1
|
Muslu T, Kahraman K, Akpinar BA, Cagirici HB, Jaronski E, Bradley C, Budak H. Noncoding elements in wheat defence response to fusarium head blight. Sci Rep 2025; 15:15167. [PMID: 40307260 DOI: 10.1038/s41598-025-00067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Wheat (Triticum aestivum L.) is a major source of global food security while various stressors, including biotic and abiotic factors, directly affect its production. Among these stressors, Fusarium infection poses a significant risk, leading to severe yield losses, and compromising the overall quality of the crop. To understand the regulatory mechanisms modulating wheat's response against Fusarium Head Blight (FHB) stress, a comprehensive analysis of the noncoding RNA profiles of two wheat varieties, Vida and Hank, was conducted. A dataset has been generated utilizing high throughput RNA sequencing (RNAseq) and small RNA sequencing (sRNAseq) technologies for identifying and characterizing microRNA (miRNA) and long noncoding RNA (lncRNA) profiles of these cultivars and the changes upon Fusarium infection. Our analysis revealed not only common but also cultivar- and condition-specific miRNAs and lncRNA transcripts, showing the unique regulatory responses exhibited by these wheat varieties under Fusarium stress. Furthermore, the functional properties of the identified miRNAs were investigated by identifying their putative coding sequence (CDS) targets. Additionally, the regulatory relationships between the putative miRNAs and lncRNAs were explored, providing a view of the complex molecular networks coordinating wheat's response against Fusarium infection. The proposed regulatory network includes the dynamic interplay between miRNAs, CDS targets, and lncRNAs, offering insights into potential key players in the adaptive responses of wheat to biotic stressors.
Collapse
Affiliation(s)
- Tugdem Muslu
- Montana BioAgriculture, Inc., Missoula, MT, 59802, USA
| | - Kadriye Kahraman
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
| | | | - Halise Busra Cagirici
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Egan Jaronski
- Montana BioAgriculture, Inc., Missoula, MT, 59802, USA
| | - Cliff Bradley
- Montana BioAgriculture, Inc., Missoula, MT, 59802, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, 59802, USA.
- Department of Agriculture, Arizona Western Entrepreneurial College, Yuma, AZ, 85366, USA.
| |
Collapse
|
2
|
Wang H, Yang X, Li T, Li Z, Zhao J, Wang Z, Wang Z, Li T, Chen C, Zhao J, Wang C, Liu X, Deng P, Ji W. Comparative transcriptomes reveal insights into different host responses associated with Fusarium head blight resistance in wheat. BMC PLANT BIOLOGY 2025; 25:509. [PMID: 40259243 PMCID: PMC12012965 DOI: 10.1186/s12870-025-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Fusarium head blight (FHB) has become a major challenge in global wheat production, causing severe yield losses and exacerbating food safety concerns. In recent years, FHB-related research has focused on understanding resistance mechanisms, identifying genetic markers, and breeding resistant varieties to mitigate the disease's impact on yield and quality. This study comparatively analyzed transcriptome data from six wheat materials with differing levels of resistance following infection by Fusarium graminearum (F. graminearum). The results displayed that a total of 26,767 protein-coding genes and 2,463 long non-coding RNAs (lncRNAs) showed differential expression levels between normal and FHB treatment in at least one material. Among them, 14,130 FHB-responsive protein-coding genes and 913 lncRNAs were identified as material-specific, with functions related to the unique disease resistance mechanisms of the respective materials. Some of these genes have previously been reported to participate in physiological processes related to wheat FHB resistance, including Pm3-like resistance proteins, lactoylglutathione lyase, serine/threonine protein phosphatases, NBS-LRR resistance proteins, glutathione S-transferase (GST), and RPM1 resistance proteins. Additionally, we integrated FHB-responsive genes and lncRNAs with previously reported FHB QTLs, and constructed an interaction regulatory network between pathogen and host through a co-expression network. Based on this network, we identified five genes (one gene encoding glutathione synthetase and four genes encoding glutathione transferase) in the glutathione metabolism pathway, which overlapped with Fhb2 QTLs regions and exhibited material-specific expression patterns. These results will provide new insights into further dissecting of the functional genes and lncRNAs involved in wheat FHB resistance.