1
|
Bahbahani H, Mohammad Z, Alfoudari A, Al Abri M. Genomic insights into racing camels: inbreeding levels and positive selection linked to athletic traits. Animal 2025; 19:101467. [PMID: 40073590 DOI: 10.1016/j.animal.2025.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Racing dromedary camels are widely distributed across the Arabian Peninsula, predominantly concentrating in its northern and southeastern regions. Phenotypically, they are differentiated from other dromedary types, characterised by their smaller body size, longer limbs, reduced hump size, and thinner chest girth. In this study, the whole genome sequences of 34 racing camels were analysed to assess their genetic relationship with non-racing populations, estimate levels of inbreeding, calculate Wier and Cockerham's fixation index (Fst), assess effective population size (Ne), and identify candidate regions with signatures of positive selection. Both racing and non-racing camels exhibited comparable levels of genomic inbreeding (FROH = 0.21), with no significant genetic differentiation detected between them. The estimated Fst value between the two camel groups also revealed minimal genetic differentiation. A declining trend was observed in Ne estimations of both groups over the past 5 000 years, with slightly lower recent Ne in racing camels compared to their non-racing counterparts. Signatures of positive selection in the genomes of racing camels were identified through the application of two haplotype-based statistics, namely the integrated haplotype homozygosity score (iHS) and extended haplotype homozygosity between-populations (Rsb), along with runs of homozygosity (ROH) analysis. A total of 33 regions under selection were detected via iHS, 19 via Rsb, and 24 through ROH. Candidate regions under selection were found to overlap with genes involved in diverse biological pathways potentially linked to athletic performance, e.g., musculoskeletal development, lipid metabolism, stress response, bone integrity, as well as endurance and power. These findings provide a foundation for further exploration of the racing dromedary genome, with the goal of defining variants and haplotypes that might be associated with athletic traits. Such insights could assist the development of genetically informed breeding programmes aimed at developing specialised racing dromedary lines, contributing to the broader understanding and preservation of animal athletic performance and selection in domesticated species worldwide.
Collapse
Affiliation(s)
- H Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait.
| | - Z Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - A Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - M Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
2
|
Belanger JM, Gershony LC, Bell JS, Hytönen MK, Lohi H, Lindblad-Toh K, Tengvall K, Sell E, Famula TR, Oberbauer AM. Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed. Genes (Basel) 2025; 16:378. [PMID: 40282338 PMCID: PMC12026756 DOI: 10.3390/genes16040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Genetic diversity in closed populations, such as pedigree dogs, is of concern for maintaining the health and vitality of the population in the face of evolving challenges. Measures of genetic diversity rely upon estimates of homozygosity without consideration of whether the homozygosity is desirable or undesirable or if heterozygosity has a functional impact. Pedigree coefficients of inbreeding have been the classical approach yet they are inadequate unless based upon the entire population. Methods: Homozygosity measures based upon pedigree analyses (n = 11,898), SNP array data (n = 244), and whole genome sequencing (n = 23) were compared in the Bearded Collie, as well as a comparison of SNP array data to a pedigree cohort (n = 5042) and a mixed-breed cohort (n = 1171). Results: Molecular measures based upon DNA are more informative on an individual's homozygosity levels than pedigree analyses, although SNP coefficients of inbreeding overestimate the level of inbreeding based on the nature of SNP array methodology. Whole genome sequence (WGS) analyses revealed that the heterozygosity observed is generally in variants having neutral or low impact, which would indicate that the variability may not contribute substantially to functional diversity in the population. The majority of high-impact variants were observed in the shortest runs of homozygosity (ROH) reflecting ancestral breeding and domestication practices. As expected, mixed-breed dogs displayed higher measures of genomic diversity than either Bearded Collies or other pedigree dogs as a whole using the current paradigm algorithm models to calculate homozygosity. Conclusions: Using typical DNA-based measures reflect only a single individual and not the population thereby failing to account for regions of homozygosity that reflect ancestral breeding, domestication history, breed-defining regions, or regions positively selected for health traits. Incorporating measures of genetic diversity into dog breeding schemes is meritorious. However, until measures of diversity can distinguish between breed-defining homozygosity and homozygosity associated with positive health alleles, the measures to use as selection tools need refinement before their widespread implementation.
Collapse
Affiliation(s)
- Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Liza C. Gershony
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Jerold S. Bell
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA;
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (K.L.-T.); (K.T.)
- SciLifeLab, Uppsala University, 752 37 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katarina Tengvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (K.L.-T.); (K.T.)
- SciLifeLab, Uppsala University, 752 37 Uppsala, Sweden
| | - Elsa Sell
- Bearded Collie Foundation for Health (BeaCon), Milner, GA 30257, USA;
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| |
Collapse
|
3
|
Sievers J, Distl O. Genomic Patterns of Homozygosity and Genetic Diversity in the Rhenish German Draught Horse. Genes (Basel) 2025; 16:327. [PMID: 40149478 PMCID: PMC11942601 DOI: 10.3390/genes16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The Rhenish German draught horse is an endangered German horse breed, originally used as working horse in agriculture. Therefore, the objective of this study was to evaluate the breed's genetic diversity using pedigree and genomic data in order to analyze classical and ancestral pedigree-based inbreeding, runs of homozygosity, ROH islands, and consensus ROH. METHODS We studied the genome-wide genotype data of 675 Rhenish German draught horses and collated pedigree-based inbreeding coefficients for these horses. The final dataset contained 64,737 autosomal SNPs. RESULTS The average number of ROH per individual was 43.17 ± 9.459 with an average ROH length of 5.087 Mb ± 1.03 Mb. The average genomic inbreeding coefficient FROH was 0.099 ± 0.03, the pedigree-based classical inbreeding coefficient FPED 0.016 ± 0.021, and ancestral inbreeding coefficients ranged from 0.03 (Fa_Kal) to 0.51 (Ahc). Most ROH (55.85%) were classified into the length category of 2-4 Mb, and the minority (0.43%) into the length category of >32 Mb. The effective population size (Ne) decreased in the last seven generations (~65 years) from 189.43 to 58.55. Consensus ROH shared by 45% of the horses were located on equine chromosomes 3 and 7, while ROH islands exceeding the 99th percentile threshold were identified on chromosomes 2, 3, 5, 7, 9, 10, and 11. These ROH islands contained genes associated with morphological development (HOXB cluster), fertility (AURKC, NLRP5, and DLX3), muscle growth, and skin physiology (ZNF gene cluster). CONCLUSIONS This study highlights how important it is to monitor genetic diversity in endangered populations with genomic data. The results of this study will help to develop breeding strategies to ensure the conservation of the German Rhenish draught horse population and show whether favorable alleles from the overrepresented candidate genes within ROH were transmitted to the next generation.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
4
|
Duderstadt S, Distl O. Genetic Diversity and Population Structure of Dülmen Wild, Liebenthal and Polish Konik Horses in Comparison with Przewalski, Sorraia, German Draught and Riding Horses. Animals (Basel) 2024; 14:2221. [PMID: 39123746 PMCID: PMC11311111 DOI: 10.3390/ani14152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of the present study was to analyze the genetic diversity, individual-based assessment of population structure, and admixture in the Dülmen wild horse population in comparison to warmblood, coldblood, and primitive horse populations. The Dülmen wild horse is kept as a unique horse population in the Merfelder Bruch near Dülmen in Westphalia, Germany, and since 1856 has been managed by the Dukes of Croÿ. The Dülmen wild horse population is exposed to the natural conditions of the Merfelder Bruch all year round without human interventions for feeding and veterinary care. In the present study, genetic diversity was estimated for 101 Dülmen wild horses using multilocus genotypic information from a set of 29 autosomal microsatellites and compared with 587 horses from 17 different horse populations. Dülmen wild horses maintained a high degree of genetic diversity, with an average observed heterozygosity of 0.68, a mean number of 6.17 alleles, and heterozygote deficit of -0.035. Pairwise genetic distances (FST, Nei's standard, and Cavalli-Sforza distances) were closest to German coldblood breeds, Polish Konik, and Icelandic horses and most divergent from Sorraia and Przewalski's horses. Neighbor joining dendrogram and PCA plots showed a clear distinction of Dülmen wild horses from other populations, particularly from Przewalski horses. Posterior Bayesian analysis confirmed clear differentiation from other horse populations without an admixture pattern and a high membership index (0.92). It was possible to distinguish Dülmen wild horses from Dülmen and Polish Konik horses. In conclusion, Dülmen wild horses show a notable separation from other German horse breeds and primitive horse populations and may serve as a resource to study evolution of equine domestication.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
5
|
Kolpakov V, Ruchay A, Kosyan D, Bukareva E. Analysis of Runs of Homozygosity in Aberdeen Angus Cattle. Animals (Basel) 2024; 14:2153. [PMID: 39123679 PMCID: PMC11311081 DOI: 10.3390/ani14152153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
A large number of cattle breeds have marked phenotypic differences. They are valuable models for studying genome evolution. ROH analysis can facilitate the discovery of genomic regions that may explain phenotypic differences between breeds affecting traits of economic importance. This paper investigates genome-wide ROH of 189 Aberdeen Angus bulls using the Illumina Bovine GGP HD Beadchip150K to structurally and functionally annotate genes located within or in close ROH of the Aberdeen Angus cattle genome. The method of sequential SNP detection was used to determine the ROH. Based on this parameter, two ROH classes were allocated. The total length of all ROH islands was 11,493 Mb. As a result of studying the genomic architecture of the experimental population of Aberdeen Angus bulls, nine ROH islands and 255 SNPs were identified. Thirteen of these overlapped with regions bearing 'selection imprints' previously identified in other breeds of cattle, and five of these regions were identified in other Aberdeen Angus populations. The total length of the ROH islands was 11,493 Mb. The size of individual islands ranged from 0.038 to 1.812 Mb. Structural annotation showed the presence of 87 genes within the identified ROH islets.
Collapse
Affiliation(s)
- Vladimir Kolpakov
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (D.K.); (E.B.)
- Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 460000 Orenburg, Russia
| | - Alexey Ruchay
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (D.K.); (E.B.)
- Department of Information Security, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Mathematics, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Dianna Kosyan
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (D.K.); (E.B.)
| | - Elena Bukareva
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (D.K.); (E.B.)
| |
Collapse
|
6
|
Gmel AI, Mikko S, Ricard A, Velie BD, Gerber V, Hamilton NA, Neuditschko M. Using high-density SNP data to unravel the origin of the Franches-Montagnes horse breed. Genet Sel Evol 2024; 56:53. [PMID: 38987703 PMCID: PMC11238448 DOI: 10.1186/s12711-024-00922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The Franches-Montagnes (FM) is the last native horse breed of Switzerland, established at the end of the 19th century by cross-breeding local mares with Anglo-Norman stallions. We collected high-density SNP genotype data (Axiom™ 670 K Equine genotyping array) from 522 FM horses, including 44 old-type horses (OF), 514 European Warmblood horses (WB) from Sweden and Switzerland (including a stallion used for cross-breeding in 1990), 136 purebred Arabians (AR), 32 Shagya Arabians (SA), and 64 Thoroughbred (TB) horses, as introgressed WB stallions showed TB origin in their pedigrees. The aim of the study was to ascertain fine-scale population structures of the FM breed, including estimation of individual admixture levels and genomic inbreeding (FROH) by means of Runs of Homozygosity. RESULTS To assess fine-scale population structures within the FM breed, we applied a three-step approach, which combined admixture, genetic contribution, and FROH of individuals into a high-resolution network visualization. Based on this approach, we were able to demonstrate that population substructures, as detected by model-based clustering, can be either associated with a different genetic origin or with the progeny of most influential sires. Within the FM breed, admixed horses explained most of the genetic variance of the current breeding population, while OF horses only accounted for a small proportion of the variance. Furthermore, we illustrated that FM horses showed high TB admixture levels and we identified inconsistencies in the origin of FM horses descending from the Arabian stallion Doktryner. With the exception of WB, FM horses were less inbred compared to the other breeds. However, the relatively few but long ROH segments suggested diversity loss in both FM subpopulations. Genes located in FM- and OF-specific ROH islands had known functions involved in conformation and behaviour, two traits that are highly valued by breeders. CONCLUSIONS The FM remains the last native Swiss breed, clearly distinguishable from other historically introgressed breeds, but it suffered bottlenecks due to intensive selection of stallions, restrictive mating choices based on arbitrary definitions of pure breeding, and selection of rare coat colours. To preserve the genetic diversity of FM horses, future conservation managements strategies should involve a well-balanced selection of stallions (e.g., by integrating OF stallions in the FM breeding population) and avoid selection for rare coat colours.
