential health impact: an opinion paper. Front Physiol 2023; 14:1291323. [PMID: 38028796 PMCID: PMC10652411 DOI: 10.3389/fphys.2023.1291323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Yuwares Malila
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
39
|
Li B, Lindén J, Puolanne E, Ertbjerg P. Effects of Wooden Breast Syndrome in Broiler Chicken on Sarcoplasmic, Myofibrillar, and Connective Tissue Proteins and Their Association with Muscle Fiber Area. Foods 2023; 12:3360. [PMID: 37761069 PMCID: PMC10528182 DOI: 10.3390/foods12183360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted on chicken pectoralis major muscle with different wooden breast severity in combination with different sampling locations to investigate the effects of wooden breast syndrome on protein traits and total myofiber area, and their associations. Contents of sarcoplasmic, salt-soluble myofibrillar and salt-insoluble protein and proportion of total myofiber area significantly declined with increasing severity in the superficial part of muscle, whereas the amount of heat-soluble/insoluble collagen and protein denaturation as well as the area of degenerated myofibers, connective tissue and cellular infiltrates increased. Myofibril protein content indicators showed strong positive correlations to total myofiber area. Moreover, PCA results indicated that severe wooden breast is positively linked to muscle collagen content and to protein denaturation. Our results suggest that decrease in sarcoplasmic and myofibrillar proteins is associated with reduction of myofiber area. In turn, the muscle fibers are replaced by connective tissue, accompanied by excessive myofibrillar and sarcoplasmic protein denaturation.
Collapse
Affiliation(s)
- Binbin Li
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland;
- Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| |
Collapse
|
40
|
Zhang X, Xing T, Li J, Zhang L, Gao F. Mitochondrial dysfunction and calcium dyshomeostasis in the pectoralis major muscle of broiler chickens with wooden breast myopathy. Poult Sci 2023; 102:102872. [PMID: 37390551 PMCID: PMC10331480 DOI: 10.1016/j.psj.2023.102872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The incidence of wooden breast (WB) meat of commercial broiler chicken has been increasing in recent years. Histological examination found that the occurrence of WB myopathy was accompanied by the pectoralis major (PM) muscle damage. So far, the potential mechanisms are not fully understood. This study aimed to explore the underlying mechanism of the damage of WB-affected PM muscle caused by changes in mitochondrial function, mitochondrial redox status and Ca2+ homeostasis. A total of 80 market-age Arbor Acres male broiler chickens were sampled and categorized into control (CON) and WB groups based on the evaluation of myopathic lesions. PM muscle samples were collected (n = 8 in each group) for histopathological evaluation and biochemical analyses. Ultrastructural examination and histopathological changes suggested the occurrence of PM muscle damage in broiler chickens with WB myopathy. The WB group showed an increased level of reactive oxygen species and enhanced antioxidant capacities in mitochondria of PM muscle. These changes were related to impaired mitochondria morphology and mitochondrial dysfunction. In addition, abnormal expressions of Ca2+ channels led to substantial Ca2+ loss in SR and cytoplasmic Ca2+ overload, as well as Ca2+ accumulation in mitochondria, resulting in Ca2+ dyshomeostasis in PM muscle of broiler chickens with WB myopathy. Combined, these findings indicate that WB myopathy is related to mitochondrial dysfunction, mitochondrial redox status imbalance and Ca2+ dyshomeostasis, leading to WB-affected PM muscle damage.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
41
|
Pesti-Asbóth G, Szilágyi E, Bíróné Molnár P, Oláh J, Babinszky L, Czeglédi L, Cziáky Z, Paholcsek M, Stündl L, Remenyik J. Monitoring physiological processes of fast-growing broilers during the whole life cycle: Changes of redox-homeostasis effected to trassulfuration pathway predicting the development of non-alcoholic fatty liver disease. PLoS One 2023; 18:e0290310. [PMID: 37590293 PMCID: PMC10434899 DOI: 10.1371/journal.pone.0290310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
In the broiler industry, the average daily gain and feed conversion ratio are extremely favorable, but the birds are beginning to approach the maximum of their genetic capacity. However, as a consequence of strong genetic selection, the occurrence of certain metabolic diseases, such as myopathies, ascites, sudden cardiac death and tibial dyschondroplasia, is increasing. These metabolic diseases can greatly affect the health status and welfare of birds, as well as the quality of meat. The main goal of this study was to investigate the changes in the main parameters of redox homeostasis during the rearing (1-42 days of age) of broilers with high genetic capacity, such as the concentrations of malondialdehyde, vitamin C, vitamin E, and reduced glutathione, the activities of glutathione peroxidase and glutathione reductase, and the inhibition rate of superoxide dismutase. Damage to the transsulfuration pathway during growth and the reason for changes in the level of homocysteine were investigated. Further, the