1
|
Feng Y, Mao T, Yi J, Zhang N, Gu Y, Shen H, Chen J. Runt-related transcription factors: from pathogenesis to therapeutic targets in multiple-organ fibrosis. Front Cell Dev Biol 2025; 13:1528645. [PMID: 40356603 PMCID: PMC12066561 DOI: 10.3389/fcell.2025.1528645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Fibrosis is a partially manageable process that leads to scarring and tissue hardening by prompting myofibroblasts to deposit significant amounts of extracellular matrix (ECM) following injury. It results in detrimental consequences and pathological characteristics, which hinder the functioning of associated organs and increase mortality rates. Runt-related transcription factors (RUNX) are part of a highly conserved family of heterodimer transcription factors, comprising RUNX1, RUNX2, and RUNX3. They are involved in several biological processes and undergo various forms of post-translational modification. RUNX regulates multiple targets and pathways to impact fibrosis, indicating promise for clinical application. Therefore, its significance in the fibrosis process should not be disregarded. The review begins with an objective description of the structure, transcriptional mechanism, and biological function of RUNX1, RUNX2, and RUNX3. A subsequent analysis is made of their physiological relationship with heart, lung, kidney, and liver, followed by a focus on the signaling mechanism of RUNX in regulating fibrosis of these organs. Furthermore, potential agents or drugs targeting RUNX for treating organ fibrosis are summarized, along with an evaluation of the therapeutic prospects and potential value of RUNX in fibrosis. Further research into RUNX could contribute to the development of novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Tianshi Mao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jifei Yi
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Na Zhang
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yinying Gu
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Huifen Shen
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jie Chen
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Suzuki S, Tanaka S, Kametani Y, Umeda A, Nishinaka K, Egawa K, Okada Y, Obana M, Fujio Y. Runx1 is upregulated by STAT3 and promotes proliferation of neonatal rat cardiomyocytes. Physiol Rep 2023; 11:e15872. [PMID: 38040660 PMCID: PMC10691971 DOI: 10.14814/phy2.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Though it is well known that mammalian cardiomyocytes exit cell cycle soon after birth, the mechanisms that regulate proliferation remain to be fully elucidated. Recent studies reported that cardiomyocytes undergo dedifferentiation before proliferation, indicating the importance of dedifferentiation in cardiomyocyte proliferation. Since Runx1 is expressed in dedifferentiated cardiomyocytes, Runx1 is widely used as a dedifferentiation marker of cardiomyocytes; however, little is known about the role of Runx1 in the proliferation of cardiomyocytes. The purpose of this study was to clarify the functional significance of Runx1 in cardiomyocyte proliferation. qRT-PCR analysis and immunoblot analysis demonstrated that Runx1 expression was upregulated in neonatal rat cardiomyocytes when cultured in the presence of FBS. Similarly, STAT3 was activated in the presence of FBS. Interestingly, knockdown of STAT3 significantly decreased Runx1 expression, indicating Runx1 is regulated by STAT3. We next investigated the effect of Runx1 on proliferation. Immunofluorescence microscopic analysis using an anti-Ki-67 antibody revealed that knockdown of Runx1 decreased the ratio of proliferating cardiomyocytes. Conversely, Runx1 overexpression using adenovirus vector induced cardiomyocyte proliferation in the absence of FBS. Finally, RNA-sequencing analysis revealed that Runx1 overexpression induced upregulation of cardiac fetal genes and downregulation of genes associated with fatty acid oxidation. Collectively, Runx1 is regulated by STAT3 and induces cardiomyocyte proliferation by juvenilizing cardiomyocytes.
