1
|
Yang L, Wu Z, Ma TY, Zeng H, Chen M, Zhang YA, Zhou Y. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Vet Res 2024; 55:60. [PMID: 38750480 PMCID: PMC11094935 DOI: 10.1186/s13567-024-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Tian-Yu Ma
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hui Zeng
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ming Chen
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Thomas LS, Faiola NA, Canessa E, Hathout Y, Cook LC. In silico and experimental analysis of the repeated domains in BvaP, a protein important for GBS vaginal colonization. Infect Immun 2023; 91:e0038723. [PMID: 37916807 PMCID: PMC10714994 DOI: 10.1128/iai.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Streptococcus agalactiae (group B strep, GBS) infections in neonates are often fatal and strongly associated with maternal GBS vaginal colonization. Previously, we highlighted the importance of a formerly uncharacterized protein, BvaP, in GBS vaginal colonization. BvaP is highly conserved across GBS and is made up of repeated domains, with a variable number of repeats between strains. Here, we evaluate the prevalence of BvaP repeated domains and their relevance in phenotypes previously associated with vaginal colonization. Using in silico analysis, we found that the number of repeats in the BvaP protein does not generally appear to be associated with serotype, isolation site, or host. Using BvaP truncations in GBS strain A909, we determined that a smaller number of repeats was correlated with decreased bacterial chain length, but adherence to vaginal epithelial cells was complemented using BvaP containing one, two, three, or five repeats. Future research will be geared toward understanding the host immune response to BvaP in vivo and whether vaginal carriage or host response is dependent on the BvaP repeated domains.
Collapse
Affiliation(s)
- Lamar S. Thomas
- Department of Biology, Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Nicholas A. Faiola
- Department of Biology, Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Emily Canessa
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York, USA
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York, USA
| | - Laura C. Cook
- Department of Biology, Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
3
|
Research Advances on Tilapia Streptococcosis. Pathogens 2021; 10:pathogens10050558. [PMID: 34066313 PMCID: PMC8148123 DOI: 10.3390/pathogens10050558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae, often referred to as group B streptococci (GBS), is a severe pathogen that can infect humans as well as other animals, including tilapia, which is extremely popular in commercial aquaculture. This pathogen causes enormous pecuniary loss, and typical symptoms of streptococcosis—the disease caused by S. agalactiae—include abnormal behavior, exophthalmos, and meningitis, among others. Multiple studies have examined virulence factors associated with S. agalactiae infection, and vaccines were explored, including studies of subunit vaccines. Known virulence factors include capsular polysaccharide (CPS), hemolysin, Christie-Atkins-Munch-Peterson (CAMP) factor, hyaluronidase (HAase), superoxide dismutase (SOD), and serine-threonine protein kinase (STPK), and effective vaccine antigens reported to date include GapA, Sip, OCT, PGK, FbsA, and EF-Tu. In this review, I summarize findings from several studies about the etiology, pathology, virulence factors, and vaccine prospects for S. agalactiae. I end by considering which research areas are likely to yield success in the prevention and treatment of tilapia streptococcosis.