parameters that can characterize the biochemical changes occurring in the birds were examined. Our study is the first characterize plasma albumin saturation. A method was developed to measure the levels of other small molecule thiol components of plasma. Changes in redox homeostasis induce increases in the concentrations of tumor necrosis factor alpha and inflammatory interleukins interleukin 2, interleukin 6 and interleukin 8 in broilers reared according to current large-scale husbandry technology and feeding protocols. A significant difference in all parameters tested was observed on the 21st day. The concentrations of cytokines and homocysteine increased, while the concentrations of glutathione and cysteine in the plasma decreased. Our findings suggest that observed changes in the abovementioned biochemical indices have a negative effect on poultry health.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Endre Szilágyi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Piroska Bíróné Molnár
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, Debrecen, Hungary
| | - László Babinszky
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Group, University of Nyíregyháza; Nyíregyháza, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - László Stündl
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Schmidt CJ, Kim DK, Pendarvis GK, Abasht B, McCarthy FM. Proteomic insight into human directed selection of the domesticated chicken Gallus gallus. PLoS One 2023; 18:e0289648. [PMID: 37549140 PMCID: PMC10406324 DOI: 10.1371/journal.pone.0289648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Chicken domestication began at least 3,500 years ago for purposes of divination, cockfighting, and food. Prior to industrial scale chicken production, domestication selected larger birds with increased egg production. In the mid-20th century companies began intensive selection with the broiler (meat) industry focusing on improved feed conversion, rapid growth, and breast muscle yield. Here we present proteomic analysis comparing the modern broiler line, Ross 708, with the UIUC legacy line which is not selected for growth traits. Breast muscle proteome analysis identifies cellular processes that have responded to human directed artificial selection. Mass spectrometry was used to identify protein level differences in the breast muscle of 6-day old chicks from Modern and Legacy lines. Our results indicate elevated levels of stress proteins, ribosomal proteins and proteins that participate in the innate immune pathway in the Modern chickens. Furthermore, the comparative analyses indicated expression differences for proteins involved in multiple biochemical pathways. In particular, the Modern line had elevated levels of proteins affecting the pentose phosphate pathway, TCA cycle and fatty acid oxidation while proteins involved in the first phase of glycolysis were reduced compared to the Legacy line. These analyses provide hypotheses linking the morphometric changes driven by human directed selection to biochemical pathways. These results also have implications for the poultry industry, specifically Wooden Breast disease which is linked to rapid breast muscle growth.
Collapse
Affiliation(s)
- Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Dong Kyun Kim
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - G Ken Pendarvis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Fiona M. McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
43
|
Villegas-Cayllahua EA, de Mello JLM, Dutra DR, de Oliveira RF, Cavalcanti ÉF, Pereira MR, Ferrari FB, de Souza RA, Carneiro NMGM, Fidelis HDA, Giampietro-Ganeco A, de Souza PA, Borba H. Effect of freezing on the quality of breast meat from broilers affected by wooden breast myopathy. Poult Sci 2023; 102:102702. [PMID: 37356298 PMCID: PMC10404660 DOI: 10.1016/j.psj.2023.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/27/2023] Open
Abstract
The objective of the present study was to characterize possible variations in the quality of wooden chicken breast meat during freezing for 12 mo, in order to prove whether the shelf life recommended by the industry allows the storage of that type of meat without compromising its consumption. Three hundred samples of male Cobb 500 broilers slaughtered at 42 d of age were used. Part of the samples (n = 20 normal-control group; n = 20 moderate degree; n = 20 severe degree) were analyzed on the day of collection (beginning), previously kept under refrigeration (4°C). The other samples were stored (-18°C) for up to 12 mo. At the end of each proposed freezing period (3, 6, 9, and 12 mo), physical and chemical analyses were performed (per period: n = 20 normal-control group; n = 20 moderate degree; n = 20 severe degree). Color (L*, a*, and b*), pH, water-holding capacity, cooking losses, tenderness, lipid oxidation, chemical composition, cholesterol concentration, mineral profile, and collagen concentration were evaluated. The physicochemical quality of wooden chicken breast meat is significantly altered during frozen storage for 12 mo, being of inferior quality when compared to normal chicken breast meat, which can negatively affect consumer acceptance. However, it should be noted that even after 12 mo of freezing, the meats did not show oxidative rancidity.