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaoying Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zuchun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Su C, Li X, Dong Y, Daniel B, Liu C, Xing Y, Ma D. Identification and functional analysis of wheat lincRNAs in response to Fusarium graminearum infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109898. [PMID: 40239247 DOI: 10.1016/j.plaphy.2025.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Intergenic long non-coding RNAs (lincRNAs) have recently been recognized as pivotal regulators in plant-pathogen interactions. However, the specific regulatory mechanisms of lincRNAs responding to Fusarium graminearum (F. graminearum) infection remain largely unexplored. Here, we performed time-series transcriptome profiling (0, 24, 48, and 72 h post-inoculation) and systematic identification of lincRNAs. A total of 1238 expressed lincRNAs were identified, among which 548 were differentially expressed lincRNAs during the time course of F. graminearum infection. We further predicted cis-regulatory lincRNA-mRNA pairs, comprising 347 lincRNAs and potential 1015 target genes, which were found to be mainly involved in amino acid metabolism and biosynthetic pathways. Moreover, 19 lincRNAs were predicted as putative precursors or endogenous target mimics of miRNAs. Subsequently, we verified that two lincRNAs, MSTRG.6494 and MSTRG.32080, showed strong transcriptional responses to F. graminearum infection by quantitative real-time PCR (qPCR) screening. Silencing MSTRG.6494 reduced the expression level of defense-related genes, resulting in reduced resistance to fungal pathogenicity. Meanwhile, the expression level of the potential target gene ATP synthase subunit beta (TaATP2) was significantly decreased in MSTRG.6494-silenced plants infected with F. graminearum. Overall, we performed the genome-wide identification of lincRNAs and their possible regulatory networks during F. graminearum infection-related process, confirming that MSTRG.6494 participates in wheat resistance to F. graminearum, may be via targeting TaATP2 to enhance defense responses. Our findings provide new insights into the regulatory mechanism of lincRNAs for Fusarium head blight (FHB) resistance, suggesting this mechanism as an essential strategy for protecting wheat from F. graminearum.
Collapse
Affiliation(s)
- Chang Su
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xue Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ye Dong
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Bimpong Daniel
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Chao Liu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; College of biochemical Engineering, Jingzhou Institute of Technology, Jingzhou, 434020, China
| | - Yujun Xing
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Dongfang Ma
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Yang F, Wu X, Chen L, Qi M. The Tomato lncRNA47258-miR319b-TCP Module in Biocontrol Bacteria Sneb821 Induced Plants Resistance to Meloidogyne incognita. Pathogens 2025; 14:256. [PMID: 40137741 PMCID: PMC11945786 DOI: 10.3390/pathogens14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of non-coding RNAs. In the study of Pseudomonas putida Sneb821-induced tomato resistance to Meloidogyne incognita, reverse transcription polymerase chain reaction (RT-PCR) was employed to validate 12 lncRNAs in tomato. Among them, the lncRNA47258/miR319b/TCP molecular regulatory module was likely implicated in the process of Sneb821-induced tomato resistance against M. incognita. Through the application of tomato hairy root and virus-induced gene silencing (VIGS) technologies for the investigation of lncRNA47258, it was determined that lncRNA47258 could target the TCP (Solyc07g062681.1) gene and modulate the metabolic pathway of tomato jasmonic acid-related indices, thereby impeding the infection of M. incognita. Moreover, the overexpression of the target gene TCP (Solyc07g062681.1) using tomato hairy root technology demonstrated that it could regulate the jasmonic acid synthesis pathway in tomato, consequently obstructing the infection and suppressing the development of M. incognita. Collectively, lncRNA47258/miR319b/TCP (Solyc07g062681.1) was preliminarily verified to be involved in the Sneb821-induced resistance process against M. incognita in tomato.