Collapse
|
4
|
Zheng Y, Wu W, Hu G, Qiu L, Chen J. Transcriptome Analysis of Juvenile Tilapia ( Oreochromis niloticus) Blood, Fed With Different Concentrations of Resveratrol. Front Physiol 2020; 11:600730. [PMID: 33362577 PMCID: PMC7755862 DOI: 10.3389/fphys.2020.600730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Oreochromis niloticus (genetically improved farmed tilapia, GIFT) often bites the root of Polygonum cuspidatum when it is used as a floating bed, and resveratrol (RES) is mainly accumulated in the root of P. cuspidatum. Blood acts as a pipeline for the fish immune system. Generating blood transcriptomic resources is crucial for understanding molecular mechanisms underlying blood immune responses. In this study, we determined the effects of RES administration on blood transcriptomic response in GIFT. With increasing RES concentration, 133 (0.025 vs. 0.05 g/kg RES), 155 (0.025 vs. 0.1 g/kg RES), and 123 (0.05 vs. 0.1 g/kg RES) genes were detected as significant differentially expressed genes (DEGs). Three and ninety-five shared significant DEGs were found to be enriched among the three (except 0.1 g/kg RES) and four groups (0, 0.025, 0.05, and 0.1 g/kg RES), respectively. To determine the relationship between mitochondrial regulation and RES supplementation, the results of RNA-Seq were analyzed and nine mitochondria-related genes (ATP synthase or mitochondrial-function-related genes) were verified. The results revealed the same expression pattern: cytochrome c isoform X2 (cox2), katanin p60 ATPase-containing subunit A1 isoform X1 (katna1), plasma membrane calcium-transporting ATPase 1-like (atp2b1) and GTP-binding protein A-like (gtpbpal) showed the highest expression in the 0.1 g/kg RES group, while NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 mitochondrial (nad7), ATP synthase subunit beta, mitochondrial (atpb), ATP synthase subunit alpha, mitochondrial-like (atpal), ATP synthase subunit alpha, mitochondrial (atpa) and ATP-dependent Clp protease proteolytic subunit, mitochondrial (clpp) revealed a dose-dependent expression following RES supplementation. Blood Ca2+-ATPase activity, and malondialdehyde, glutathione, and ATP content were significantly increased in the 0.05 (except Ca2+-ATPase activity), 0.1 g/kg RES group when compared with the controls. Eighty-nine shared DGEs were mainly enriched in antigen processing and presentation, cell adhesion molecules and phagosome pathways, based on the comparison between previous reported hepatic and the present blood transcriptome. Our study demonstrated that RES supplementation might improve the resistance to metabolism dysfunction via mitochondrial energy synthesis and/or the respiratory chain (e.g., ATPase).
Collapse
Affiliation(s)
- Yao Zheng
- Chinese Academy of Fishery Sciences, Freshwater Fisheries Research Center, Wuxi, China.,Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture, Wuxi, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, Wuxi, China
| | - Wei Wu
- Chinese Academy of Fishery Sciences, Freshwater Fisheries Research Center, Wuxi, China.,Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture, Wuxi, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, Wuxi, China
| | - Gengdong Hu
- Chinese Academy of Fishery Sciences, Freshwater Fisheries Research Center, Wuxi, China.,Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture, Wuxi, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, Wuxi, China
| | - Liping Qiu
- Chinese Academy of Fishery Sciences, Freshwater Fisheries Research Center, Wuxi, China.,Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture, Wuxi, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, Wuxi, China
| | - Jiazhang Chen
- Chinese Academy of Fishery Sciences, Freshwater Fisheries Research Center, Wuxi, China.,Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture, Wuxi, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, Wuxi, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Wuxi, China
| |
Collapse
|
5
|
Su Y, Liu C, Deng Y, Cheng C, Ma H, Guo Z, Feng J. Molecular typing of Streptococcus agalactiae isolates of serotype Ia from tilapia in southern China. FEMS Microbiol Lett 2020; 366:5531764. [PMID: 31299078 DOI: 10.1093/femsle/fnz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023] Open
Abstract
Streptococcus agalactiae is an important pathogen of tilapia causing enormous economic losses worldwide. In this study, multilocus sequence typing indicated that 75 S. agalactiae isolates from tilapia in southern China belonged to sequence type-7, as well as belonging to serotype Ia, as confirmed by multiplex PCR assay. The putative-virulence gene profiles and genetic variation of these strains were determined by three sets of multiplex PCR and multi-virulence locus sequencing typing (MVLST), respectively. Analysis of putative-virulence gene profiles showed that each strain harbored 18 putative-virulence genes but lacked lmb and scpB. Three putative-virulence genes (srr-1, bibA and fbsA) were further selected for MVLST analysis. Our data showed that the strains had 14 MVLST types (1-14) and clustered in three groups (Groups I-Ⅲ). The period of time during 2013 and 2014 was an important turning point for the differentiation of the putative-virulence genes of S. agalactiae, as type 1 within Group Ⅱ became the predominant MVLST type. There were significant differences in MVLST types of S. agalactiae isolated from different tilapia farming regions. MVLST assay may improve the discriminatory power and is suitable for understanding the epidemiology of S. agalactiae serotype Ia and screening multivalent vaccine candidate strains.