Collapse
Affiliation(s)
- Shota Suzuki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yusuke Kametani
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Ayaka Umeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Kosuke Nishinaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Kaho Egawa
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI)Osaka UniversitySuita CityOsakaJapan
- Global Center for Medical Engineering and Informatics (MEI)Osaka UniversitySuita CityOsakaJapan
- Radioisotope Research Center, Institute for Radiation SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI)Osaka UniversitySuita CityOsakaJapan
| |
Collapse
|
3
|
Song J, Zhang X, Lv S, Liu M, Hua X, Yue L, Wang S, He W. Age-related promoter-switch regulates Runx1 expression in adult rat hearts. BMC Cardiovasc Disord 2023; 23:541. [PMID: 37936072 PMCID: PMC10631011 DOI: 10.1186/s12872-023-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Runt-related transcription factor-1 (RUNX1), a key member of the core-binding factor family of transcription factors, has emerged as a novel therapeutic target for cardiovascular disease. There is an urgent need to fully understand the expression pattern of Runx1 in the heart and the mechanisms by which it is controlled under normal conditions and in response to disease. The expression of Runx1 is regulated at the transcriptional level by two promoters designated P1 and P2. Alternative usage of these two promoters creates differential mRNA transcripts diversified in distribution and translational potential. While the significance of P1/P2 promoter-switch in the transcriptional control of Runx1 has been highlighted in the embryogenic process, very little is known about the level of P1- and P2-specific transcripts in adult hearts, and the underlying mechanisms controlling the promoter-switch. METHODS To amplify P1/P2 specific sequences in the heart, we used two different sense primers complementary to either P1 or P2 5'-regions to monitor the expression of P1/P2 transcripts. DNA methylation levels were assessed at the Runx1 promoter regions. Rats were grouped by age. RESULTS The expression levels of both P1- and P2-derived Runx1 transcripts were decreased in older rats when compared with that in young adults, paralleled with an age-dependent decline in Runx1 protein level. Furthermore, older rats demonstrated a higher degree of DNA methylation at Runx1 promoter regions. Alternative promoter usage was observed in hearts with increased age, as reflected by altered P1:P2 mRNA ratio. CONCLUSION Our data demonstrate that the expression of Runx1 in the heart is age-dependent and underscore the importance of gene methylation in the promoter-mediated transcriptional control of Runx1, thereby providing new insights to the role of epigenetic regulation in the heart.
Collapse
Affiliation(s)
- Jiawei Song
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sinan Lv
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Jia X, Lin W, Wang W. Regulation of chromatin organization during animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:19. [PMID: 37259007 DOI: 10.1186/s13619-023-00162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Activation of regeneration upon tissue damages requires the activation of many developmental genes responsible for cell proliferation, migration, differentiation, and tissue patterning. Ample evidence revealed that the regulation of chromatin organization functions as a crucial mechanism for establishing and maintaining cellular identity through precise control of gene transcription. The alteration of chromatin organization can lead to changes in chromatin accessibility and/or enhancer-promoter interactions. Like embryogenesis, each stage of tissue regeneration is accompanied by dynamic changes of chromatin organization in regeneration-responsive cells. In the past decade, many studies have been conducted to investigate the contribution of chromatin organization during regeneration in various tissues, organs, and organisms. A collection of chromatin regulators were demonstrated to play critical roles in regeneration. In this review, we will summarize the progress in the understanding of chromatin organization during regeneration in different research organisms and discuss potential common mechanisms responsible for the activation of regeneration response program.
Collapse
Affiliation(s)
- Xiaohui Jia
- National Institute of Biological Sciences, Beijing, 102206, China
- China Agricultural University, Beijing, 100083, China
| | - Weifeng Lin
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Sosnowski P, Sass P, Stanisławska-Sachadyn A, Krzemiński M, Sachadyn P. Between therapy effect and false-positive result in animal experimentation. Biomed Pharmacother 2023; 160:114317. [PMID: 36736277 DOI: 10.1016/j.biopha.2023.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Despite the animal models' complexity, researchers tend to reduce the number of animals in experiments for expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such risks using an example from experimental regenerative therapy and propose a machine-learning solution to validate treatment effects. The example analysed was the pharmacological treatment of ear pinna punch wound healing in mice. Wound closure data analysed included eight groups treated with an epigenetic inhibitor, zebularine, and eight control groups receiving vehicle alone, of six mice each. We confirmed the zebularine healing effect for all 64 pairwise comparisons between treatment and control groups but also determined minor yet statistically significant differences between control groups in five of 28 possible comparisons. The occurrences of significant differences between the control groups, regardless of standardised experimental conditions, indicate a risk of statistically significant effects in the case a compound lacking the desired biological activity is tested. Since the criterion of statistical significance itself can be confusing, we demonstrate a machine-learning algorithm trained on datasets representing treatment and control experiments as a helpful tool for validating treatment outcomes. We tested two machine-learning approaches, Naïve Bayes and Support Vector Machine classifiers. In contrast to the Mann-Whitney U-test, indicating enhanced healing effects for some control groups receiving saline alone, both machine-learning algorithms faultlessly assigned all animal groups receiving saline to the controls.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Stanisławska-Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Krzemiński