Collapse
Affiliation(s)
- Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaoxiao Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
5
|
Ozdemir S, Zadegan SB, Sultana MS, Coffey N, Rice JH, Hewezi T. Regulation and Functions of Long Noncoding RNAs During Meloidogyne incognita Parasitism of Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:72-83. [PMID: 39561195 DOI: 10.1094/mpmi-10-24-0140-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of various aspects of immune response and plant-pathogen interactions. However, the regulatory function of lncRNAs during plant-nematode interaction remains largely elusive. In this study, we investigated the differential regulation and function of lncRNAs during two different stages of tomato infection by the root-knot nematode Meloidogyne incognita. At the early stage of infection, 2,218 and 2,827 lncRNAs were regulated locally in the M. incognita-induced galls and systemically in the neighboring root cells, respectively. However, at the later stage of infection, the number of M. incognita-regulated lncRNAs was dramatically reduced, with only 49 lncRNAs being identified as differentially expressed. Differentially expressed lncRNAs were predicted to encode peptides with functionally annotated domains, providing insights into the potential roles of these peptides in regulating gene expression, RNA stability and splicing, and protein-protein-interactions. Among the differentially expressed lncRNAs, 55 were found to contain putative binding sites for 56 microRNAs (miRNAs). Overexpressing five of these lncRNAs significantly increased tomato resistance to M. incognita, supporting the functional importance of lncRNAs for establishing tomato-M. incognita interaction. Functional analysis of the target mimicry of lncRNAs towards miRNAs resulted in the identification of two novel regulatory modules involving miR47 and miR156e-5p and their targeted genes that regulate tomato responses to M. incognita parasitism. Taken together, our data provide novel insights into the transcriptional and posttranscriptional regulatory functions of lncRNA and open a new avenue to engineer crop plants with enhanced nematode resistance by leveraging the regulatory potential of lncRNAs. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Selin Ozdemir
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Nicole Coffey
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
6
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Zhao Z, Yang Y, Iqbal A, Wu Q, Zhou L. Biological Insights and Recent Advances in Plant Long Non-Coding RNA. Int J Mol Sci 2024; 25:11964. [PMID: 39596034 PMCID: PMC11593582 DOI: 10.3390/ijms252211964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Long non-coding RNA (lncRNA) refers to an RNA molecule longer than 200 nucleotides (nt) that plays a significant role in regulating essential molecular and biological processes. It is commonly found in animals, plants, and viruses, and is characterized by features such as epigenetic markers, developmental stage-specific expression, and tissue-specific expression. Research has shown that lncRNA participates in anatomical processes like plant progression, while also playing a crucial role in plant disease resistance and adaptation mechanisms. In this review, we provide a concise overview of the formation mechanism, structural characteristics, and databases related to lncRNA in recent years. We primarily discuss the biological roles of lncRNA in plant progression as well as its involvement in response to biotic and abiotic stresses. Additionally, we examine the current challenges associated with lncRNA and explore its potential application in crop production and breeding. Studying plant lncRNAs is highly significant for multiple reasons: It reveals the regulatory mechanisms of plant growth and development, promotes agricultural production and food security, and drives research in plant genomics and epigenetics. Additionally, it facilitates ecological protection and biodiversity conservation.
Collapse
Affiliation(s)
- Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Industrial Development Department, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
8
|
Numan M, Sun Y, Li G. Exploring the emerging role of long non-coding RNAs (lncRNAs) in plant biology: Functions, mechanisms of action, and future directions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108797. [PMID: 38850732 DOI: 10.1016/j.plaphy.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Mian Numan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuge Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
9
|
Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, Bennamoun M, Edwards D, Bayer PE. DNABERT-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J 2023; 21:5676-5685. [PMID: 38058296 PMCID: PMC10696397 DOI: 10.1016/j.csbj.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) have been shown to play an important role in plant gene regulation, involving both epigenetic and transcript regulation. LncRNAs are transcripts longer than 200 nucleotides that are not translated into functional proteins but can be translated into small peptides. Machine learning models have predominantly used transcriptome data with manually defined features to detect lncRNAs, however, they often underrepresent the abundance of lncRNAs and can be biased in their detection. Here we present a study using Natural Language Processing (NLP) models to identify plant lncRNAs from genomic sequences rather than transcriptomic data. The NLP models were trained to predict lncRNAs for seven model and crop species (Zea mays, Arabidopsis thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Glycine max and Oryza sativa) using publicly available genomic references. We demonstrated that lncRNAs can be accurately predicted from genomic sequences with the highest accuracy of 83.4% for Z. mays and the lowest accuracy of 57.9% for B. rapa, revealing that genome assembly quality might affect the accuracy of lncRNA identification. Furthermore, we demonstrated the potential of using NLP models for cross-species prediction with an average of 63.1% accuracy using target species not previously seen by the model. As more species are incorporated into the training datasets, we expect the accuracy to increase, becoming a more reliable tool for uncovering novel lncRNAs. Finally, we show that the models can be interpreted using explainable artificial intelligence to identify motifs important to lncRNA prediction and that these motifs frequently flanked the lncRNA sequence.