Collapse
Affiliation(s)
- Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Chan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China.,College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| |
Collapse
|
6
|
Arginine Deiminase and Biotin Metabolism Signaling Pathways Play an Important Role in Human-Derived Serotype V, ST1 Streptococcus agalactiae Virulent Strain upon Infected Tilapia. Animals (Basel) 2020; 10:ani10050849. [PMID: 32423070 PMCID: PMC7278441 DOI: 10.3390/ani10050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Patients who were infected with Streptococcus agalactiae (ST1) were mainly associated with asymptomatic carriage. However, the invasive diseases in non-pregnant adults caused by S. agalactiae (serotype V, ST1) have increased recently. We have previously reported that human-derived S. agalactiae (serotype V, ST1) could infect tilapia with virulence and pathologic characteristics similar to highly virulent tilapia-derived S. agalactiae (ST7) strains. The potential risk of cross-species infection cannot be ignored. Therefore, our research provided a multi-omics analysis of the human-derived serotype V ST1 S. agalactiae strains, which were virulent and non-virulent to tilapia and provided a more comprehensive understanding of the virulence mechanism. Abstract Our previous study showed that human-derived Streptococcus agalactiae (serotype V) could infect tilapia, but the mechanism underlying the cross-species infection remains unrecognized. In this study, a multi-omics analysis was performed on human-derived S. agalactiae strain NNA048 (virulent to tilapia, serotype V, ST1) and human-derived S. agalactiae strain NNA038 (non-virulent to tilapia, serotype V, ST1). The results showed that 907 genes (504 up/403 down) and 89 proteins (51 up/38 down) were differentially expressed (p < 0.05) between NNA038 and NNA048. Among them, 56 genes (proteins) were altered with similar trends at both mRNA and protein levels. Functional annotation of them showed that the main differences were enriched in the arginine deiminase system signaling pathway and biotin metabolism signaling pathway: gdhA, glnA, ASL, ADI, OTC, arcC, FabF, FabG, FabZ, BioB and BirA genes may have been important factors leading to the pathogenicity differences between NNA038 and NNA048. We aimed to provide a comprehensive analysis of the human-derived serotype V ST1 S. agalactiae strains, which were virulent and non-virulent to tilapia, and provide a more comprehensive understanding of the virulence mechanism.
Collapse
|
7
|
Zhou Y, Liu Y, Luo Y, Zhong H, Huang T, Liang W, Xiao J, Wu W, Li L, Chen M. Large-scale profiling of the proteome and dual transcriptome in Nile tilapia (Oreochromis niloticus) challenged with low- and high-virulence strains of Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 100:386-396. [PMID: 32165249 DOI: 10.1016/j.fsi.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a common pathogen in aquatic animals, especially tilapia, that hinders aquaculture development and leads to serious economic losses. Previously, a S. agalactiae strain named HN016 was identified from infected tilapia, and the attenuated strain YM001 was subsequently obtained by continuous passaging in Tryptic Soy Broth (TSB) medium. YM001 has been demonstrated as a safe vaccine for S. agalactiae infection in tilapia. To understand the molecular bases of the virulence of these two strains, we performed proteomic and transcriptomic analysis to reveal the protein and gene expression changes in the liver and intestine during the infection process. HN016 significantly decreased the contents of white blood cells (WBCs), neutrophils (NEUs), red blood cells (RBCs) and hematocrit (HCT) and increased the levels of total protein (TP), albumin (ALB) and globulin (GLO), while no such significant differences were observed when comparing the control with YM001. During the infection process, pathogenic peptidoglycan hydrolase, CSPA and membrane proteins were significantly differentially expressed between YM001 and HN016. Furthermore, both proteome and transcriptome data showed that the complement and coagulation cascades pathway and the antigen processing and presentation pathway were stimulated in the liver and intestine, respectively, by YM001 infection compared to HN016 infection. The interaction network analysis of key virulence genes from pathogens suggested that CSPA, as a key node, affects the expression of DOLPP1, MIPEP, PA2G4, OCIAD1, G3BP1 and CLIC5 with a positive correlation. The present evidence suggests that during the infection process, CSPA was the key genes contributing to low virulence in YM001.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wende Wu