Collapse
Affiliation(s)
| | | | - Daniel Rodrigues Dutra
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Rodrigo Fortunato de Oliveira
- Darcy Ribeiro State University of Northern Fluminense - UENF, Agricultural Sciences and Technologies Center - CCTA, Parque Califórnia Campos dos Goytacazes, RJ 28013-602, Brazil
| | | | - Mateus Roberto Pereira
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Fábio Borba Ferrari
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Rodrigo Alves de Souza
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | | | | | - Aline Giampietro-Ganeco
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Pedro Alves de Souza
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Hirasilva Borba
- Technology Department, Paulista State University - UNESP, 14884-900 Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
44
|
Maynard CJ, Maynard CW, Mullenix GJ, Ramser A, Greene ES, Bedford MR, Dridi S. Impact of Phytase Supplementation on Meat Quality of Heat-Stressed Broilers. Animals (Basel) 2023; 13:2043. [PMID: 37370553 DOI: 10.3390/ani13122043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and consequently growth, we undertook the present study to evaluate the effects of dietary phytase on growth and meat quality in heat-stressed broilers. A total of 720 day-old hatch Cobb 500 chicks were assigned to 24 pens within controlled environmental chambers and fed three diets: Negative Control (NC), Positive Control (PC), and NC diet supplemented with 2000 phytase units (FTU)/kg) of quantum blue (QB). On day 29, birds were exposed to two environmental conditions: thermoneutral (TN, 25 °C) or cyclic heat stress (HS, 35 °C, 8 h/d from 9 a.m. to 5 p.m.) in a 3 × 2 factorial design. Feed intake (FI), water consumption (WI), body weight (BW), and mortality were recorded. On day 42, birds were processed, carcass parts were weighed, and meat quality was assessed. Breast tissues were collected for determining the expression of target genes by real-time quantitative PCR using the 2-ΔΔCt method. HS significantly increased core body temperature, reduced feed intake and BW, increased water intake (WI), elevated blood parameters (pH, SO2, and iCa), and decreased blood pCO2. HS reduced the incidence of woody breast (WB) and white striping (WS), significantly decreased drip loss, and increased both 4- and 24-h postmortem pH. Instrumental L* and b* values were reduced (p < 0.05) by the environmental temperature at both 4- and 24-h postmortem. QB supplementation reduced birds' core body temperature induced by HS and improved the FCR and water conversion ratio (WCR) by 1- and 0.5-point, respectively, compared to PC under HS. QB increased blood SO2 and reduced the severity of WB and WS under TN conditions, but it increased it under an HS environment. The abovementioned effects were probably mediated through the modulation of monocarboxylate transporter 1, heat shock protein 70, mitogen-activated protein kinase, and/or glutathione peroxidase 1 gene expression, however, further mechanistic studies are warranted. In summary, QB supplementation improved growth performance and reduced muscle myopathy incidence under TN conditions. Under HS conditions, however, QB improved growth performance but increased the incidence of muscle myopathies. Therefore, further QB titration studies are needed.
Collapse
Affiliation(s)
- Clay J Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Craig W Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Bell & Evans, Fredericksburg, PA 17026, USA
| | - Garrett J Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
45
|
Shakeri M, Kong B, Zhuang H, Bowker B. Potential Role of Ribonucleotide Reductase Enzyme in Mitochondria Function and Woody Breast Condition in Broiler Chickens. Animals (Basel) 2023; 13:2038. [PMID: 37370548 DOI: 10.3390/ani13122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular events leading to the development of the woody breast myopathy in broiler breast muscle are unclear. Affected woody breast muscle exhibits muscle fiber degeneration/regeneration, connective tissue accumulation, and adverse morphological changes in mitochondria. Ribonucleotide reductase (RNR) is an enzyme for the synthesis of dNTP, which is important for mitochondria DNA content (mtDNA). RNR consists of two subunits: RRM1/RRM2. A decrease in RRM2 is associated with a decrease in mtDNA and mitochondria proteins, leading to impaired ATP production. The objective of this study was to investigate potential RNR differences between woody breast (WB) and normal (N) breast muscle by examining RRM2 expression and associated pathways. Gene expression and enzyme activities were examined by qPCR and commercial kits. Results showed that RRM2 expression reduced for WB (p = 0.01) and genes related to mitochondria, including ATP6 (p = 0.03), COX1 (p = 0.001), CYTB (p = 0.07), ND2 (p = 0.001) and ND4L (p = 0.03). Furthermore, NDUFB7 and COX 14, which are related to mitochondria and ATP synthesis, tended to be reduced in WB. Compared to N, GLUT1 reduced for WB (p = 0.05), which is responsible for glucose transport in cells. Consequently, PDK4 (p = 0.0001) and PPARG (p = 0.008) increased in WB, suggesting increased fatty acid oxidation. Citric synthase activity and the NAD/NADH ratio (p = 0.02) both reduced for WB, while WB increased CHRND expression (p = 0.001), which is a possible indicator of high reactive oxygen species levels. In conclusion, a reduction in RRM2 impaired mitochondria function, potentially ATP synthesis in WB, by increasing fibrosis and the down-regulation of several genes related to mitochondria function.