- Institute of Applied Mathematics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
7
|
Gundling WE, Post S, Illsley NP, Echalar L, Zamudio S, Wildman DE. Ancestry dependent balancing selection of placental dysferlin at high-altitude. Front Cell Dev Biol 2023; 11:1125972. [PMID: 37025168 PMCID: PMC10070852 DOI: 10.3389/fcell.2023.1125972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: The placenta mediates fetal growth by regulating gas and nutrient exchange between the mother and the fetus. The cell type in the placenta where this nutrient exchange occurs is called the syncytiotrophoblast, which is the barrier between the fetal and maternal blood. Residence at high-altitude is strongly associated with reduced 3rd trimester fetal growth and increased rates of complications such as preeclampsia. We asked whether altitude and/or ancestry-related placental gene expression contributes to differential fetal growth under high-altitude conditions, as native populations have greater fetal growth than migrants to high-altitude. Methods: We have previously shown that methylation differences largely accounted for altitude-associated differences in placental gene expression that favor improved fetal growth among high-altitude natives. We tested for differences in DNA methylation between Andean and European placental samples from Bolivia [La Paz (∼3,600 m) and Santa Cruz, Bolivia (∼400 m)]. One group of genes showing significant altitude-related differences are those involved in cell fusion and membrane repair in the syncytiotrophoblast. Dysferlin (DYSF) shows greater expression levels in high- vs. low-altitude placentas, regardless of ancestry. DYSF has a single nucleotide variant (rs10166384;G/A) located at a methylation site that can potentially stimulate or repress DYSF expression. Following up with individual DNA genotyping in an expanded sample size, we observed three classes of DNA methylation that corresponded to individual genotypes of rs10166384 (A/A < A/G < G/G). We tested whether these genotypes are under Darwinian selection pressure by sequencing a ∼2.5 kb fragment including the DYSF variants from 96 Bolivian samples and compared them to data from the 1000 genomes project. Results: We found that balancing selection (Tajima's D = 2.37) was acting on this fragment among Andeans regardless of altitude, and in Europeans at high-altitude (Tajima's D = 1.85). Discussion: This supports that balancing selection acting on dysferlin is capable of altering DNA methylation patterns based on environmental exposure to high-altitude hypoxia. This finding is analogous to balancing selection seen frequency-dependent selection, implying both alleles are advantageous in different ways depending on environmental circumstances. Preservation of the adenine (A) and guanine (G) alleles may therefore aid both Andeans and Europeans in an altitude dependent fashion.
Collapse
Affiliation(s)
- William E. Gundling
- Department of Biology, Christian Brothers University, Memphis, TN, United States
| | - Sasha Post
- College of Public Health, University of South Florida, Tampa, FL, United States
| | | | - Lourdes Echalar
- Instituto Boliviano de Biología de Altura, Universidad de San Andreas Mayor, La Paz, Bolivia
| | - Stacy Zamudio
- Placental Research Group LLC., Maplewood, NJ, United States
| | - Derek E. Wildman
- College of Public Health, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
9
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
10
|
Ryan R, Moyse BR, Richardson RJ. Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol 2020; 154:533-548. [PMID: 32926230 PMCID: PMC7609419 DOI: 10.1007/s00418-020-01913-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
The study of heart repair post-myocardial infarction has historically focused on the importance of cardiomyocyte proliferation as the major factor limiting adult mammalian heart regeneration. However, there is mounting evidence that a narrow focus on this one cell type discounts the importance of a complex cascade of cell-cell communication involving a whole host of different cell types. A major difficulty in the study of heart regeneration is the rarity of this process in adult animals, meaning a mammalian template for how this can be achieved is lacking. Here, we review the adult zebrafish as an ideal and unique model in which to study the underlying mechanisms and cell types required to attain complete heart regeneration following cardiac injury. We provide an introduction to the role of the cardiac microenvironment in the complex regenerative process and discuss some of the key advances using this in vivo vertebrate model that have recently increased our understanding of the vital roles of multiple different cell types. Due to the sheer number of exciting studies describing new and unexpected roles for inflammatory cell populations in cardiac regeneration, this review will pay particular attention to these important microenvironment participants.
Collapse
Affiliation(s)
- Rebecca Ryan
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Bethany R Moyse
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Rebecca J Richardson
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
11
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
12
|
Koth J, Wang X, Killen AC, Stockdale WT, Potts HG, Jefferson A, Bonkhofer F, Riley PR, Patient RK, Göttgens B, Mommersteeg MTM. Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development 2020; 147:dev186569. [PMID: 32341028 PMCID: PMC7197712 DOI: 10.1242/dev.186569] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.