- Animal Science and Technology College, Guangxi University, Nanning, 530005, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
8
|
Wu W, Li L, Liu Y, Huang T, Liang W, Chen M. Multiomics analyses reveal that NOD-like signaling pathway plays an important role against Streptococcus agalactiae in the spleen of tilapia. FISH & SHELLFISH IMMUNOLOGY 2019; 95:336-348. [PMID: 31586680 DOI: 10.1016/j.fsi.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus aglactiae(GBS) infection in tilapia is a serious global disease that causes significant production loss. Here, we studied the role of GBS in the spleen and the spleen's response against the pathogen through dual RNA-seq and proteome technology. Animals were divided into three groups: control, virulent treated (HN016), and attenuated treated (YM001). Spleen samples were collected and analysis when a disease outbreak. Dual RNA-seq result showed the virulence factor genes of GBS, included CAMP factor, PGK, OCT, enolase, scpB, Sip, bca, were upregulation. downregulation of GapA, cylE, OCT, scpB, C5AP, rlmB, hly, FBP, in HN016 and YM001. But for proteomic, OCT and bca were downregulation, the others were upregulation. For host transcriptome KEGG analysis showed, the NOD-like receptor signaling pathway (NLRs) and TOLL-like receptor signaling pathway (TLRs) were upreguoation in HN016 infected fish than the control fish; But for proteome KEGG, only the NLRS was up, the TLRS was not change. Compared with YM001 infected fishes, for transcriptome, NLRs and TLRs in infected HN016 fishes were significance rise (p < 0.01); for proteome, the NLRs was up (p < 0.05), but TLRs was no change.Analysis of pathogen-host interaction showed that the peptidoglycan (PNG), CD2, LCK, and host's Zap70 were involved in the regulation of NLRs; PNG, LCK, and ZAP70 were involved in the regulation of TRLs. Conclusion: the virulent strain HN016 and attenuated strainYM001 differed in the quantity of virulence factors. In tilapia's innate immune system, NLRs was the main defense factors, but bacteria avoided the host defense through TLRs.
Collapse
Affiliation(s)
- Wende Wu
- Animal Science and Technology College of Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Liping Li
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530005, PR China
| | - Yu Liu
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530005, PR China
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530005, PR China
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530005, PR China
| | - Ming Chen
- Animal Science and Technology College of Guangxi University, Nanning, Guangxi, 530004, PR China; Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530005, PR China.
| |
Collapse
|
9
|
Mohd-Aris A, Muhamad-Sofie MHN, Zamri-Saad M, Daud HM, Ina-Salwany MY. Live vaccines against bacterial fish diseases: A review. Vet World 2019; 12:1806-1815. [PMID: 32009760 PMCID: PMC6925058 DOI: 10.14202/vetworld.2019.1806-1815] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 01/24/2023] Open
Abstract
Fish diseases are often caused either by bacteria, viruses, fungi, parasites, or a combination of these pathogens. Of these, bacterial fish diseases are considered to be a major problem in the aquaculture industry. Hence, the prevention of such diseases by proper vaccination is one of the integral strategies in fish health management, aimed at reducing the fish mortality rate in the aquaculture farms. Vaccination offers an effective yet low-cost solution to combat the risk of disease in fish farming. An appropriate vaccination regime to prevent bacterial diseases offers a solution against the harmful effects of antibiotic applications. This review discusses the role of live-attenuated vaccine in controlling bacterial diseases and the development of such vaccines and their vaccination strategy. The current achievements and potential applications of live-attenuated and combined vaccines are also highlighted. Vaccine development is concluded to be a demanding process, as it must satisfy the requirements of the aquaculture industry.