Collapse
Affiliation(s)
- Majid Shakeri
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Byungwhi Kong
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
46
|
Carvalho LM, Rocha TC, Delgado J, Díaz-Velasco S, Madruga MS, Estévez M. Deciphering the underlying mechanisms of the oxidative perturbations and impaired meat quality in Wooden breast myopathy by label-free quantitative MS-based proteomics. Food Chem 2023; 423:136314. [PMID: 37167669 DOI: 10.1016/j.foodchem.2023.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The study aimed to investigate biochemical mechanisms occurred in Wooden breast (WB) chicken meat, with attention to the impact on meat quality. Commercial chicken breasts were classified as Normal (N, n = 12), WB-M (moderate degree; focal hardness on cranial region, n = 12) and WB-S (severe degree; extreme and diffused hardness over the entire surface, n = 12). Samples were analyzed for physico-chemical properties, oxidative damage to lipids and proteins, and discriminating sarcoplasmic proteins by using a Q-Exactive mass spectrometer. WB meat presented impaired composition and functionality and higher levels of lipid and protein oxidation markers than N meat. The proteomic profile of WB-S presents a dynamic regulation of the relevant proteins involved in redox homeostasis, carbohydrate, protein and lipid metabolisms. Proteomics results demonstrate that the physiological and metabolic processes of muscles affected by WB myopathy are involved in combating the inflammatory process and in repairing the damaged tissue by oxidative stress.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Thayse C Rocha
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Silvia Díaz-Velasco
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Mario Estévez
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.
| |
Collapse
|
47
|
Zhu X, Puolanne E, Ertbjerg P. Changes of Raw Texture, Intramuscular Connective Tissue Properties and Collagen Profiles in Broiler Wooden Breast during Early Storage. Foods 2023; 12:foods12071530. [PMID: 37048351 PMCID: PMC10094220 DOI: 10.3390/foods12071530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
A recently identified broiler myopathy known as wooden breast (WB) is predominantly found in the pectoralis major muscle of fast-growing broiler hybrids and is causing significant losses to the poultry industry. The aim of this study was to investigate the effects of WB syndrome on raw meat texture, purge loss and thermal properties of intramuscular connective tissue of pectoralis major muscle in the early postmortem period (1-3 days). Results showed that the presence of the WB muscles condition at 1 day postmortem was associated with significantly increased stiffness (27.0 N vs. 23.1 N) and significantly increased purge loss (1.8% vs. 1.0%) compared to normal breast (NB). However, on 3 days postmortem, these parameters did not differ between WB and NB groups. Insoluble and total collagen content was significantly higher in WB muscles compared to NB muscles, and the extractability of intramuscular connective tissue (IMCT) of WB was also higher (0.42% vs. 0.37%) compared to NB and remained stable in the early postmortem period. There was significantly lower protein content in the sarcoplasmic protein fraction and myofibrillar protein fraction of WB muscles compared to NB muscles (p < 0.05). The IMCT of these two groups showed different thermal properties, as the enthalpy of denaturation (ΔH) was significantly lower in WB muscles compared to NB muscles. The WB syndrome had a great effect on the texture and connective tissue properties of the meat compared to normal muscle, with a tendency for having a lower purge loss and higher raw meat hardness.