Collapse
Affiliation(s)
| | - Mitchell Gill
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
10
|
Abstract
Robust plant immune systems are fine-tuned by both protein-coding genes and non-coding RNAs. Long non-coding RNAs (lncRNAs) refer to RNAs with a length of more than 200 nt and usually do not have protein-coding function and do not belong to any other well-known non-coding RNA types. The non-protein-coding, low expression, and non-conservative characteristics of lncRNAs restrict their recognition. Although studies of lncRNAs in plants are in the early stage, emerging studies have shown that plants employ lncRNAs to regulate plant immunity. Moreover, in response to stresses, numerous lncRNAs are differentially expressed, which manifests the actions of low-expressed lncRNAs and makes plant-microbe/insect interactions a convenient system to study the functions of lncRNAs. Here, we summarize the current advances in plant lncRNAs, discuss their regulatory effects in different stages of plant immunity, and highlight their roles in diverse plant-microbe/insect interactions. These insights will not only strengthen our understanding of the roles and actions of lncRNAs in plant-microbe/insect interactions but also provide novel insight into plant immune responses and a basis for further research in this field.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Jiang H, Gao W, Jiang BL, Liu X, Jiang YT, Zhang LT, Zhang Y, Yan SN, Cao JJ, Lu J, Ma CX, Chang C, Zhang HP. Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1107277. [PMID: 36818881 PMCID: PMC9929302 DOI: 10.3389/fpls.2023.1107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive. METHODS Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing. RESULTS The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 (TraesCS3D02G393900) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 (TraesCS7A02G267000) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways. DISCUSSION These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cheng Chang
- *Correspondence: Cheng Chang, ; Hai-ping Zhang,
| | | |
Collapse
|
12
|
Chen X, Jiang X, Niu F, Sun X, Hu Z, Gao F, Zhang H, Jiang Q. Overexpression of lncRNA77580 Regulates Drought and Salinity Stress Responses in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:181. [PMID: 36616307 PMCID: PMC9824792 DOI: 10.3390/plants12010181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Emerging evidence indicates that long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, the biological functions of most plant lncRNAs are still unknown. We previously discovered a soybean abiotic-stress-related lncRNA, lncRNA77580, and cloned the entire full-length sequence. Here, in order to fully identify the function of lncRNA77580 in soybean stress response, we created transgenic soybean lines overexpressing lncRNA77580. Compared with the wild type, overexpression of lncRNA77580 enhances the drought tolerance of soybean. However, the transgenic plants exhibit increased sensitivity to high salinity at the seedling stage. We found that lncRNA77580 modulates the transcription of different gene sets during salt and drought stress response. Under water deficit at the reproductive stage, lncRNA77580 overexpression increases the seed yield by increasing the seed number per plant. These results provide insight into the role of lncRNA77580 in soybean stress response.
Collapse
Affiliation(s)
- Xiangqian Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemin Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengjuan Niu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianjun Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyan Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
17
|
Cao P, Zhan C, Yin J, Gong S, Ma D, Li Y. Genome-wide identification of long intergenic non-coding RNAs for Ralstonia solanacearum resistance in tomato ( Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2022; 13:981281. [PMID: 36186038 PMCID: PMC9523475 DOI: 10.3389/fpls.2022.981281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 05/26/2023]
Abstract
There is growing evidences indicating that long intergenic ncRNAs (lincRNAs) play key roles in plant development and stress responses. To research tomato lincRNA functions during the interaction between tomato and Ralstonia solanacearum, RNA-seq data of tomato plants inoculated with R. solanacearum was analyzed. In this study, 315 possible lincRNAs were identified from RNA-seq data. Then 23 differentially expressed lincRNAs between tomato plants inoculated with R. solanacearum and control were identified and a total of 171 possible target genes for these differentially expressed lincRNAs were predicted. Through GO and KEGG analysis, we found that lincRNA might be involved in jasmonic acid and ethylene signaling pathways to respond to tomato bacterial wilt infection. Furthermore, lincRNA may also be involved in regulating the expression of AGO protein. Subsequently, analysis of expression patterns between differentially expressed lincRNAs and adjacent mRNAs by qRT-PCR revealed that part of lincRNAs and their possible target genes exhibited positive correlation. Taken together, these results suggest that lincRNAs play potential roles in tomato against R. solanacearum infection and will provide fundamental information about the lincRNA-based plant defense mechanisms.