Collapse
Affiliation(s)
- Annik Imogen Gmel
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8053, Zurich, Switzerland
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Anne Ricard
- Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, RMC Gunn B19-603, Sydney, NSW, 2006, Australia
| | - Vinzenz Gerber
- Institut Suisse de Médecine Equine ISME, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Natasha Anne Hamilton
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus Neuditschko
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland.
| |
Collapse
|
7
|
Li X, Lan F, Chen X, Yan Y, Li G, Wu G, Sun C, Yang N. Runs of homozygosity and selection signature analyses reveal putative genomic regions for artificial selection in layer breeding. BMC Genomics 2024; 25:638. [PMID: 38926812 PMCID: PMC11210043 DOI: 10.1186/s12864-024-10551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The breeding of layers emphasizes the continual selection of egg-related traits, such as egg production, egg quality and eggshell, which enhance their productivity and meet the demand of market. As the breeding process continued, the genomic homozygosity of layers gradually increased, resulting in the emergence of runs of homozygosity (ROH). Therefore, ROH analysis can be used in conjunction with other methods to detect selection signatures and identify candidate genes associated with various important traits in layer breeding. RESULTS In this study, we generated whole-genome sequencing data from 686 hens in a Rhode Island Red population that had undergone fifteen consecutive generations of intensive artificial selection. We performed a genome-wide ROH analysis and utilized multiple methods to detect signatures of selection. A total of 141,720 ROH segments were discovered in whole population, and most of them (97.35%) were less than 3 Mb in length. Twenty-three ROH islands were identified, and they overlapped with some regions bearing selection signatures, which were detected by the De-correlated composite of multiple signals methods (DCMS). Sixty genes were discovered and functional annotation analysis revealed the possible roles of them in growth, development, immunity and signaling in layers. Additionally, two-tailed analyses including DCMS and ROH for 44 phenotypes of layers were conducted to find out the genomic differences between subgroups of top and bottom 10% phenotype of individuals. Combining the results of GWAS, we observed that regions significantly associated with traits also exhibited selection signatures between the high and low subgroups. We identified a region significantly associated with egg weight near the 25 Mb region of GGA 1, which exhibited selection signatures and has higher genomic homozygosity in the low egg weight subpopulation. This suggests that the region may be play a role in the decline in egg weight. CONCLUSIONS In summary, through the combined analysis of ROH, selection signatures, and GWAS, we identified several genomic regions that associated with the production traits of layers, providing reference for the study of layer genome.
Collapse
Affiliation(s)
- Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), and National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), and National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoman Chen
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), and National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), and National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), and National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zhang X, Yang L, Xie Z, Gan J, Zhu P, Song J, Kang H, Zhang Z, Liu L, Xiang H, Li H. Genetic assessment and candidate genes identification for breed-specific characteristics of Qingyuan partridge chicken based on runs of homozygosity. BMC Genomics 2024; 25:577. [PMID: 38858651 PMCID: PMC11163754 DOI: 10.1186/s12864-024-10492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Several core breeding and supporting lines of the Qingyuan partridge chicken, a representative local chicken breed in China, have been developed over 20 years. Consequently, its economic traits related to growth and reproduction have been significantly improved by breeding selection and commercial utilization, but some characteristic traits, such as partridge feathers, high meat quality and sufficient flavor, have always been retained. However, effective methods for genetic assessment and functional gene exploration of similar trait groups are lacking. The presence of identical haplotype fragments transmitted from parent to offspring results in runs of homozygosity (ROH), which offer an efficient solution. In this study, genomes of 134 Qingyuan partridge chickens representing two breeding populations and one preserved population were re-sequenced to evaluate the genetic diversity and explore functional genes by analyzing the diversity, distribution, and frequency of ROH. RESULTS The results showed a low level of genomic linkage and degree of inbreeding within both the bred and preserved populations, suggesting abundant genetic diversity and an adequate genetic potential of the Qingyuan partridge chicken. Throughout the long-term selection process, 21 genes, including GLI3, ANO5, BLVRA, EFNB2, SLC5A12, and SVIP, associated with breed-specific characteristics were accumulated within three ROH islands, whereas another 21 genes associated with growth traits including IRX1, IRX2, EGFR, TPK1, NOVA1, BDNF and so on were accumulated within five ROH islands. CONCLUSIONS These findings provide new insights into the genetic assessment and identification of genes with breed-specific and selective characteristics, offering a solid genetic basis for breeding and protection of Qingyuan partridge chickens.
Collapse
Affiliation(s)
- Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of National Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant, China Conservation and Research Centre for the Giant Panda, Panda National Park, Chengdu, 611830, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jiankang Gan
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China
| | - Piao Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jiani Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
- Guangdong Tinoo's Foods Group Co., Ltd, Qingyuan, 511827, China.
| |
Collapse
|
9
|
Amandykova M, Akhatayeva Z, Kozhakhmet A, Kapassuly T, Orazymbetova Z, Yergali K, Khamzin K, Iskakov K, Dossybayev K. Distribution of Runs of Homozygosity and Their Relationship with Candidate Genes for Productivity in Kazakh Meat-Wool Sheep Breed. Genes (Basel) 2023; 14:1988. [PMID: 38002931 PMCID: PMC10671688 DOI: 10.3390/genes14111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Increasing the fertility of sheep remains one of the crucial issues of modern sheep breeding. The Kazakh meat-wool sheep is an excellent breed with high meat and wool productivity and well adapted to harsh conditions. Nowadays, runs of homozygosity (ROHs) are considered a suitable approach for studying the genetic characteristics of farm animals. The aims of the study were to analyze the distribution of ROHs, describe autozygosity, and detect genomic regions with high ROH islands. In this study, we genotyped a total of 281 Kazakh meat-wool sheep using the Illumina iScan® system (EquipNet, Canton, MA, USA) via Ovine SNP50 BeadChip array. As a results, a total of 15,069 ROHs were found in the three Kazakh meat-wool sheep populations. The mean number of ROH per animal across populations varied from 40.3 (POP1) to 42.2 (POP2) in the category 1+ Mb. Furthermore, the number of ROH per animal in ROH1-2 Mb were much higher than ROH2-4 Mb and ROH8-16 Mb in the three sheep populations. Most of individuals had small number of ROH>16 Mb. The highest and lowest genomic inbreeding coefficient values were observed in POP2 and POP3, respectively. The estimated FROH presented the impact that recent inbreeding has had in all sheep populations. Furthermore, a set of interesting candidate genes (BMP2, BMPR2, BMPRIB, CLOCK, KDM2B, TIAM1, TASP1, MYBPC1, MYOM1, and CACNA2D1), which are related to the productive traits, were found. Collectively, these findings will contribute to the breeding and conservation strategies of the Kazakh meat-wool sheep breed.
Collapse
Affiliation(s)
- Makpal Amandykova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
| | - Zhanerke Akhatayeva
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Altynay Kozhakhmet
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Tilek Kapassuly
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
| | - Zarina Orazymbetova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
| | - Kanagat Yergali
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kadyrzhan Khamzin
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kairat Iskakov
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| | - Kairat Dossybayev
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan; (M.A.); (Z.A.); (A.K.); (T.K.); (Z.O.); (K.Y.); (K.I.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050042, Kazakhstan
- Laboratory of Molecular Genetics, Kazakh Research Institute of Livestock and Fodder Production, Zhandosov Str. 51, Almaty 050035, Kazakhstan;
| |
Collapse
|
10
|
Lindsay-McGee V, Sanchez-Molano E, Banos G, Clark EL, Piercy RJ, Psifidi A. Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach. Genet Sel Evol 2023; 55:60. [PMID: 37592264 PMCID: PMC10436415 DOI: 10.1186/s12711-023-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The Connemara pony (CP) is an Irish breed that has experienced varied selection by breeders over the last fifty years, with objectives ranging from the traditional hardy pony to an agile athlete. We compared these ponies with well-studied Warmblood (WB) horses, which are also selectively bred for athletic performance but with a much larger census population. Using genome-wide single nucleotide polymorphism (SNP) and whole-genome sequencing data from 116 WB (94 UK WB and 22 European WB) and 36 CP (33 UK CP and 3 US CP), we studied the genomic diversity, inbreeding and population structure of these breeds. RESULTS The k-means clustering approach divided both the CP and WB populations into four genetic groups, among which the CP genetic group 1 (C1) associated with non-registered CP, C4 with US CP, WB genetic group 1 (W1) with Holsteiners, and W3 with Anglo European and British WB. Maximum and mean linkage disequilibrium (LD) varied significantly between the two breeds (mean from 0.077 to 0.130 for CP and from 0.016 to 0.370 for WB), but the rate of LD decay was generally slower in CP than WB. The LD block size distribution peaked at 225 kb for all genetic groups, with most of the LD blocks not exceeding 1 Mb. The top 0.5% harmonic mean pairwise fixation index (FST) values identified ontology terms related to cancer risk when the four CP genetic groups were compared. The four CP genetic groups were less inbred than the WB genetic groups, but C2, C3 and C4 had a lower proportion of shorter runs of homozygosity (ROH) (74 to 76% < 4 Mb) than the four WB genetic groups (80 to 85% < 4 Mb), indicating more recent inbreeding. The CP and WB genetic groups had a similar ratio of effective number of breeders (Neb) to effective population size (Ne). CONCLUSIONS Distinct genetic groups of individuals were revealed within each breed, and in WB these genetic groups reflected population substructure better than studbook or country of origin. Ontology terms associated with immune and inflammatory responses were identified from the signatures of selection between CP genetic groups, and while CP were less inbred than WB, the evidence pointed to a greater degree of recent inbreeding. The ratio of Neb to Ne was similar in CP and WB, indicating the influence of popular sires is similar in CP and WB.