Collapse
Affiliation(s)
- Xueshen Zhu
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Study of emerging chicken meat quality defects using OMICs: What do we know? J Proteomics 2023; 276:104837. [PMID: 36781045 DOI: 10.1016/j.jprot.2023.104837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
Starting in approximately 2010, broiler breast meat myopathies, specifically woody breast meat, white striping, spaghetti meat, and gaping have increased in prevalence in the broiler meat industry. Omic methods have been used to elucidate compositional, genetic, and biochemical differences between myopathic and normal breast meat and have provided information on the factors that contribute to these myopathies. This review paper focuses on the genomic, transcriptomic, proteomic, metabolomic, and other omics research that has been conducted to unravel the molecular mechanisms involved in the development of these myopathies and their associated factors and potential causes. SIGNIFICANCE: This review manuscript summarizes poultry meat quality defects, also referred to as myopathies, that have been evaluated using omics methods. Genomics, transcriptomics, proteomics, metabolomics and other methodologies have been used to understand the genetic predisposition, the protein expression, and the biochemical pathways that are associated with the expression of woody breast meat, white striping, and other myopathies. This has allowed researchers and the industry to differentiate between chicken breast meat with and without myopathic muscle as well as the environmental and genetic conditions that contribute to differences in biochemical pathways and lead to the phenotypes associate with these different myopathies.
Collapse
|
49
|
Wang Z, Brannick E, Abasht B. Integrative transcriptomic and metabolomic analysis reveals alterations in energy metabolism and mitochondrial functionality in broiler chickens with wooden breast. Sci Rep 2023; 13:4747. [PMID: 36959331 PMCID: PMC10036619 DOI: 10.1038/s41598-023-31429-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
This integrative study of transcriptomics and metabolomics aimed to improve our understanding of Wooden Breast myopathy (WB). Breast muscle samples from 8 WB affected and 8 unaffected male broiler chickens of 47 days of age were harvested for metabolite profiling. Among these 16 samples, 5 affected and 6 unaffected also underwent gene expression profiling. The Joint Pathway Analysis was applied on 119 metabolites and 3444 genes exhibiting differential abundance or expression between WB affected and unaffected chickens. Mitochondrial dysfunctions in WB was suggested by higher levels of monoacylglycerols and down-regulated genes involved in lipid production, fatty acid beta oxidation, and oxidative phosphorylation. Lower levels of carnosine and anserine, along with down-regulated carnosine synthase 1 suggested decreased carnosine synthesis and hence impaired antioxidant capacity in WB. Additionally, Weighted Gene Co-expression Network Analysis results indicated that abundance of inosine monophosphate, significantly lower in WB muscle, was correlated with mRNA expression levels of numerous genes related to focal adhesion, extracellular matrix and intercellular signaling, implying its function in connecting and possibly regulating multiple key biological pathways. Overall, this study showed not only the consistency between transcript and metabolite profiles, but also the potential in gaining further insights from analyzing multi-omics data.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Erin Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
50
|
Greene ES, Maynard C, Mullenix G, Bedford M, Dridi S. Potential role of endoplasmic reticulum stress in broiler woody breast myopathy. Am J Physiol Cell Physiol 2023; 324:C679-C693. [PMID: 36717103 DOI: 10.1152/ajpcell.00275.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although broiler (meat-type) chickens are one of the most efficient protein sources that supports the livelihoods and food security of billions of people worldwide, they are facing several challenges. Due to its unknown etiology and heavy economic impact, woody breast (WB) myopathy is one of the most challenging problems facing the poultry industry, and for which there is no effective solution. Here, using a primary chicken myotube culture model, we show that hypoxia and endoplasmic reticulum (ER) stress are an integral component of the etiology of the myopathy. Multiple components of the ER stress response are significantly upregulated in WB as compared with normal muscle, and this response was mimicked by hypoxic conditions in chicken primary myotube culture. In addition, apoptotic pathways were activated as indicated by increases in active caspase 3 protein levels in both WB-affected tissues and hypoxic myotube culture, and caspase 3 activity and apoptosis in hypoxic myotube culture. Finally, as a phenotypic hallmark of WB is enhanced fibrosis and increased collagen aggregation, here, we show that hypoxic conditions increase collagen 1A1 and 1A2 gene expression, as well as collagen 1 protein levels in primary myotubes. These effects were partially reversed by tauroursodeoxycholic acid (TUDCA), an ER-stress inhibitor, in myotube culture. Taken together, these findings indicate that hypoxia and ER stress are present in WB, hypoxia can upregulate the cell death arm of the unfolded protein response (UPR) and lead to collagen production in a culture model of WB. This opens new vistas for potential mechanistic targets for future effective interventions to mitigate this myopathy.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | - Clay Maynard
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | - Garrett Mullenix
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|