Collapse
Affiliation(s)
- Aslizah Mohd-Aris
- Department of Biology, School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Malaysia.,Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Mohd Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hassan Mohd Daud
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Md Yasin Ina-Salwany
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Liu Y, Li L, Huang T, Wu W, Liang W, Chen M. The Interaction between Phagocytes and Streptococcus agalactiae (GBS) Mediated by the Activated Complement System is the Key to GBS Inducing Acute Bacterial Meningitis of Tilapia. Animals (Basel) 2019; 9:ani9100818. [PMID: 31623233 PMCID: PMC6826838 DOI: 10.3390/ani9100818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Streptococcus agalactiae (GBS) is a serious threat to farmed tilapia, which results in high mortality and seriously hinders tilapia farming development. The pathogenic mechanism of tilapia infected with GBS which die rapidly in production remains unknown. We provided a comprehensive comparative analysis of the tilapias infected with fish-derived GBS attenuated strain YM001 and its parental virulent strain HN016. The present study indicates that the interaction between phagocytes and GBS mediated by the activated complement system is key to GBS inducing tilapia acute bacterial meningitis. The low survival ability caused by reduced β-lactam antibiotics resistance is one of the important reasons YM001 lost its pathogenicity to tilapia. Our study provided a comprehensive cognition of the mechanism of acute bacterial meningitis caused by GBS. Abstract Streptococcus agalactiae is an important pathogen for tilapia meningitis. Most of the infected tilapia die rapidly in production, when the way to study the pathogenic mechanism of bacteria on host through chronic infection in laboratory is not comprehensive and accurate enough to elucidate the real pathogenic mechanism. The objective of this study was to investigate the mechanism of acute bacterial meningitis of tilapia caused by Streptococcus agalactiae (GBS), and provide a theoretical basis for its prevention and treatment. Duel RNA-seq, proteome analysis, histopathological analysis, plasma biochemical indexes, and blood routine examination were performed on tilapias infected with fish-derived GBS attenuated strain YM001 and its parental virulent strain HN016. The results showed that the contents of white blood cell (WBC), monocytes (MON), and neutrophil (NEU) were significantly lower in the HN016 group compared to that in the YM001 group (p < 0.05). Histopathological examination showed that there were partially lesions in the examined tissues of tilapia infected by HN016, while no obvious histopathological changes occurred in the YM001 group. The differential expressed genes (DEGs) and differential expressed proteins (DEPs) between YM001 and HN016 were mainly enriched in the beta-lactam resistance pathway (oppA1, oppA2, oppB, oppC, oppD, oppF, and mrcA). The DEGs DEPs between YM001-brain and HN016-brain were mainly enriched in the complement and coagulation cascades signaling pathway (C2a, c4b, c3b, c7, CD59, ITGB2, and ITGAX). The present study indicates that the interaction between phagocytes and GBS mediated by the activated complement system is the key to GBS inducing tilapia acute bacterial meningitis. The low survival ability caused by reduced β-lactam antibiotics resistance is one of the important reasons for why YM001 lost its pathogenicity to tilapia.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Liping Li
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Wende Wu
- Guangxi University, Daxuedong Road NO.100, Nanning 530004, China.
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Fish diseases control and prevention lab, Qingshan Road NO.8, Nanning 530021, China.
| |
Collapse
|
11
|
Li L, Liu Y, Huang T, Liang W, Chen M. Development of an attenuated oral vaccine strain of tilapia Group B Streptococci serotype Ia by gene knockout technology. FISH & SHELLFISH IMMUNOLOGY 2019; 93:924-933. [PMID: 31374315 DOI: 10.1016/j.fsi.2019.07.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Our previous studies demonstrated that the deletion of D2 fragment in tilapia Streptococcus agalactiae(GBS) attenuated strain YM001 is the main reason for the loss of virulence to tilapia. In this study, a Δ2 mutant that deletion of D2 fragment in parental virulent strain HN016 was constructed, and the safety, stability, immunogenicity, and growth characteristics, as well as the virulence mechanism of Δ2 mutant were evaluated. The results showed that Δ2 mutant was not pathogenic to tilapia, and the virulent revertants were not observed after 50 generations of passage. The RPS reached 96.11% at 15 days and 93.05% at 30 days, respectively, after intraperitoneal injection, while RPS reached 74.80% at 15 days and 53.16% at 30 days, respectively, after oral immunization. The growth of Δ2 mutant was significantly faster than YM001, and genes that were enriched in the nitrogen metabolism and arginine biosynthesis signaling pathway (arc, glnA, and gdhA) were identified as important candidate genes responsible for growth rate of S. agalactiae. The absence of D2 fragment affected the expression of Sip, therefore influencing the bacterial virulence. Altogether, this study demonstrated that deletion of D2 fragment in HN016 causes the loss of virulence to tilapia, and Δ2 mutant is a promising, better attenuated oral vaccine strain of S. agalactiae compared to YM001.