Collapse
Affiliation(s)
- Victoria Lindsay-McGee
- Royal Veterinary College, London, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
11
|
Mousavi SF, Razmkabir M, Rostamzadeh J, Seyedabadi HR, Naboulsi R, Petersen JL, Lindgren G. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran. Heredity (Edinb) 2023:10.1038/s41437-023-00624-7. [PMID: 37308718 PMCID: PMC10382556 DOI: 10.1038/s41437-023-00624-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023] Open
Abstract
Indigenous Iranian horse breeds were evolutionarily affected by natural and artificial selection in distinct phylogeographic clades, which shaped their genomes in several unique ways. The aims of this study were to evaluate the genetic diversity and genomewide selection signatures in four indigenous Iranian horse breeds. We evaluated 169 horses from Caspian (n = 21), Turkmen (n = 29), Kurdish (n = 67), and Persian Arabian (n = 52) populations, using genomewide genotyping data. The contemporary effective population sizes were 59, 98, 102, and 113 for Turkmen, Caspian, Persian Arabian, and Kurdish breeds, respectively. By analysis of the population genetic structure, we classified the north breeds (Caspian and Turkmen) and west/southwest breeds (Persian Arabian and Kurdish) into two phylogeographic clades reflecting their geographic origin. Using the de-correlated composite of multiple selection signal statistics based on pairwise comparisons, we detected a different number of significant SNPs under putative selection from 13 to 28 for the six pairwise comparisons (FDR < 0.05). The identified SNPs under putative selection coincided with genes previously associated with known QTLs for morphological, adaptation, and fitness traits. Our results showed HMGA2 and LLPH as strong candidate genes for height variation between Caspian horses with a small size and the other studied breeds with a medium size. Using the results of studies on human height retrieved from the GWAS catalog, we suggested 38 new putative candidate genes under selection. These results provide a genomewide map of selection signatures in the studied breeds, which represent valuable information for formulating genetic conservation and improved breeding strategies for the breeds.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mousavi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Jalal Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Hamid-Reza Seyedabadi
- Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Rakan Naboulsi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | | | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
12
|
Mastrangelo S, Ben-Jemaa S, Perini F, Cendron F, Biscarini F, Lasagna E, Penasa M, Cassandro M. Genome-wide mapping of signatures of selection using a high-density array identified candidate genes for growth traits and local adaptation in chickens. Genet Sel Evol 2023; 55:20. [PMID: 36959552 PMCID: PMC10035218 DOI: 10.1186/s12711-023-00790-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Availability of single nucleotide polymorphism (SNP) genotyping arrays and progress in statistical analyses have allowed the identification of genomic regions and genes under selection in chicken. In this study, SNP data from the 600 K Affymetrix chicken array were used to detect signatures of selection in 23 local Italian chicken populations. The populations were categorized into four groups for comparative analysis based on live weight (heavy vs light) and geographical area (Northern vs Southern Italy). Putative signatures of selection were investigated by combining three extended haplotype homozygosity (EHH) statistical approaches to quantify excess of haplotype homozygosity within (iHS) and between (Rsb and XP-EHH) groups. Presence of runs of homozygosity (ROH) islands was also analysed for each group. RESULTS After editing, 541 animals and 313,508 SNPs were available for statistical analyses. In total, 15 candidate genomic regions that are potentially under selection were detected among the four groups: eight within a group by iHS and seven by combining the results of Rsb and XP-EHH, which revealed divergent selection between the groups. The largest overlap between genomic regions identified to be under selection by the three approaches was on chicken chromosome 8. Twenty-one genomic regions were identified with the ROH approach but none of these overlapped with regions identified with the three EHH-derived statistics. Some of the identified regions under selection contained candidate genes with biological functions related to environmental stress, immune responses, and disease resistance, which indicate local adaptation of these chicken populations. CONCLUSIONS Compared to commercial lines, local populations are predominantly reared as backyard chickens, and thus, may have developed stronger resistance to environmental challenges. Our results indicate that selection can play an important role in shaping signatures of selection in local chicken populations and can be a starting point to identify gene mutations that could have a useful role with respect to climate change.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia
| | - Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy.
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 20133, Milan, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
- Federazione delle Associazioni Nazionali di Razza e Specie, 00187, Rome, Italy
| |
Collapse
|
13
|
The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India. Genes Genomics 2023; 45:813-825. [PMID: 36807878 DOI: 10.1007/s13258-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Genome-wide runs of homozygosity (ROH) are appropriate to estimate genomic inbreeding, determine population history, unravel the genetic architecture of complex traits and disorders. OBJECTIVE The study sought to investigate and compare the actual proportion of homozygosity or autozygosity in the genomes of progeny of four subtypes of first cousin mating in humans, using both pedigree and genomic measures for autosomes and sex chromosomes. METHODS For this purpose, Illumina Global Screening Array-24 v1.0 BeadChip followed by cyto-ROH analysis through Illumina Genome Studio was used to characterise the homozygosity in five participants from North Indian state (Uttar Pradesh). PLINK v.1.9 software was used to estimate the genomic inbreeding coefficients viz. ROH-based inbreeding estimate (FROH) and homozygous loci-based inbreeding estimate (FHOM). RESULTS A total of 133 ROH segments were detected with maximum number and genomic coverage in Matrilateral Parallel (MP) type and minimum in outbred individual. ROH pattern revealed that MP type has a higher degree of homozygosity than other subtypes. The comparison of FROH, FHOM, and pedigree-based inbreeding estimate (FPED) showed some difference in theoretical and realised proportion of homozygosity for sex-chromosomal loci but not for autosome for each type of consanguinity. CONCLUSIONS This is the very first study to compare and estimate the pattern of homozygosity among the kindreds of first cousin unions. However, a greater number of individuals from each type of marriage is required for statistical inference of no difference between theoretical and realized homozygosity among different degrees of inbreeding prevalent in humans worldwide.
Collapse
|
14
|
Gao C, Du W, Tian K, Wang K, Wang C, Sun G, Kang X, Li W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals (Basel) 2023; 13:ani13040599. [PMID: 36830386 PMCID: PMC9951684 DOI: 10.3390/ani13040599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
To achieve sustainable development of the poultry industry, the effective conservation of genetic resources has become increasingly important. In the present study, we systematically elucidated the population structure, conservation priority, and runs of homozygosity (ROH) patterns of Chinese native chicken breeds. We used a high-density genotyping dataset of 157 native chickens from eight breeds. The population structure showed different degrees of population stratification among the breeds. Chahua chicken was the most differentiated breed from the other breeds (Nei = 0.0813), and the Wannan three-yellow chicken (WanTy) showed the lowest degree of differentiation (Nei = 0.0438). On the basis of contribution priority, Xiaoshan chicken had the highest contribution to the total gene diversity (1.41%) and the maximum gene diversity of the synthetic population (31.1%). WanTy chicken showed the highest contribution to the total allelic diversity (1.31%) and the maximum allelic diversity of the syntenic population (17.0%). A total of 5242 ROH fragments and 5 ROH island regions were detected. The longest ROH fragment was 41.51 Mb. A comparison of the overlapping genomic regions between the ROH islands and QTLs in the quantitative trait loci (QTL) database showed that the annotated candidate genes were involved in crucial economic traits such as immunity, carcass weight, drumstick and leg muscle development, egg quality and egg production, abdominal fat precipitation, body weight, and feed intake. In conclusion, our findings revealed that Chahua, Xiaoshan, and WanTy should be the priority conservation breeds, which will help optimize the conservation and breeding programs for Chinese indigenous chicken breeds.
Collapse
Affiliation(s)
- Chaoqun Gao
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenping Du
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kaiyuan Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kejun Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiu Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guirong Sun
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| | - Wenting Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| |
Collapse
|
15
|
Gmel AI, Guichard M, Dainat B, Williams GR, Eynard S, Vignal A, Servin B, Neuditschko M. Identification of runs of homozygosity in Western honey bees ( Apis mellifera) using whole-genome sequencing data. Ecol Evol 2023; 13:e9723. [PMID: 36694553 PMCID: PMC9843643 DOI: 10.1002/ece3.9723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous segments that arise through the transmission of haplotypes that are identical by descent. The length and distribution of ROH segments provide insights into the genetic diversity of populations and can be associated with selection signatures. Here, we analyzed reconstructed whole-genome queen genotypes, from a pool-seq data experiment including 265 Western honeybee colonies from Apis mellifera mellifera and Apis mellifera carnica. Integrating individual ROH patterns and admixture levels in a dynamic population network visualization allowed us to ascertain major differences between the two subspecies. Within A. m. mellifera, we identified well-defined substructures according to the genetic origin of the queens. Despite the current applied conservation efforts, we pinpointed 79 admixed queens. Genomic inbreeding (F ROH) strongly varied within and between the identified subpopulations. Conserved A. m. mellifera from Switzerland had the highest mean F ROH (3.39%), while queens originating from a conservation area in France, which were also highly admixed, showed significantly lower F ROH (0.45%). The majority of A. m. carnica queens were also highly admixed, except 12 purebred queens with a mean F ROH of 2.33%. Within the breed-specific ROH islands, we identified 14 coding genes for A. m. mellifera and five for A. m. carnica, respectively. Local adaption of A. m. mellifera could be suggested by the identification of genes involved in the response to ultraviolet light (Crh-BP, Uvop) and body size (Hex70a, Hex70b), while the A. m. carnica specific genes Cpr3 and Cpr4 are most likely associated with the lighter striping pattern, a morphological phenotype expected in this subspecies. We demonstrated that queen genotypes derived from pooled workers are useful tool to unravel the population dynamics in A. mellifera and provide fundamental information to conserve native honey bees.
Collapse
Affiliation(s)
- Annik Imogen Gmel
- Animal GenoPhenomics, Animal Production Systems and Animal HealthAgroscopePosieuxSwitzerland
| | - Matthieu Guichard
- Animal GenoPhenomics, Animal Production Systems and Animal HealthAgroscopePosieuxSwitzerland
- Swiss Bee Research CentreAgroscopeLiebefeldSwitzerland
| | | | | | - Sonia Eynard
- GenPhySEINRAE, INPT, INPENVTUniversité de ToulouseCastanet‐TolosanFrance
- UMT PrADEProtection des Abeilles Dans L'EnvironnementAvignonFrance
| | - Alain Vignal
- GenPhySEINRAE, INPT, INPENVTUniversité de ToulouseCastanet‐TolosanFrance
- UMT PrADEProtection des Abeilles Dans L'EnvironnementAvignonFrance
| | - Bertrand Servin
- GenPhySEINRAE, INPT, INPENVTUniversité de ToulouseCastanet‐TolosanFrance
- UMT PrADEProtection des Abeilles Dans L'EnvironnementAvignonFrance
| | | | - Markus Neuditschko
- Animal GenoPhenomics, Animal Production Systems and Animal HealthAgroscopePosieuxSwitzerland
| |
Collapse
|
16
|
Detection of Selection Signatures in Anqing Six-End-White Pigs Based on Resequencing Data. Genes (Basel) 2022; 13:genes13122310. [PMID: 36553577 PMCID: PMC9777694 DOI: 10.3390/genes13122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
As a distinguished Chinese indigenous pig breed that exhibits disease resistance and high meat quality, the Anqing six-end-white (AQ) pig represents a valuable germplasm resource for improving the quality of the pig breeding industry. In this study, 24 AQ pigs that were distantly blood-related and 6 Asian Wild Boar (AWB) were selected for 10× deep-genome resequencing. The signatures of the selection were analyzed to explore the genetic basis of their germplasm characteristics and to identify excellent germplasm-related functional genes based on NGS data. A total of 49,289,052 SNPs and 6,186,123 indels were detected across the genome in 30 pigs. Most of the genetic variations were synonym mutations and existed in the intergenic region. We identified 275 selected regions (top 1%) harboring 85 genes by applying a crossover approach based on genetic differentiation (FST) and polymorphism levels (π ratio). Some genes were found to be positively selected in AQ pigs' breeding. The SMPD4 and DDX18 genes were involved in the immune response to pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV). The BCL6 and P2RX6 genes were involved in biological regulation of immune T cells and phagocytes. The SLC7A4 and SPACA4 genes were related to reproductive performance. The MSTN and HIF1A genes were related to fat deposition and muscle development. Moreover, 138 overlapping regions were detected in selected regions and ROH islands of AQ pigs. Additionally, we found that the QTLs with the most overlapping regions were related to back fat thickness, meat color, pH value, fatty acid content, immune cells, parasitic immunity, and bacterial immunity. Based on functional enrichment analysis and QTLs mapping, we conducted further research on the molecular genetic basis of germplasm traits (disease resistance and excellent meat quality). These results are a reliable resource for conserving germplasm resources and exploiting molecular markers of AQ pigs.