Collapse
Affiliation(s)
- Jana Koth
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Xiaonan Wang
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Abigail C Killen
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - William T Stockdale
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Helen G Potts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Andrew Jefferson
- Micron Advanced Bioimaging Unit, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Florian Bonkhofer
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Roger K Patient
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mathilda T M Mommersteeg
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
13
|
Wang J, Jiang X, Zhao L, Zuo S, Chen X, Zhang L, Lin Z, Zhao X, Qin Y, Zhou X, Yu XY. Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharm Sin B 2020; 10:313-326. [PMID: 32082976 PMCID: PMC7016296 DOI: 10.1016/j.apsb.2019.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of exogenous lineage-determining factors succeeds in directly reprogramming fibroblasts to various cell types. Several studies have reported reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs). CRISPR/Cas9-mediated gene activation is a potential approach for cellular reprogramming due to its high precision and multiplexing capacity. Here we show lineage reprogramming to iCPCs through a dead Cas9 (dCas9)-based transcription activation system. Targeted and robust activation of endogenous cardiac factors, including GATA4, HAND2, MEF2C and TBX5 (G, H, M and T; GHMT), can reprogram human fibroblasts toward iCPCs. The iCPCs show potentials to differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. Addition of MEIS1 to GHMT induces cell cycle arrest in G2/M and facilitates cardiac reprogramming. Lineage reprogramming of human fibroblasts into iCPCs provides a promising cellular resource for disease modeling, drug discovery and individualized cardiac cell therapy.
Collapse
|
14
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
15
|
Yang C, Zhang Y, Song Y, Lu X, Gao H. Genome-wide DNA methylation analysis of the regenerative and non-regenerative tissues in sika deer (Cervus nippon). Gene 2018; 676:249-255. [PMID: 30016669 DOI: 10.1016/j.gene.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023]
Abstract
Deer antlers, the secondary organs of deer, are a unique model to study regeneration of organ/tissue in mammals. Pedicle periosteum (PP) is the key tissue type for antler regeneration. Based on our previous study, the DNA methylation was found to be the basic molecular mechanism underlying the antler regeneration. In this study, we compare the genome-wide DNA methylation level in regenerative tissues (the potentiated PP of antler, muscle, heart and liver) and non-regenerative tissue (the dormant PP) of deer by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method. Our results showed that DNA methylation level was significantly lower in the regenerative tissues compared to the non-regenerative tissue (P < 0.05). Furthermore, 26 T-DMRs which displayed different methylated status in regenerative and non-regenerative tissues were identified by the MSAP method, and were further confirmed by Southern blot analysis. Taken together, our data suggest that DNA methylation, an important epigenetic regulation mechanism, may play an important role in the mammalian tissue/organ regeneration.
Collapse
Affiliation(s)
- Chun Yang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China.
| | - Yan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, PR China
| | - Yanyan Song
- No. 2 Hospital of Jilin University, Changchun, PR China
| | - Xiao Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Hang Gao
- No. 1 Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
16
|
Sass PA, Dąbrowski M, Charzyńska A, Sachadyn P. Transcriptomic responses to wounding: meta-analysis of gene expression microarray data. BMC Genomics 2017; 18:850. [PMID: 29115927 PMCID: PMC5678747 DOI: 10.1186/s12864-017-4202-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/08/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. RESULTS We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported in this context such as PTPRC and AQP4. CONCLUSIONS We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.