Collapse
Affiliation(s)
- Liping Li
- Guangxi Academy of Fishery Sciences, Qingshan Road NO.8, Nanning, 530021, China
| | - Yu Liu
- Guangxi Academy of Fishery Sciences, Qingshan Road NO.8, Nanning, 530021, China
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Qingshan Road NO.8, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Qingshan Road NO.8, Nanning, 530021, China
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Qingshan Road NO.8, Nanning, 530021, China.
| |
Collapse
|
12
|
Liu Y, Li L, Huang T, Wang R, Liang W, Yang Q, Lei A, Chen M. Comparative multi-omics systems analysis reveal the glycolysis / gluconeogenesis signal pathway play an important role in virulence attenuation in fish-derived GBS YM001. PLoS One 2019; 14:e0221634. [PMID: 31449567 PMCID: PMC6709914 DOI: 10.1371/journal.pone.0221634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcus agalactiae(GBS) is a seriously threat to the farmed tilapia, and oral vaccination was considered to be the most desirable means which requires deep understanding of virulence mechanism of the fish-derived GBS. Our previous genome study of the fish-derived attenuated strain YM001 showed that there were two large deletions in YM001 compared to its parental virulent strain HN016. In this study, a combined transcriptomic and proteomic analysis was performed on YM001 and HN016 strains, and the important genes were verified by RT-qPCR in bacteria strains and infected-tilapia tissues. Overall, we have shown that a total of 958 genes and 331 proteins were significantly differential expressed between YM001 and HN016. By functional annotation of these DEGs and DEPs, genes that were enriched in pentose phosphate pathway(pgm, ptsG, pgi pfkA, fbaA and FBP3) and pyruvate metabolism pathway(pdhA, pdhB, pdhC and pdhD) were identifed as important candidate genes for leads low growth ability in attenuated strain, which may be an important reasons leading virulence attenuation in the end. The expression levels the candidate genes in pentose phosphate pathway and pyruvate metabolism pathway were significant differential expressed in tilapia’ brain and spleen when infected with YM001 and HN016. Our study indicated that the pentose phosphate pathway and pyruvate metabolism pathway that affecting the growth of the strain may be one of the important reasons for the virulence attenuation in HN016.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Liping Li
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Ting Huang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Rui Wang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Wanwen Liang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Qiong Yang
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Aiying Lei
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
| | - Ming Chen
- Guangxi Academy of Fishery Sciences, Nanning,China,P.R. China
- * E-mail:
| |
Collapse
|
13
|
Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, Najiah M. Efficacy of live attenuated vaccine derived from the Streptococcus agalactiae on the immune responses of Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:235-243. [PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P < 0.05) in serum IgM titers and LSZ activity as compared to LAV2 and the control group (unvaccinated fish). The efficacy of LAV1 was proven effective as determined by the RPS values, LAV1 at 81.58% as compared to LAV2 at 65.79%. Trial 2 of LAV1 and control group were further determined by administering primary and booster doses revealed a RPS value for LAV1 of 82.05%, with the significant enhancement on the immune responses of tilapia as compared to control group. In conclusion, LAV revealed to elevate antibody IgM levels, LSZ activity and provide long-term protection when added to feed. LAV is a low-cost vaccine shown to rapidly increase the immune response of fish and increase survival rates of fish against S. agalactiae infection.
Collapse
Affiliation(s)
- A A Laith
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - M A Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - W W I Nurhafizah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - H A Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - J Aya
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - A W M Effendy
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - M Najiah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
14
|
Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, Kasai H, Mino S, Sawabe T, Zamri-Saad M. Vibriosis in Fish: A Review on Disease Development and Prevention. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:3-22. [PMID: 30246889 DOI: 10.1002/aah.10045] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/16/2018] [Indexed: 05/19/2023]
Abstract
Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
Collapse
Affiliation(s)
- M Y Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurhidayu Al-Saari
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- International Institute for Halal Research and Training, International Islamic University Malaysia, KICT Building, Level 3, 53100, Gombak, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fathin-Amirah Mursidi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aslizah Mohd-Aris
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, School of Biology, Universiti Teknologi MARA, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia
| | - M N A Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hisae Kasai