Collapse
|
17
|
Todd ET, Tonasso-Calvière L, Chauvey L, Schiavinato S, Fages A, Seguin-Orlando A, Clavel P, Khan N, Pérez Pardal L, Patterson Rosa L, Librado P, Ringbauer H, Verdugo M, Southon J, Aury JM, Perdereau A, Vila E, Marzullo M, Prato O, Tecchiati U, Bagnasco Gianni G, Tagliacozzo A, Tinè V, Alhaique F, Cardoso JL, Valente MJ, Telles Antunes M, Frantz L, Shapiro B, Bradley DG, Boulbes N, Gardeisen A, Horwitz LK, Öztan A, Arbuckle BS, Onar V, Clavel B, Lepetz S, Vahdati AA, Davoudi H, Mohaseb A, Mashkour M, Bouchez O, Donnadieu C, Wincker P, Brooks SA, Beja-Pereira A, Wu DD, Orlando L. The genomic history and global expansion of domestic donkeys. Science 2022; 377:1172-1180. [PMID: 36074859 DOI: 10.1126/science.abo3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.
Collapse
Affiliation(s)
- Evelyn T Todd
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Laure Tonasso-Calvière
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Antoine Fages
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Pierre Clavel
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Naveed Khan
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France.,Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Lucía Pérez Pardal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
| | | | - Pablo Librado
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Marta Verdugo
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - John Southon
- Earth System Science Department, University of California, Irvine, CA 92697, USA
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Aude Perdereau
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Emmanuelle Vila
- Laboratoire Archéorient, Université Lyon 2, Lyon 69007, France
| | - Matilde Marzullo
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Ornella Prato
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Umberto Tecchiati
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | - Giovanna Bagnasco Gianni
- Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, Milan 20122, Italy
| | | | - Vincenzo Tinè
- Soprintendenza archeologia belle arti e paesaggio per le province di Verona, Rovigo e Vicenza, Verona 37121, Italy
| | | | - João Luís Cardoso
- ICArEHB, Campus de Gambelas, University of Algarve, Faro 8005-139, Portugal.,Universidade Aberta, Lisbon 1269-001, Portugal
| | - Maria João Valente
- Faculdade de Ciências Humanas e Sociais, Centro de Estudos de Arqueologia, Artes e Ciências do Património, Universidade do Algarve, Faro 8000-117, Portugal
| | - Miguel Telles Antunes
- Centre for Research on Science and Geological Engineering, Universidade NOVA de Lisboa, Lisbon 1099-085, Portugal
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich 80539, Germany.,School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, United Kingdom
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA 95064, USA
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Nicolas Boulbes
- Institut de Paléontologie Humaine, Fondation Albert Ier, Paris / UMR 7194 HNHP, MNHN-CNRS-UPVD / EPCC Centre Européen de Recherche Préhistorique, Tautavel 66720, France
| | - Armelle Gardeisen
- Archéologie des Sociétés Méditéranéennes, Université Paul Valéry - Site Saint-Charles 2, Montpellier 34090, France
| | - Liora Kolska Horwitz
- National Natural History Collections, Edmond J. Safra Campus, Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| | - Aliye Öztan
- Archaeology Department, Ankara University, Ankara 06100, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vedat Onar
- Osteoarchaeology Practice and Research Center and Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
| | - Benoît Clavel
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Sébastien Lepetz
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Ali Akbar Vahdati
- Provincial Office of the Iranian Center for Cultural Heritage, Handicrafts and Tourism Organisation, North Khorassan, Bojnord 9416745775, Iran
| | - Hossein Davoudi
- Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Azadeh Mohaseb
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran
| | - Marjan Mashkour
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris 75005, France.,Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of Tehran, Tehran CP1417634934, Iran.,Department of Osteology, National Museum of Iran, Tehran 1136918111, Iran
| | - Olivier Bouchez
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Cécile Donnadieu
- GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, GET - Plateforme Génome & Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castaneet-Tolosan Cedex 31326, France
| | - Patrick Wincker
- Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris-Saclay, Evry 91042, France
| | - Samantha A Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal.,DGAOT, Faculty of Sciences, Universidade do Porto, Porto 4169-007, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Vairão 4485-646, Portugal
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France
| |
Collapse
|
18
|
Berghöfer J, Khaveh N, Mundlos S, Metzger J. Simultaneous testing of rule- and model-based approaches for runs of homozygosity detection opens up a window into genomic footprints of selection in pigs. BMC Genomics 2022; 23:564. [PMID: 35933356 PMCID: PMC9357325 DOI: 10.1186/s12864-022-08801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Past selection events left footprints in the genome of domestic animals, which can be traced back by stretches of homozygous genotypes, designated as runs of homozygosity (ROHs). The analysis of common ROH regions within groups or populations displaying potential signatures of selection requires high-quality SNP data as well as carefully adjusted ROH-defining parameters. In this study, we used a simultaneous testing of rule- and model-based approaches to perform strategic ROH calling in genomic data from different pig populations to detect genomic regions under selection for specific phenotypes. RESULTS Our ROH analysis using a rule-based approach offered by PLINK, as well as a model-based approach run by RZooRoH demonstrated a high efficiency of both methods. It underlined the importance of providing a high-quality SNP set as input as well as adjusting parameters based on dataset and population for ROH calling. Particularly, ROHs ≤ 20 kb were called in a high frequency by both tools, but to some extent covered different gene sets in subsequent analysis of ROH regions common for investigated pig groups. Phenotype associated ROH analysis resulted in regions under potential selection characterizing heritage pig breeds, known to harbour a long-established breeding history. In particular, the selection focus on fitness-related traits was underlined by various ROHs harbouring disease resistance or tolerance-associated genes. Moreover, we identified potential selection signatures associated with ear morphology, which confirmed known candidate genes as well as uncovered a missense mutation in the ABCA6 gene potentially supporting ear cartilage formation. CONCLUSIONS The results of this study highlight the strengths and unique features of rule- and model-based approaches as well as demonstrate their potential for ROH analysis in animal populations. We provide a workflow for ROH detection, evaluating the major steps from filtering for high-quality SNP sets to intersecting ROH regions. Formula-based estimations defining ROHs for rule-based method show its limits, particularly for efficient detection of smaller ROHs. Moreover, we emphasize the role of ROH detection for the identification of potential footprints of selection in pigs, displaying their breed-specific characteristics or favourable phenotypes.
Collapse
Affiliation(s)
- Jan Berghöfer
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nadia Khaveh
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Mundlos
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, BCRT, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
19
|
Colpitts J, McLoughlin PD, Poissant J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genomics 2022; 23:501. [PMID: 35820826 PMCID: PMC9275264 DOI: 10.1186/s12864-022-08729-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding inbreeding and its impact on fitness and evolutionary potential is fundamental to species conservation and agriculture. Long stretches of homozygous genotypes, known as runs of homozygosity (ROH), result from inbreeding and their number and length can provide useful population-level information on inbreeding characteristics and locations of signatures of selection. However, the utility of ROH for conservation is limited for natural populations where baseline data and genomic tools are lacking. Comparing ROH metrics in recently feral vs. domestic populations of well understood species like the horse could provide information on the genetic health of those populations and offer insight into how such metrics compare between managed and unmanaged populations. Here we characterized ROH, inbreeding coefficients, and ROH islands in a feral horse population from Sable Island, Canada, using ~41 000 SNPs and contrasted results with those from 33 domestic breeds to assess the impacts of isolation on ROH abundance, length, distribution, and ROH islands. RESULTS ROH number, length, and ROH-based inbreeding coefficients (FROH) in Sable Island horses were generally greater than in domestic breeds. Short runs, which typically coalesce many generations prior, were more abundant than long runs in all populations, but run length distributions indicated more recent population bottlenecks in Sable Island horses. Nine ROH islands were detected in Sable Island horses, exhibiting very little overlap with those found in domestic breeds. Gene ontology (GO) enrichment analysis for Sable Island ROH islands revealed enrichment for genes associated with 3 clusters of biological pathways largely associated with metabolism and immune function. CONCLUSIONS This study indicates that Sable Island horses tend to be more inbred than their domestic counterparts and that most of this inbreeding is due to historical bottlenecks and founder effects rather than recent mating between close relatives. Unique ROH islands in the Sable Island population suggest adaptation to local selective pressures and/or strong genetic drift and highlight the value of this population as a reservoir of equine genetic variation. This research illustrates how ROH analyses can be applied to gain insights into the population history, genetic health, and divergence of wild or feral populations of conservation concern.
Collapse
Affiliation(s)
- Julie Colpitts
- Department of Biology, University of Saskatchewan, Saskatchewan, Canada.
| | | | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Salek Ardestani S, Zandi MB, Vahedi SM, Mahboudi H, Mahboudi F, Meskoob A. Detection of common copy number of variation underlying selection pressure in Middle Eastern horse breeds using whole-genome sequence data. J Hered 2022; 113:421-430. [PMID: 35605262 DOI: 10.1093/jhered/esac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dareshouri, Arabian, and Akhal-Teke are three Middle Eastern horse breeds that have been selected for endurance and adaptation to harsh climates. Deciphering the genetic characteristics of these horses by tracing selection footprints and copy number of variations will be helpful in improving our understanding of equine breeds' development and adaptation. For this purpose, we sequenced the whole-genome of four Dareshouri horses using Illumina Hiseq panels and compared them with publicly available whole-genome sequences of Arabian (n=3) and Akhal-Teke (n=3) horses . Three tests of FLK, hapFLK, and pooled heterozygosity were applied using a sliding window (window size=100kb, step size=50kb) approach to detect putative selection signals. Copy number variation analysis was applied to investigate copy number of variants (CNVs), and the results were used to suggest selection signatures involving CNVs. Whole-genome sequencing demonstrated 8,837,950 single nucleotide polymorphisms (SNPs) in autosomal chromosomes. We suggested 58 genes and three quantitative trait loci (QTLs), including some related to horse gait, insect bite hypersensitivity, and withers height, based on selective signals detected by adjusted p-value of Mahalanobis distance based on the rank-based P-values (Md-rank-P) method. We proposed 12 genomic regions under selection pressure involving CNVs which were previously reported to be associated with metabolism energy (SLC5A8), champagne dilution in horses (SLC36A1), and synthesis of polyunsaturated fatty acids (FAT2). Only 10 Middle Eastern horses were tested in this study; therefore, the conclusions are speculative. Our findings are useful to better understanding the evolution and adaptation of Middle Eastern horse breeds.
Collapse
Affiliation(s)
- Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Hossein Mahboudi
- Department of Biotechnology, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|
21
|
Dong H, Dong Z, Wang F, Wang G, Luo X, Lei C, Chen J. Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids. Front Genet 2022; 13:818420. [PMID: 35646088 PMCID: PMC9135160 DOI: 10.3389/fgene.2022.818420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The diversity of livestock coat color results from human positive selection and is an indispensable part of breed registration. As an important biodiversity resource, Asiatic wild ass has many special characteristics, including the most visualized feature, its yellowish-brown coat color, and excellent adaptation. To explore the genetic mechanisms of phenotypic characteristics in Asiatic wild ass and its hybrids, we resequenced the whole genome of one Mongolian Kulan (a subspecies of Asiatic wild ass) and 29 Kulan hybrids (Mongolian Kulan ♂×Xinjiang♀), and the ancestor composition indicated the true lineage of the hybrids. XP-EHH (Cross Population Extended Haplotype Homozygosity), θπ-ratio (Nucleotide Diversity Ratio), CLR (Composite Likelihood Ratio) and θπ (Nucleotide Diversity) methods were used to detect the candidate regions of positive selection in Asiatic wild ass and its hybrids. Several immune genes (DEFA1, DEFA5, DEFA7, GIMAP4, GIMAP1, IGLC1, IGLL5, GZMB and HLA) were observed by the CLR and θπ methods. XP-EHH and θπ-ratio revealed that these genes are potentially responsible for coat color (KITLG) and meat quality traits (PDE1B and MYLK2). Furthermore, the heatmap was able to show the clear difference in the haplotype of the KITLG gene between the Kulan hybrids and Asiatic wild ass group and the Guanzhong black donkey group, which is a powerful demonstration of the key role of KITLG in donkey color. Therefore, our study may provide new insights into the genetic basis of coat color, meat quality traits and immunity of Asiatic wild ass and its hybrids.