Collapse
Affiliation(s)
- Piotr Andrzej Sass
- Department Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Charzyńska
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Sachadyn
- Department Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
17
|
Górnikiewicz B, Ronowicz A, Madanecki P, Sachadyn P. Genome-wide DNA methylation profiling of the regenerative MRL/MpJ mouse and two normal strains. Epigenomics 2017; 9:1105-1122. [DOI: 10.2217/epi-2017-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: We aimed to identify the pivotal differences in the DNA methylation profiles between the regeneration capable MRL/MpJ mouse and reference mouse strains. Materials & methods: Global DNA methylation profiling was performed in ear pinnae, bone marrow, spleen, liver and heart from uninjured adult females of the MRL/MpJ and C57BL/6J and BALB/c. Results & conclusion: A number of differentially methylated regions (DMRs) distinguishing between the MRL/MpJ mouse and both references were identified. In the ear pinnae, the DMRs were enriched in genes associated with development, inflammation and apoptosis, and in binding sites of transcriptional modulator Smad1. Several DMRs overlapped previously mapped quantitative trait loci of regenerative capability. The results suggest potential epigenetic determinants of regenerative phenomenon.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Madanecki
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
18
|
Ponnusamy M, Li PF, Wang K. Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 2017; 74:1019-1034. [PMID: 27695872 PMCID: PMC11107761 DOI: 10.1007/s00018-016-2375-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
Cardiomyocyte proliferation and regeneration are key to the functional recovery of myocardial tissue from injury. In the recent years, studies on cardiomyocyte proliferation overturned the traditional belief that adult cardiomyocytes permanently withdraw from the cell cycle activity. Hence, targeting cardiomyocyte proliferation is one of the potential therapeutic strategies for myocardial regeneration and repair. To achieve this, a deep understanding of the fundamental mechanisms involved in cardiomyocyte cell cycle as well as differences between neonatal and adult cardiomyocytes' cell cycle activity is required. This review focuses on the recent progress in understanding of cardiomyocyte cell cycle activity at different life stages viz., gestation, birth, and adulthood. The temporal expression/activities of major cell cycle activators (cyclins and CDKs), inhibitors (p21, p27, p57, p16, and p18), and cell-cycle-associated proteins (Rb, p107, and p130) in cardiomyocytes during gestation and postnatal life are described in this review. The influence of different transcription factors and microRNAs on the expression of cell cycle proteins is demonstrated. This review also deals major pathways (PI3K/AKT, Wnt/β-catenin, and Hippo-YAP) associated with cardiomyocyte cell cycle progression. Furthermore, the postnatal alterations in structure and cellular events responsible for the loss of cell cycle activity are also illustrated.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
19
|
Podolak-Popinigis J, Ronowicz A, Dmochowska M, Jakubiak A, Sachadyn P. The methylome and transcriptome of fetal skin: implications for scarless healing. Epigenomics 2016; 8:1331-1345. [PMID: 27510554 DOI: 10.2217/epi-2016-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Fetal skin is known to heal without scarring. In mice, the phenomenon is observed until the 16-17 day of gestation - the day of transition from scarless to normal healing. The study aims to identify key methylome and transcriptome changes following the transition. MATERIALS & METHODS Methylome and transcriptome profiles were analyzed in murine dorsal skin using microarray approach. RESULTS & CONCLUSION The genes associated with inflammatory response and hyaluronate degradation showed increased DNA methylation before the transition, while those involved in embryonic morphogenesis, neuron differentiation and synapse functions did so after. A number of the methylome alterations were retained until adulthood and correlated with gene expression, while the functional associations imply that scarless healing depends on epigenetic regulation.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Dmochowska
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jakubiak
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland.,Department of Biology & Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland.,Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
20
|
Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, Singh SP, Tackett AJ, Hauer-Jensen M. Effects of ionizing radiation on the heart. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:319-327. [PMID: 27919338 DOI: 10.1016/j.mrrev.2016.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
This article provides an overview of studies addressing effects of ionizing radiation on the heart. Clinical studies have identified early and late manifestations of radiation-induced heart disease, a side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the radiation field. Studies in preclinical animal models have contributed to our understanding of the mechanisms by which radiation may injure the heart. More recent observations in human subjects suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously thought. This has led to examinations of low-dose photons and low-dose charged particle irradiation in animal models. Lastly, studies have started to identify non-invasive methods for detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and potential interventions that may prevent or mitigate these adverse effects.
Collapse
Affiliation(s)
- Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States.
| | - Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States
| | - Xiao-Wen Mao
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Gregory A Nelson
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Igor Koturbash
- University of Arkansas for Medical Sciences, Department of Environment and Occupational Health, Little Rock, AR, United States
| | - Sharda P Singh
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, United States
| | - Alan J Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, United States
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Surgical Service, Little Rock, AR, United States
| |
Collapse
|
21
|
Exchange of chemical signals between cardiac cells. Fundamental role on cell communication and metabolic cooperation. Exp Cell Res 2016; 346:130-6. [PMID: 27237090 DOI: 10.1016/j.yexcr.2016.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023]
Abstract
The exchange of chemical signals between cardiac cells and its relevance for cell communication and metabolic cooperation was reviewed. The role of gap junctions on the transfer of chemical information was discussed as well as the different factors involved in its regulation including changes in cell volume, high glucose, activation of the renin angiotensin aldosterone system including the intracrine effect of renin and angiotensin II on chemical coupling and cardiac energetics. Finally, the possible role of epigenetic changes of the renin angiotensin aldosterone system (RAAS) on the expression of components of the RAAS was discussed. The evidence available leads to the conception of the heart as a metabolic syncytium in which glucose as well nucleotides and hormones can flow from cell-to-cell though gap junctions, providing a new vision of how alterations in metabolic cooperation can induce cardiac diseases. These findings represent a stimulus for future research in this important area of cardiac physiology and pathology.
Collapse
|