- Laboratory of Fish Pathology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - M Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Li M, Li L, Huang T, Liu Y, Lei A, Ma C, Chen F, Chen M. Effects of Attenuated S. agalactiae Strain YM001 on Intestinal Microbiota of Tilapia Are Recoverable. Front Microbiol 2019; 9:3251. [PMID: 30687255 PMCID: PMC6333689 DOI: 10.3389/fmicb.2018.03251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022] Open
Abstract
Previously, we constructed and characterized the vaccine efficacy of attenuated S. agalactiae strain YM001 in tilapia. In this study, the potential impacts of YM001 on the tilapia intestinal microbiota were assessed by qPCR and 16S rRNA sequencing methods. The results showed that YM001 distributed unevenly in different parts of intestine, peaked in the intestine at 12 h after oral administration, and then declined gradually. YM001 caused 0% mortality of fish during the entire experimental period, while the referent strain HN016 caused 100% mortality at 3 d after oral administration. However, the intestinal microbiota could be changed by YM001, the diversity of intestinal microbiota decreased first and gradually recovered after oral administration. The diversity of intestinal microbiota of tilapia was negatively correlated with the content of HN016 in the intestinal tract. The oral YM001 mainly changed the abundance of Streptococcus, Cetobacterium, Akkermansia, Romboutsia, Bacteroides, Brevinema, Lachnospiraceae_NK4A136-group, coprothermobactter, presiomonas, and Roseburia in intestine. The present study indicate that oral administration of YM001 altered the diversity and composition of intestinal microbiota in tilapia, but these change were only temporary, non-lethal, and recoverable. The results provide a more comprehensive experimental basis for the safety of oral YM001 vaccines.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Yu Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Aiying Lei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Department of Bacteriology, Guangxi Veterinary Research Institute, Nanning, China
| | - Fuyan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| |
Collapse
|
16
|
Zhang Z, Lan J, Li Y, Hu M, Yu A, Zhang J, Wei S. The pathogenic and antimicrobial characteristics of an emerging Streptococcus agalactiae serotype IX in Tilapia. Microb Pathog 2018; 122:39-45. [DOI: 10.1016/j.micpath.2018.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
|
17
|
Chau ML, Chen SL, Yap M, Hartantyo SHP, Chiew PKT, Fernandez CJ, Wong WK, Fong RK, Tan WL, Tan BZY, Ng Y, Aung KT, Mehershahi KS, Goh C, Kang JSL, Barkham T, Leong AOK, Gutiérrez RA, Ng LC. Group B Streptococcus Infections Caused by Improper Sourcing and Handling of Fish for Raw Consumption, Singapore, 2015-2016. Emerg Infect Dis 2018; 23. [PMID: 29148967 PMCID: PMC5708258 DOI: 10.3201/eid2312.170596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Policies and guidelines regarding sale of ready-to-eat raw fish dishes have been updated. We assessed microbial safety and quality of raw fish sold in Singapore during 2015–2016 to complement epidemiologic findings for an outbreak of infection with group B Streptococcus serotype III sequence type (ST) 283 associated with raw fish consumption. Fish-associated group B Streptococcus ST283 strains included strains nearly identical (0–2 single-nucleotide polymorphisms) with the human outbreak strain, as well as strains in another distinct ST283 clade (57–71 single-nucleotide polymorphisms). Our investigations highlight the risk for contamination of freshwater fish (which are handled and distributed separately from saltwater fish sold as sashimi) and the need for improved hygienic handling of all fish for raw consumption. These results have led to updated policy and guidelines regarding the sale of ready-to-eat raw fish dishes in Singapore.
Collapse
|
18
|
Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS One 2018; 13:e0195994. [PMID: 29694430 PMCID: PMC5919020 DOI: 10.1371/journal.pone.0195994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
Zymomonas mobilis has the special Entner-Doudoroff (ED) pathway and it has excellent industrial characteristics, including low cell mass formation, high-specific productivity,ethanol yield, notable ethanol tolerance and wide pH range, a relatively small genome size. In this study, the genome sequences of NRRL B-14023 and NRRL B-12526 were sequenced and compared with other strains to explore their evolutionary relationships and the genetic basis of Z. mobilis. The comparative genomic analyses revealed that the 8 strains share a conserved core chromosomal backbone. ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 share 98% sequence identity across the whole genome sequences. Highly similar plasmids and CRISPR repeats were detected in these strains. A whole-genome phylogenetic tree of the 8 strains indicated that NRRL B-12526, NRRL B-14023 and ATCC 10988 had a close evolutionary relationship with the strain ZM4. Furthermore, strains ATCC29191 and ATCC29192 had distinctive CRISPR with a far distant relationship. The size of the pan-genome was 1945 genes, including 1428 core genes and 517 accessory genes. The genomes of Z. mobilis were highly conserved; particularly strains ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 had a close genomic relationship. This comparative study of Z. mobilis presents a foundation for future functional analyses and applications.
Collapse
|
19
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
20
|
An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus). Vaccines (Basel) 2016; 4:vaccines4040048. [PMID: 27983591 PMCID: PMC5192368 DOI: 10.3390/vaccines4040048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.
Collapse
|