Collapse
Affiliation(s)
- Hong Dong
- College of Animal Science and Technology, SHIHEZI University, Shihezi, China
| | - Zheng Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jingbo Chen
- College of Animal Science and Technology, SHIHEZI University, Shihezi, China
- *Correspondence: Jingbo Chen,
| |
Collapse
|
22
|
Criscione A, Mastrangelo S, D'Alessandro E, Tumino S, Di Gerlando R, Zumbo A, Marletta D, Bordonaro S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern. J Anim Breed Genet 2022; 139:540-555. [PMID: 35445758 PMCID: PMC9541879 DOI: 10.1111/jbg.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This study aimed to investigate the genetic diversity, population structure and the pattern of autozygosity of Sicilian horse populations using genome‐wide single‐nucleotide polymorphism (SNP) data generated with the Illumina Equine SNP70 array. The genotyping data of 17 European and Middle East populations were also included in the study. The patterns of genetic differentiation, model‐based clustering and Neighbour‐Net showed the expected positioning of Sicilian populations within the wide analysed framework and the close connections between the Purosangue Orientale Siciliano and the Arab as well as between Sanfratellano, Siciliano and Maremmano. The highest expected heterozygosity (He) and contemporary effective population size (cNe) were reported in Siciliano (He = 0.323, cNe = 397), and the lowest were reported in Purosangue Orientale Siciliano (He = 0.277, cNe = 10). The analysis of the runs of homozygosity and the relative derived inbreeding revealed high internal homogeneity in Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and high heterogeneity in the Siciliano population. The genome‐wide SNP analysis showed the selective pressure on Purosangue Orientale Siciliano towards traits related to endurance performance. Our results underline the importance of planning adequate conservation and exploitation programmes to reduce the level of inbreeding and, therefore, the loss of genetic diversity.
Collapse
Affiliation(s)
- Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Alessandro Zumbo
- Dipartimento di Scienze Veterinarie, Università di Messina, Messina, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Salvatore Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| |
Collapse
|
23
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
24
|
Petrelli S, Buglione M, Maselli V, Troiano C, Larson G, Frantz L, Manin A, Ricca E, Baccigalupi L, Wright D, Pietri C, Fulgione D. Population genomic, olfactory, dietary, and gut microbiota analyses demonstrate the unique evolutionary trajectory of feral pigs. Mol Ecol 2022; 31:220-237. [PMID: 34676935 PMCID: PMC11497273 DOI: 10.1111/mec.16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.
Collapse
Affiliation(s)
- Simona Petrelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Maria Buglione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Valeria Maselli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Claudia Troiano
- Department of HumanitiesUniversity of Naples Federico IINaplesItaly
| | - Greger Larson
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Laurent Frantz
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Aurelie Manin
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Ezio Ricca
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| | - Loredana Baccigalupi
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology GroupLinköping UniversityLinköpingSweden
| | - Christian Pietri
- Fédération Départementale des Chasseurs de Haute‐Corse (FDCHC)Résidence Nouvelle‐CornicheSt Joseph, BastiaFrance
| | - Domenico Fulgione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| |
Collapse
|
25
|
Kava R, Peripolli E, Berton MP, Lemos M, Lobo RB, Stafuzza NB, Pereira AS, Baldi F. Genome-wide structural variations in Brazilian Senepol cattle, a tropically adapted taurine breed. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Liu D, Chen Z, Zhao W, Guo L, Sun H, Zhu K, Liu G, Shen X, Zhao X, Wang Q, Ma P, Pan Y. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genomics 2021; 22:747. [PMID: 34654366 PMCID: PMC8520274 DOI: 10.1186/s12864-021-08042-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Over several decades, a wide range of natural and artificial selection events in response to subtropical environments, intensive pasture and intensive feedlot systems have greatly changed the customary behaviour, appearance, and important economic traits of Shanghai Holstein cattle. In particular, the longevity of the Shanghai Holstein cattle population is generally short, approximately the 2nd to 3rd lactation. In this study, two complementary approaches, integrated haplotype score (iHS) and runs of homozygosity (ROH), were applied for the detection of selection signatures within the genome using genotyping by genome-reduced sequence data from 1092 cows. Results In total, 101 significant iHS genomic regions containing selection signatures encompassing a total of 256 candidate genes were detected. There were 27 significant |iHS| genomic regions with a mean |iHS| score > 2. The average number of ROH per individual was 42.15 ± 25.47, with an average size of 2.95 Mb. The length of 78 % of the detected ROH was within the range of 1–2 MB and 2–4 MB, and 99 % were shorter than 8 Mb. A total of 168 genes were detected in 18 ROH islands (top 1 %) across 16 autosomes, in which each SNP showed a percentage of occurrence > 30 %. There were 160 and 167 genes associated with the 52 candidate regions within health-related QTL intervals and 59 candidate regions within reproduction-related QTL intervals, respectively. Annotation of the regions harbouring clustered |iHS| signals and candidate regions for ROH revealed a panel of interesting candidate genes associated with adaptation and economic traits, such as IL22RA1, CALHM3, ITGA9, NDUFB3, RGS3, SOD2, SNRPA1, ST3GAL4, ALAD, EXOSC10, and MASP2. In a further step, a total of 1472 SNPs in 256 genes were matched with 352 cis-eQTLs in 21 tissues and 27 trans-eQTLs in 6 tissues. For SNPs located in candidate regions for ROH, a total of 108 cis-eQTLs in 13 tissues and 4 trans-eQTLs were found for 1092 SNPs. Eighty-one eGenes were significantly expressed in at least one tissue relevant to a trait (P value < 0.05) and matched the 256 genes detected by iHS. For the 168 significant genes detected by ROH, 47 gene-tissue pairs were significantly associated with at least one of the 37 traits. Conclusions We provide a comprehensive overview of selection signatures in Shanghai Holstein cattle genomes by combining iHS and ROH. Our study provides a list of genes associated with immunity, reproduction and adaptation. For functional annotation, the cGTEx resource was used to interpret SNP-trait associations. The results may facilitate the identification of genes relevant to important economic traits and can help us better understand the biological processes and mechanisms affected by strong ongoing natural or artificial selection in livestock populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08042-x.
Collapse
Affiliation(s)
- Dengying Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhenliang Chen
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Wei Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Longyu Guo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Xiuping Shen
- Shanghai Agricultural Development Promotion Center, 200335, Shanghai, PR China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China.
| |
Collapse
|
27
|
Selli A, Ventura RV, Fonseca PAS, Buzanskas ME, Andrietta LT, Balieiro JCC, Brito LF. Detection and Visualization of Heterozygosity-Rich Regions and Runs of Homozygosity in Worldwide Sheep Populations. Animals (Basel) 2021; 11:2696. [PMID: 34573664 PMCID: PMC8472390 DOI: 10.3390/ani11092696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.
Collapse
Affiliation(s)
- Alana Selli
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Ricardo V. Ventura
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marcos E. Buzanskas
- Department of Animal Science, Federal University of Paraíba, João Pessoa 58051-900, Paraiba, Brazil;
| | - Lucas T. Andrietta
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Júlio C. C. Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
28
|
Peng Q, Ehlers CL. Long tracks of homozygosity predict the severity of alcohol use disorders in an American Indian population. Mol Psychiatry 2021; 26:2200-2211. [PMID: 33398086 PMCID: PMC8254832 DOI: 10.1038/s41380-020-00989-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Runs of homozygosity (ROH) arise when an individual inherits two copies of the same haplotype segment. While ROH are ubiquitous across human populations, Native populations-with shared parental ancestry arising from isolation and endogamy-can carry a substantial enrichment for ROH. We have been investigating genetic and environmental risk factors for alcohol use disorders (AUD) in a group of American Indians (AI) who have higher rates of AUD than the general U. S. population. Here we explore whether ROH might be associated with incidence and severity of AUD in this admixed AI population (n = 742) that live on geographically contiguous reservations, using low-coverage whole genome sequences. We have found that the genomic regions in the ROH that were identified in this population had significantly elevated American Indian heritage compared with the rest of the genome. Increased ROH abundance and ROH burden are likely risk factors for AUD severity in this AI population, especially in those diagnosed with severe and moderate AUD. The association between ROH and AUD was mostly driven by ROH of moderate lengths between 1 and 2 Mb. An ROH island on chromosome 1p32.3 and a rare ROH pool on chromosome 3p12.3 were found to be significantly associated with AUD severity. They contain genes involved in lipid metabolism, oxidative stress and inflammatory responses; and OSBPL9 was found to reside on the consensus part of the ROH island. These data demonstrate that ROH are associated with risk for AUD severity in this AI population.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Wu X, Zhou R, Zhang W, Cao B, Xia J, Caiyun W, Zhang X, Chu M, Yin Z, Ding Y. Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs. Anim Biosci 2021; 34:1895-1902. [PMID: 33705632 PMCID: PMC8563231 DOI: 10.5713/ab.20.0679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/07/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that can reveal inbreeding levels, selection pressure, and mating schemes. In this study, ROHs were evaluated in Wannan Black pigs to assess the inbreeding levels and the genome regions with high ROH frequency. Methods In a previous study, we obtained 501.52 GB of raw data from resequencing (10×) of the genome and identified 21,316,754 single-nucleotide variants in 20 Wannan Black pig samples. We investigated the number, length, and frequency of ROH using resequencing data to characterize the homozygosity in Wannan Black pigs and identified genomic regions with high ROH frequencies. Results In this work, 1,813 ROHs (837 ROHs in 100 to 500 kb, 449 ROHs in 500 to 1,000 kb, 527 ROHs in >1,000 kb) were identified in all samples, and the average genomic inbreeding coefficient (FROH) in Wannan Black pigs was 0.5234. Sixty-one regions on chromosomes 2, 3, 7, 8, 13, 15, and 16 harbored ROH islands. In total, 105 genes were identified in 42 ROH islands, among which some genes were related to production traits. Conclusion This is the first study to identify ROH across the genome of Wannan Black pigs, the Chinese native breed of the Anhui province. Overall, Wannan Black pigs have high levels of inbreeding due to the influence of ancient and recent inbreeding due to the genome. These findings are a reliable resource for future studies and contribute to save and use the germplasm resources of Wannan Black pigs.
Collapse
Affiliation(s)
- Xudong Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Wei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, P.R. China
| | - Bangji Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Jing Xia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Wang Caiyun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing,100193, P. R. China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China.,Anhui province key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| |
Collapse
|
30
|
Bizarria Dos Santos W, Pimenta Schettini G, Fonseca MG, Pereira GL, Loyola Chardulo LA, Rodrigues Machado Neto O, Baldassini WA, Nunes de Oliveira H, Abdallah Curi R. Fine-scale estimation of inbreeding rates, runs of homozygosity and genome-wide heterozygosity levels in the Mangalarga Marchador horse breed. J Anim Breed Genet 2021; 138:161-173. [PMID: 32949478 DOI: 10.1111/jbg.12508] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
With the availability of high-density SNP panels and the establishment of approaches for characterizing homozygosity and heterozygosity sites, it is possible to access fine-scale information regarding genomes, providing more than just comparisons of different inbreeding coefficients. This is the first study that seeks to access such information for the Mangalarga Marchador (MM) horse breed on a genomic scale. To this end, we aimed to assess inbreeding levels using different coefficients, as well as to characterize homozygous and heterozygous runs in the population. Using Axiom ® Equine Genotyping Array-670k SNP (Thermo Fisher), 192 horses were genotyped. Our results showed different estimates: inbreeding from genomic coefficients (FROH ) = 0.16; pedigree-based (FPED ) = 0.008; and a method based on excess homozygosity (FHOM ) = 0.010. The correlations between the inbreeding coefficients were low to moderate, and some comparisons showed negative correlations, being practically null. In total, 85,295 runs of homozygosity (ROH) and 10,016 runs of heterozygosity (ROHet) were characterized for the 31 horse autosomal chromosomes. The class with the highest percentage of ROH was 0-2 Mbps, with 92.78% of the observations. In the ROHet results, only the 0-2 class presented observations, with chromosome 11 highlighted in a region with high genetic variability. Three regions from the ROHet analyses showed genes with known functions: tripartite motif-containing 37 (TRIM37), protein phosphatase, Mg2+ /Mn2+ dependent 1E (PPM1E) and carbonic anhydrase 10 (CA10). Therefore, our findings suggest moderate inbreeding, possibly attributed to breed formation, annulling possible recent inbreeding. Furthermore, regions with high variability in the MM genome were identified (ROHet), associated with the recent selection and important events in the development and performance of MM horses over generations.
Collapse
Affiliation(s)
| | - Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Guilherme Luis Pereira
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | - Luis Artur Loyola Chardulo
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | | | - Welder Angelo Baldassini
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | - Henrique Nunes de Oliveira
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| |
Collapse
|
31
|
Laseca N, Anaya G, Peña Z, Pirosanto Y, Molina A, Demyda Peyrás S. Impaired Reproductive Function in Equines: From Genetics to Genomics. Animals (Basel) 2021; 11:393. [PMID: 33546520 PMCID: PMC7913728 DOI: 10.3390/ani11020393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
Fertility is one of the key factors in the economic and productive success of the equine industry. Despite this, studies on the genetic causes affecting reproductive performance are scarce, especially in mares, where the genetic architecture of the reproductive traits is extremely complex. Today, with the increasing availability of new genomic methodologies for this species, we are presented with an interesting opportunity to understand the genetic basis of equine reproductive disorders. These include, among others, novel techniques for detecting chromosomal abnormalities, whose association with infertility in horses was established over 50 years ago; new sequencing technologies permitting an accurate detection of point mutations influencing fertility, as well as the study of inbreeding and molecular homozygosity, which has been widely suggested as one of the main causes of low reproductive performance in horses. Finally, over the last few years, reproductive performance has also been associated with copy number variants and candidate genes detected by genome-wide association studies on fertility traits. However, such studies are still scarce, probably because they depend on the existence of large and accurate phenotypic datasets of reproductive and/or fertility traits, which are still difficult to obtain in equines.
Collapse
Affiliation(s)
- Nora Laseca
- Departamento de genética, Universidad de Córdoba, Campus de Rabanales Ctra, Madrid-Cádiz, km 396, 14071 Córdoba, Spain; (N.L.); (G.A.); (Z.P.); (A.M.)
| | - Gabriel Anaya
- Departamento de genética, Universidad de Córdoba, Campus de Rabanales Ctra, Madrid-Cádiz, km 396, 14071 Córdoba, Spain; (N.L.); (G.A.); (Z.P.); (A.M.)
| | - Zahira Peña
- Departamento de genética, Universidad de Córdoba, Campus de Rabanales Ctra, Madrid-Cádiz, km 396, 14071 Córdoba, Spain; (N.L.); (G.A.); (Z.P.); (A.M.)
| | - Yamila Pirosanto
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata 1900, Argentina;
- Consejo Superior de Investigaciones Científicas y Tecnológicas (CONICET), CCT-La Plata, La Plata 1900, Argentina
| | - Antonio Molina
- Departamento de genética, Universidad de Córdoba, Campus de Rabanales Ctra, Madrid-Cádiz, km 396, 14071 Córdoba, Spain; (N.L.); (G.A.); (Z.P.); (A.M.)
| | - Sebastián Demyda Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata 1900, Argentina;
- Consejo Superior de Investigaciones Científicas y Tecnológicas (CONICET), CCT-La Plata, La Plata 1900, Argentina
| |
Collapse
|
32
|
Eydivandi S, Roudbar MA, Ardestani SS, Momen M, Sahana G. A selection signatures study among Middle Eastern and European sheep breeds. J Anim Breed Genet 2021; 138:574-588. [PMID: 33453096 DOI: 10.1111/jbg.12536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 01/26/2023]
Abstract
Selection, both natural and artificial, leaves patterns on the genome during domestication of animals and leads to changes in allele frequencies among populations. Detecting genomic regions influenced by selection in livestock may assist in understanding the processes involved in genome evolution and discovering genomic regions related to traits of economic and ecological interests. In the current study, genetic diversity analyses were conducted on 34,206 quality-filtered SNP positions from 450 individuals in 15 sheep breeds, including six indigenous breeds from the Middle East, namely Iranian Balouchi, Afshari, Moghani, Qezel, Karakas and Norduz, and nine breeds from Europe, namely East Friesian Sheep, Ile de France, Mourerous, Romane, Swiss Mirror, Spaelsau, Suffolk, Comisana and Engadine Red Sheep. The SNP genotype data generated by the Illumina OvineSNP50 Genotyping BeadChip array were used in this analysis. We applied two complementary statistical analyses, FST (fixation index) and xp-EHH (cross-population extended haplotype homozygosity), to detect selection signatures in Middle Eastern and European sheep populations. FST and xp-EHH detected 629 and 256 genes indicating signatures of selection, respectively. Genomic regions identified using FST and xp-EHH contained the CIDEA, HHATL, MGST1, FADS1, RTL1 and DGKG genes, which were reported earlier to influence a number of economic traits. Both FST and xp-EHH approaches identified 60 shared genes as the signatures of selection, including four candidate genes (NT5E, ADA2, C8A and C8B) that were enriched for two significant Gene Ontology (GO) terms associated with the adenosine metabolic procedure. Knowledge about the candidate genomic regions under selective pressure in sheep breeds may facilitate identification of the underlying genes and enhance our understanding on these genes role in local adaptation.
Collapse
Affiliation(s)
- Sirous Eydivandi
- Department of Animal Science, Behbahan Branch, Islamic Azad University, Behbahan, Iran.,Faculty of Technical Sciences, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Dezful, Iran
| | | | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Goutam Sahana
- Faculty of Technical Sciences, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|
33
|
Kumar S, Deng CH, Hunt M, Kirk C, Wiedow C, Rowan D, Wu J, Brewer L. Homozygosity Mapping Reveals Population History and Trait Architecture in Self-Incompatible Pear ( Pyrus spp.). FRONTIERS IN PLANT SCIENCE 2021; 11:590846. [PMID: 33469460 PMCID: PMC7813798 DOI: 10.3389/fpls.2020.590846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Runs of homozygosity (ROH) have been widely used to study population history and trait architecture in humans and livestock species, but their application in self-incompatible plants has not been reported. The distributions of ROH in 199 accessions representing Asian pears (45), European pears (109), and interspecific hybrids (45) were investigated using genotyping-by-sequencing in this study. Fruit phenotypes including fruit weight, firmness, Brix, titratable acidity, and flavor volatiles were measured for genotype-phenotype analyses. The average number of ROH and the average total genomic length of ROH were 6 and 11 Mb, respectively, in Asian accessions, and 13 and 30 Mb, respectively, in European accessions. Significant associations between genomic inbreeding coefficients (FROH) and phenotypes were observed for 23 out of 32 traits analyzed. An overlap between ROH islands and significant markers from genome-wide association analyses was observed. Previously published quantitative trait loci for fruit traits and disease resistances also overlapped with some of the ROH islands. A prominent ROH island at the bottom of linkage group 17 overlapped with a recombination-supressed genomic region harboring the self-incompatibility locus. The observed ROH patterns suggested that systematic breeding of European pears would have started earlier than of Asian pears. Our research suggest that FROH would serve as a novel tool for managing inbreeding in gene-banks of self-incompatible plant species. ROH mapping provides a complementary strategy to unravel the genetic architecture of complex traits, and to evaluate differential selection in outbred plants. This seminal work would provide foundation for the ROH research in self-incompatible plants.
Collapse
Affiliation(s)
- Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North, New Zealand
| | - Cecilia Hong Deng
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Martin Hunt
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Chris Kirk
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Claudia Wiedow
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Daryl Rowan
- Palmerston North Research Centre, The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Jun Wu
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Lester Brewer
- Motueka Research Centre, The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| |
Collapse
|
34
|
Biscarini F, Mastrangelo S, Catillo G, Senczuk G, Ciampolini R. Insights into Genetic Diversity, Runs of Homozygosity and Heterozygosity-Rich Regions in Maremmana Semi-Feral Cattle Using Pedigree and Genomic Data. Animals (Basel) 2020; 10:E2285. [PMID: 33287320 PMCID: PMC7761732 DOI: 10.3390/ani10122285] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Semi-feral local livestock populations, like Maremmana cattle, are the object of renewed interest for the conservation of biological diversity and the preservation and exploitation of unique and potentially relevant genetic material. The aim of this study was to estimate genetic diversity parameters in semi-feral Maremmana cattle using both pedigree- and genomic-based approaches (FIS and FROH), and to detect regions of homozygosity (ROH) and heterozygosity (ROHet) in the genome. The average heterozygosity estimates were in the range reported for other cattle breeds (HE=0.261, HO=0.274). Pedigree-based average inbreeding (F) was estimated at 4.9%. The correlation was low between F and genomic-based approaches (r=0.03 with FIS, r=0.21 with FROH), while it was higher between FIS and FROH (r=0.78). The low correlation between F and FROH coefficients may be the result of the limited pedigree depth available for the animals involved in this study. The ROH islands identified in Maremmana cattle included candidate genes associated with climate adaptation, carcass traits or the regulation of body weight, fat and energy metabolism. The ROHet islands contained candidate genes associated with nematode resistance and reproduction traits in livestock. The results of this study confirm that genome-based measures like FROH may be useful estimators of individual autozygosity, and may provide insights on pedigree-based inbreeding estimates in cases when animals' pedigree data are unavailable, thus providing a more detailed picture of the genetic diversity.
Collapse
Affiliation(s)
- Filippo Biscarini
- CNR-IBBA (National Research Council, Institute of Agricultural Biology and Biotechnology), 20133 Milan, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy;
| | - Gennaro Catillo
- CREA Research Centre for Animal Production and Acquaculture, CREA, 00015 Monterotondo, Italy;
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy;
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie—Università di Pisa, 56124 Pisa, Italy;
| |
Collapse
|
35
|
Abstract
Runs of homozygosity (ROH) are chromosomal stretches that in a diploid genome appear in a homozygous state and display identical alleles at multiple contiguous loci. This study aimed to systematically compare the genomic distribution of the ROH islands among five populations of wild vs commercial chickens of both layer and broiler type. To this end, we analyzed whole genome sequences of 115 birds including white layer (WL, n = 25), brown layer (BL, n = 25), broiler line A (BRA, n = 20), broiler line B (BRB, n = 20) and Red Junglefowl (RJF, n = 25). The ROH segments varied in size markedly among populations, ranging from 0.3 to 21.83 Mb reflecting their past genealogy. White layers contained the largest portion of the genome in homozygous state with an average ROH length of 432.1 Mb (±18.7) per bird, despite carrying it in short segments (0.3-1 Mb). Population-wise inbreeding measures based on Wright's (Fis) and genomic (FROH) metrics revealed highly inbred genome of layer lines relative to the broilers and Red Junglefowl. We further revealed the ROH islands, among commercial lines overlapped with QTL related to limb development (GREM1, MEOX2), body weight (Meis2a.1, uc_338), eggshell color (GLCCI1, ICA1, UMAD1), antibody response to Newcastle virus (ROBO2), and feather pecking. Comparison of ROH landscape in sequencing resolution demonstrated that a sizable portion of genome of commercial lines segregates in homozygote state, reflecting many generations of assortative mating and intensive selection in their recent history. In contrary, wild birds carry shorter ROH segments, likely suggestive of older evolutionary events.
Collapse
|
36
|
Salek Ardestani S, Aminafshar M, Zandi Baghche Maryam MB, Banabazi MH, Sargolzaei M, Miar Y. A genome-wide signatures of selection study of Welsh ponies and draft horses revealed five genes associated with horse type variation. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Moscarelli A, Sardina MT, Cassandro M, Ciani E, Pilla F, Senczuk G, Portolano B, Mastrangelo S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim Genet 2020; 52:21-31. [PMID: 33174276 DOI: 10.1111/age.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST -outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual-purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.
Collapse
Affiliation(s)
- A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, 35020, Italy
| | - E Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, Bari, 70124, Italy
| | - F Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - G Senczuk
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| |
Collapse
|
38
|
Samaha G, Wade CM, Beatty J, Lyons LA, Fleeman LM, Haase B. Mapping the genetic basis of diabetes mellitus in the Australian Burmese cat (Felis catus). Sci Rep 2020; 10:19194. [PMID: 33154479 PMCID: PMC7644637 DOI: 10.1038/s41598-020-76166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus, a common endocrinopathy affecting domestic cats, shares many clinical and pathologic features with type 2 diabetes in humans. In Australia and Europe, diabetes mellitus is almost four times more common among Burmese cats than in other breeds. As a genetically isolated population, the diabetic Australian Burmese cat provides a spontaneous genetic model for studying diabetes mellitus in humans. Studying complex diseases in pedigreed breeds facilitates tighter control of confounding factors including population stratification, allelic frequencies and environmental heterogeneity. We used the feline SNV array and whole genome sequence data to undertake a genome wide-association study and runs of homozygosity analysis, of a case–control cohort of Australian and European Burmese cats. Our results identified diabetes-associated haplotypes across chromosomes A3, B1 and E1 and selective sweeps across the Burmese breed on chromosomes B1, B3, D1 and D4. The locus on chromosome B1, common to both analyses, revealed coding and splice region variants in candidate genes, ANK1, EPHX2 and LOX2, implicated in diabetes mellitus and lipid dysregulation. Mapping this condition in Burmese cats has revealed a polygenic spectrum, implicating loci linked to pancreatic beta cell dysfunction, lipid dysregulation and insulin resistance in the pathogenesis of diabetes mellitus in the Burmese cat.
Collapse
Affiliation(s)
- Georgina Samaha
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Julia Beatty
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | | | - Bianca Haase
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Cesarani A, Gaspa G, Pauciullo A, Degano L, Vicario D, Macciotta NPP. Genome-wide analysis of homozygosity regions in european simmental bulls. J Anim Breed Genet 2020; 138:69-79. [PMID: 33263211 DOI: 10.1111/jbg.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 01/15/2023]
Abstract
The study of Runs of Homozygosity (ROH) is a useful approach for the characterization of the genome of livestock populations. Due to their high relationship with autozygosity, ROH allow to make inference about population genetic history, to estimate the level of inbreeding, to assess within breed heterogeneity and to detect the footprints of selection on livestock genomes. Aim of this study was to investigate the distribution of runs of homozygosity in bulls belonging to five European Simmental populations and to assess the relationship between three production traits (milk yield, fat and protein contents) and autozygosity. ROH count, distribution and ROH-based coefficient of inbreeding (FROH ) were calculated for 3,845 Simmental bulls of five different European countries: Austria (AT), Switzerland (CH), Czech Republic (CZ), Germany (DE) and Italy (IT). Average values of ROH number per animal, and total genome length covered by ROH were 77.8 ± 20.7 and 205 ± 74.4 Mb, respectively. Bulls from AT, DE and IT exhibited similar ROH characteristics. Swiss animals showed the highest (12.6%), while CZ the lowest (4.6%) FROH coefficient. The relationship between ROH occurrence and milk production traits was investigated through a genome-wide ROH-traits association analysis (GWRA). A total of 34 regions previously associated with milk traits (yield and/or composition) were identified by GWRA. Results of the present research highlight a mixed genetic background in the 5 European Simmental populations, with the possible presence of three subgroups. Moreover, a strong relationship between autozygosity and production traits has been detected.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | |
Collapse
|
40
|
Genome-Wide Assessment of Runs of Homozygosity in Chinese Wagyu Beef Cattle. Animals (Basel) 2020; 10:ani10081425. [PMID: 32824035 PMCID: PMC7460448 DOI: 10.3390/ani10081425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of ROH leading to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with important traits in Chinese Wagyu beef cattle. We identified a total of 29,271 ROH segments from 462 animals. Within each animal, an average number of ROH was 63.36 while an average length was 62.19 Mb. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events across all individuals. Of these, nine regions containing 154 candidate genes, were significantly associated with six traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, and carcass length; p < 0.01). Moreover, we found 26 consensus ROH regions with frequencies exceeding 10%, and several regions overlapped with QTLs, which are associated with body weight, calving ease, and stillbirth. Among them, we observed 41 candidate genes, including BCKDHB, MAB21L1, SLC2A13, FGFR3, FGFRL1, CPLX1, CTNNA1, CORT, CTNNBIP1, and NMNAT1, which have been previously reported to be related to body conformation, meat quality, susceptibility, and reproductive traits. In summary, we assessed genome-wide autozygosity patterns and inbreeding levels in Chinese Wagyu beef cattle. Our study identified many candidate regions and genes overlapped with ROH for several important traits, which could be unitized to assist the design of a selection mating strategy in beef cattle.
Collapse
|
41
|
Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Kumar P, Dutt T, Mishra BP, Singh RK. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim Biotechnol 2020; 33:297-311. [PMID: 32730141 DOI: 10.1080/10495398.2020.1796696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knowledge about genetic diversity is very essential for the management and sustainable utilization of livestock genetic resources. In this study, we presented a comprehensive genome-wide analysis of genetic diversity, ROH, inbreeding, linkage disequilibrium, effective population size and haplotype block structure in Tharparkar cattle of India. A total of 24 Tharparkar animals used in this study were genotyped with Illumina BovineSNP50 array. After quality control, 22,825 biallelic SNPs were retained, which were in HWE, MAF > 0.05 and genotyping rate >90%. The overall mean observed (HO) and expected heterozygosity (HE) were 0.339 ± 0.156 and 0.325 ± 0.129, respectively. The average minor allele frequency was 0.234 with a standard deviation of ± 0.131. We identified a total of 1832 ROH segments and the highest autosomal coverage of 13.87% was observed on chromosome 23. The genomic inbreeding coefficients estimates by FROH, FHOM, FGRM and FUNI were 0.0589, 0.0215, 0.0532 and 0.0160 respectively. The overall mean linkage disequilibrium (LD) for a total of 133,532 pairwise SNPs measured by D' and r2 was 0.6452 and 0.1339, respectively. In addition, we observed a gradual decline in effective population size over the past generations.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
42
|
Mancin E, Ablondi M, Mantovani R, Pigozzi G, Sabbioni A, Sartori C. Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information. Animals (Basel) 2020; 10:E1310. [PMID: 32751586 PMCID: PMC7460293 DOI: 10.3390/ani10081310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the genetic diversity in the Italian Heavy Horse Breed from pedigree and genomic data. Pedigree information for 64,917 individuals were used to assess inbreeding level, effective population size (Ne), and effective numbers of founders and ancestors (fa/fe). Genotypic information from SNP markers were available for 267 individuals of both sexes, and it allowed estimating genomic inbreeding in two methods (observed versus expected homozygosity and from ROH) to study the breed genomic structure and possible selection signatures. Pedigree and genomic inbreeding were greatly correlated (0.65 on average). The inbreeding trend increased over time, apart from periods in which the base population enlarged, when Ne increased also. Recent bottlenecks did not occur in the genome, as fa/fe have shown. The observed homozygosity results were on average lower than expected, which was probably due to the use of French Breton stallions to support the breed genetic variability. High homozygous regions suggested that inbreeding increased in different periods. Two subpopulations were distinguished, which was probably due to the different inclusion of French animals by breeders. Few selection signatures were found at the population level, with possible associations to disease resistance. The almost low inbreeding rate suggested that despite the small breed size, conservation actions are not yet required.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| | - Michela Ablondi
- Dipartimento di Scienze Medico-Veterinarie, University of Parma Via del Taglio 10, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| | - Giuseppe Pigozzi
- Italian Heavy Draught Horse Breeders Association (ANACAITPR), 37068 Vigasio (VR), Italy;
| | - Alberto Sabbioni
- Dipartimento di Scienze Medico-Veterinarie, University of Parma Via del Taglio 10, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Cristina Sartori
- Department of Agronomy, Food, Natural resources, Animals and Environment—DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (E.M.); (C.S.)
| |
Collapse
|
43
|
Asadollahpour Nanaei H, Esmailizadeh A, Ayatollahi Mehrgardi A, Han J, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genomics 2020; 21:496. [PMID: 32689947 PMCID: PMC7370493 DOI: 10.1186/s12864-020-06887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Body size is considered as one of the most fundamental properties of an organism. Due to intensive breeding and artificial selection throughout the domestication history, horses exhibit striking variations for heights at withers and body sizes. Debao pony (DBP), a famous Chinese horse, is known for its small body size and lives in Guangxi mountains of southern China. In this study, we employed comparative population genomics to study the genetic basis underlying the small body size of DBP breed based on the whole genome sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (FST), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (θπ), and further analyzed the results to find genomic regions under selection for body size-related traits. Results A number of protein-coding genes in windows with the top 1% values of FST (367 genes), XP-CLR (681 genes), and log2 (θπ ratio) (332 genes) were identified. The most significant signal of positive selection was mapped to the NELL1 gene, probably underlies the body size and development traits, and may also have been selected for short stature in the DBP population. In addition, some other loci on different chromosomes were identified to be potentially involved in the development of body size. Conclusions Results of our study identified some positively selected genes across the horse genome, which are possibly involved in body size traits. These novel candidate genes may be useful targets for clarifying our understanding of the molecular basis of body size and as such they should be of great interest for future research into the genetic architecture of relevant traits in horse breeding program.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran. .,State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
44
|
Abstract
Reproductive disorders are genetically heterogeneous and complex; available genetic tests are limited to chromosome analysis and 1 susceptibility gene. Cytogenetic analysis should be the first test to confirm or rule out chromosomal aberrations. No causative genes/mutations are known. The only available genetic test for stallion subfertility is based on a susceptibility gene FKBP6. The ongoing progress in equine genomics will improve the status of genetic testing. However, because subfertile phenotypes do not facilitate collection of large numbers of samples or pedigrees, and clinical causes of many cases remain unknown, further progress requires constructive cross-talk between geneticists, clinicians, breeders, and owners.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Veterinary Research Building Room 306, 588 Raymond Stotzer Parkway, College Station, TX 77843-4458, USA.
| |
Collapse
|
45
|
Genetic Diversity and Signatures of Selection in a Native Italian Horse Breed Based on SNP Data. Animals (Basel) 2020; 10:ani10061005. [PMID: 32521830 PMCID: PMC7341496 DOI: 10.3390/ani10061005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Bardigiano horse is a native Italian breed bred for living in rural areas, traditionally used in agriculture. The breed counts about 3000 horses, and it is nowadays mainly used for recreational purposes. The relatively small size and the closed status of the breed raise the issue of monitoring genetic diversity. We therefore characterized the breed’s genetic diversity based on molecular data. We showed a critical reduction of genetic variability mainly driven by past bottlenecks. We also highlighted homozygous genomic regions that might be the outcome of directional selection in recent years, in line with the conversion of Bardigiano horses from agricultural to riding purposes. Abstract Horses are nowadays mainly used for sport and leisure activities, and several local breeds, traditionally used in agriculture, have been exposed to a dramatic loss in population size and genetic diversity. The loss of genetic diversity negatively impacts individual fitness and reduces the potential long-term survivability of a breed. Recent advances in molecular biology and bioinformatics have allowed researchers to explore biodiversity one step further. This study aimed to evaluate the loss of genetic variability and identify genomic regions under selection pressure in the Bardigiano breed based on GGP Equine70k SNP data. The effective population size based on Linkage Disequilibrium (Ne) was equal to 39 horses, and it showed a decline over time. The average inbreeding based on runs of homozygosity (ROH) was equal to 0.17 (SD = 0.03). The majority of the ROH were relatively short (91% were ≤2 Mbp long), highlighting the occurrence of older inbreeding, rather than a more recent occurrence. A total of eight ROH islands, shared among more than 70% of the Bardigiano horses, were found. Four of them mapped to known quantitative trait loci related to morphological traits (e.g., body size and coat color) and disease susceptibility. This study provided the first genome-wide scan of genetic diversity and selection signatures in an Italian native horse breed.
Collapse
|
46
|
Sadeghi R, Moradi-Shahrbabak M, Miraei Ashtiani SR, Schlamp F, Cosgrove EJ, Antczak DF. Genetic Diversity of Persian Arabian Horses and Their Relationship to Other Native Iranian Horse Breeds. J Hered 2020; 110:173-182. [PMID: 30590570 DOI: 10.1093/jhered/esy061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
The principal aims of this study were to explore genetic diversity and genome-wide selection signatures in Persian Arabian horses and to determine genetic relationship of Persian Arabians with other Iranian horse breeds. We evaluated 71 horses from 8 matrilineal strains tracing to 47 mares from the mid to late 19th century, using the equine 670k single nucleotide polymorphism (SNP) BeadChip. Mean observed and expected heterozygosity were (0.43) and (0.45), respectively, average inbreeding measures (inbreeding estimates based on runs of homozygosity and pedigree information) were low, indicating high genetic diversity in Persian Arabian horses. Analysis of population genetic structure using STRUCTURE and principal component analysis suggested that Persian Arabian horses can be divided into 3 groups, however the groups do not match traditional matrilineal strains. In total, 15 genomic regions were identified by at least 2 of the 3 implemented methods, Tajima's D, H, and H12, as potentially under selection in Persian Arabian horses. Most of these peaks were found on chromosome 9, overlapping with QTLs previously associated with horse temperament. Biological function analysis of identified candidate genes highlighted enrichment of GO term "response to lipopolysaccharide" and KEGG pathway "chemokine-mediated signaling pathway," which are associated with immune responses and may have been targets of selection in Persian Arabian horses. Independent analyses of SNP data from 30 horses of 4 other Iranian breeds suggested distinct population structure between Persian Arabian, and Turkemen and Caspian horse breeds. Overall, the results of this study suggest a rich genetic diversity in the Persian Arabian horses and a clear genetic differentiation with Turkemen and Caspian breeds.
Collapse
Affiliation(s)
- Raheleh Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.,Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Reza Miraei Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Florencia Schlamp
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY
| | - Elissa J Cosgrove
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY
| | - Doug F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
47
|
Todd ET, Hamilton NA, Velie BD, Thomson PC. The effects of inbreeding on covering success, gestation length and foal sex ratio in Australian thoroughbred horses. BMC Genet 2020; 21:41. [PMID: 32268877 PMCID: PMC7140579 DOI: 10.1186/s12863-020-00847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Horses produce only one foal from an eleven-month gestation period, making the maintenance of high reproductive rates essential. Genetic bottlenecks and inbreeding can increase the frequency of deleterious variants, resulting in reduced reproductive levels in a population. In this study we examined the influence of inbreeding levels on foaling rate, gestation length and secondary sex ratio in Australian Thoroughbred mares. We also investigated the genetic change in these traits throughout the history of the breed. Phenotypic data were obtained from 27,262 breeding records of Thoroughbred mares provided by three Australian stud farms. Inbreeding was estimated using the pedigree of each individual dating back to the foundation of the breed in the eighteenth century. Results While both gestation length and foaling rate were heritable, no measurable effect of inbreeding on either trait was found. However, we did find that the genetic value for both traits had decreased within recent generations. A number of environmental factors also had significant effects on foaling rate and gestation length. Secondary sex ratio had only an extremely small paternal heritable effect and was not susceptible to environmental influences. Conclusions In contrast to racing performance, inbreeding had no measurable effect on foaling rate or gestation length in Australian Thoroughbred horses. This could be because the level of inbreeding in the population examined is not high enough to show a discernible effect on reproductive traits. Populations that experience higher levels of inbreeding due to use of artificial reproductive technologies or extremely small population sizes may show a more pronounced reduction in natural foaling rate or gestation length. It is also possible that the intensive management techniques used in the Thoroughbred population masks any negative effects of inbreeding. The decrease in the genetic value of foaling rate is likely to be because horses with unfavourable genetic potential have not yet been selected out of the population. The change in genetic value of gestation length may be due to selective breeding favouring horses with shorter pregnancies. We also found that prioritising the mating of older mares, and avoiding out of season mating could lead to an increased breeding success.
Collapse
Affiliation(s)
- Evelyn T Todd
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Natasha A Hamilton
- Racing Australia Equine Genetics Research Centre, Racing Australia, Sydney, NSW, 2000, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter C Thomson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
48
|
Aramburu O, Ceballos F, Casanova A, Le Moan A, Hemmer-Hansen J, Bekkevold D, Bouza C, Martínez P. Genomic Signatures After Five Generations of Intensive Selective Breeding: Runs of Homozygosity and Genetic Diversity in Representative Domestic and Wild Populations of Turbot ( Scophthalmus maximus). Front Genet 2020; 11:296. [PMID: 32346384 PMCID: PMC7169425 DOI: 10.3389/fgene.2020.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Massive genotyping of single nucleotide polymorphisms (SNP) has opened opportunities for analyzing the way in which selection shapes genomes. Artificial or natural selection usually leaves genomic signatures associated with selective sweeps around the responsible locus. Strong selective sweeps are most often identified either by lower genetic diversity than the genomic average and/or islands of runs of homozygosity (ROHi). Here, we conducted an analysis of selective sweeps in turbot (Scophthalmus maximus) using two SNP datasets from a Northeastern Atlantic population (36 individuals) and a domestic broodstock (46 individuals). Twenty-six families (∼ 40 offspring per family) from this broodstock and three SNP datasets applying differing filtering criteria were used to adjust ROH calling parameters. The best-fitted genomic inbreeding estimate (FROH) was obtained by the sum of ROH longer than 1 Mb, called using a 21,615 SNP panel, a sliding window of 37 SNPs and one heterozygous SNP per window allowed. These parameters were used to obtain the ROHi distribution in the domestic and wild populations (49 and 0 ROHi, respectively). Regions with higher and lower genetic diversity within each population were obtained using sliding windows of 37 SNPs. Furthermore, those regions were mapped in the turbot genome against previously reported genetic markers associated with QTL (Quantitative Trait Loci) and outlier loci for domestic or natural selection to identify putative selective sweeps. Out of the 319 and 278 windows surpassing the suggestive pooled heterozygosity thresholds (ZHp) in the wild and domestic population, respectively, 78 and 54 were retained under more restrictive ZHp criteria. A total of 116 suggestive windows (representing 19 genomic regions) were linked to either QTL for production traits, or outliers for divergent or balancing selection. Twenty-four of them (representing 3 genomic regions) were retained under stricter ZHp thresholds. Eleven QTL/outlier markers were exclusively found in suggestive regions of the domestic broodstock, 7 in the wild population and one in both populations; one (broodstock) and two (wild) of those were found in significant regions retained under more restrictive ZHp criteria in the broodstock and the wild population, respectively. Genome mining and functional enrichment within regions associated with selective sweeps disclosed relevant genes and pathways related to aquaculture target traits, including growth and immune-related pathways, metabolism and response to hypoxia, which showcases how this genome atlas of genetic diversity can be a valuable resource to look for candidate genes related to natural or artificial selection in turbot populations.
Collapse
Affiliation(s)
- Oscar Aramburu
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Ceballos
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Adrián Casanova
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alan Le Moan
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jakob Hemmer-Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Genome-Wide Scan for Runs of Homozygosity Identifies Candidate Genes Related to Economically Important Traits in Chinese Merino. Animals (Basel) 2020; 10:ani10030524. [PMID: 32245132 PMCID: PMC7143548 DOI: 10.3390/ani10030524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Runs of homozygosity (ROH) are commonly used to estimate inbreeding coefficients and identify selection signatures in livestock population. The present study determined ROH patterns, estimated the inbreeding levels, and identified the genome regions with high ROH frequency (ROH hotspots) in Chinese Merino. Our results showed that the genome of Chinese Merino harbored lower ROH abundance. Moreover, the inbreeding levels were relatively low. Thirteen ROH hotspots consisting of 190 genes were identified. The ROH hotspots overlapped the selective signatures might be associated with body size, horn traits, immune traits and environment adaption. These findings could contribute to an optimum breeding program by identifying the candidate genes related to economically traits in Chinese Merino. Abstract In this study, we estimated the number, length, and frequency of runs of homozygosity (ROH) in 635 Chinese Merino and identified genomic regions with high ROH frequency using the OvineSNP50 whole-genome genotyping array. A total of 6039 ROH exceeding 1 Mb were detected in 634 animals. The average number of ROH in each animal was 9.23 and the average length was 5.87 Mb. Most of the ROH were less than 10 Mb, accounting for 88.77% of the total number of detected ROH. In addition, Ovies aries chromosome (OAR) 21 and OAR3 exhibited the highest and lowest coverage of chromosomes by ROH, respectively. OAR1 displayed the highest number of ROH, while the lowest number of ROH was found on OAR24. An inbreeding coefficient of 0.023 was calculated from ROH greater than 1 Mb. Thirteen regions on chromosomes 1, 2, 3, 5, 6, 10, 11, and 16 were found to contain ROH hotspots. Within the genome regions of OAR6 and OAR11, NCAPG/LCORL, FGF11 and TP53 were identified as the candidate genes related to body size, while the genome region of OAR10 harbored RXFP2 gene responsible for the horn trait. These findings indicate the adaptive to directional trait selection in Chinese Merino.
Collapse
|
50
|
Selection in Australian Thoroughbred horses acts on a locus associated with early two-year old speed. PLoS One 2020; 15:e0227212. [PMID: 32049967 PMCID: PMC7015314 DOI: 10.1371/journal.pone.0227212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Australasia and Japan. Regional preferences for certain traits have resulted in phenotypic variation that may result from adaptation to the local racing ecosystem. Here, we test the hypothesis that genes selected for regional phenotypic variation may be identified by analysis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a composite selection signals (CSS) analysis were on ECA6 (34.75–34.85 Mb), ECA14 (33.2–33.52 Mb and 35.52–36.94 Mb) and ECA16 (24.28–26.52 Mb) in regions containing candidate genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF, SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response (NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs contained within the single association peak (33.2–35.6 Mb) overlapped with the ECA14 CSS signals and spanned a protocadherin gene cluster. Association tests using higher density SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene associated with elite racing performance (n = 922). These results indicate that there may be differential selection for racing performance under racing and management conditions that are specific to certain geographic racing regions. In Australia breeders have principally selected horses for favourable genetic variants at loci containing genes that modulate behaviour, locomotion and skeletal muscle physiology that together appear to be contributing to early two-year-old speed.
Collapse
|