Collapse
Affiliation(s)
- Peina Cao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Chuang Zhan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture/Hubei Province Key Laboratory for Control of Crop Diseases, Pest and Weeds/Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
18
|
Wu Q, Pan YB, Su Y, Zou W, Xu F, Sun T, Grisham MP, Yang S, Xu L, Que Y. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Int J Mol Sci 2022; 23:10770. [PMID: 36142681 PMCID: PMC9506403 DOI: 10.3390/ijms231810770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Shaolin Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
20
|
Tian J, Zhang G, Zhang F, Ma J, Wen C, Li H. Genome-Wide Identification of Powdery Mildew Responsive Long Non-Coding RNAs in Cucurbita pepo. Front Genet 2022; 13:933022. [PMID: 35846119 PMCID: PMC9283782 DOI: 10.3389/fgene.2022.933022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Cucurbita pepo L. is an essential economic vegetable crop worldwide, and its production is severely affected by powdery mildew (PM). However, our understanding of the molecular mechanism of PM resistance in C. pepo is very limited. Long non-coding RNAs (lncRNAs) play an important role in regulating plant responses to biotic stress. Here, we systematically identified 2,363 reliably expressed lncRNAs from the leaves of PM-susceptible (PS) and PM-resistant (PR) C. pepo. The C. pepo lncRNAs are shorter in length and expressed at a lower level than the protein-coding transcripts. Among the 2,363 lncRNAs, a total of 113 and 146 PM-responsive lncRNAs were identified in PS and PR, respectively. Six PM-responsive lncRNAs were predicted as potential precursors of microRNAs (miRNAs). In addition, 58 PM-responsive lncRNAs were predicted as targets of miRNAs and one PM-responsive lncRNA was predicted as an endogenous target mimic (eTM). Furthermore, a total of 5,200 potential cis target genes and 5,625 potential trans target genes were predicted for PM-responsive lncRNAs. Functional enrichment analysis showed that these potential target genes are involved in different biological processes, such as the plant-pathogen interaction pathway, MAPK signaling pathway, and plant hormone signal transduction pathway. Taken together, this study provides a comprehensive view of C. pepo lncRNAs and explores the putative functions of PM-responsive lncRNAs, thus laying the foundation for further study of the regulatory mechanisms of lncRNAs responding to PM.
Collapse
Affiliation(s)
- Jiaxing Tian
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Guoyu Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Fan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jian Ma
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Haizhen Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| |
Collapse
|
21
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
22
|
Hurali DT, Bhurta R, Tyagi S, Sathee L, Sandeep AB, Singh D, Mallick N, Vinod, Jha SK. Analysis of NIA and GSNOR family genes and nitric oxide homeostasis in response to wheat-leaf rust interaction. Sci Rep 2022; 12:803. [PMID: 35039546 PMCID: PMC8764060 DOI: 10.1038/s41598-021-04696-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Nitric oxide (NO) modulates plant response to biotic and abiotic stresses by S-nitrosylation-mediated protein post-translational modification. Nitrate reductase (NR) and S-nitrosoglutathione reductase (GSNOR) enzymes are essential for NO synthesis and the maintenance of Nitric oxide/S-nitroso glutathione (NO/GSNO) homeostasis, respectively. S-nitrosoglutathione, formed by the S-nitrosylation reaction of NO with glutathione, plays a significant physiological role as the mobile reservoir of NO. The genome-wide analysis identified nine NR (NIA) and three GSNOR genes in the wheat genome. Phylogenic analysis revealed that the nine NIA genes +were clustered into four groups and the 3 GSNORs into two groups. qRT-PCR expression profiling of NIAs and GSNORs was done in Chinese spring (CS), a leaf rust susceptible wheat line showing compatible interaction, and Transfer (TR), leaf rust-resistant wheat line showing incompatible interaction, post-inoculation with leaf rust pathotype 77-5 (121-R-63). All the NIA genes showed upregulation during incompatible interaction in comparison with the compatible reaction. The GSNOR genes showed a variable pattern of expression: the TaGSNOR1 showed little change, whereas TaGSNOR2 showed higher expression during the incompatible response. TaGSNOR3 showed a rise of expression both in compatible and incompatible reactions. Before inoculation and after 72 h of pathogen inoculation, NO localization was studied in both compatible and incompatible reactions. The S-nitrosothiol accumulation, NR, and glutathione reductase activity showed a consistent increase in the incompatible interactions. The results demonstrate that both NR and GSNOR plays significant role in defence against the leaf rust pathogen in wheat by modulating NO homeostasis or signalling.
Collapse
Affiliation(s)
- Deepak T Hurali
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ramesh Bhurta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Adavi B Sandeep
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
23
|
Sharma Y, Sharma A, Madhu, Shumayla, Singh K, Upadhyay SK. Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Noncoding RNA 2022; 8:4. [PMID: 35076574 PMCID: PMC8788567 DOI: 10.3390/ncrna8010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.
Collapse
Affiliation(s)
- Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Santosh Kumar Upadhyay
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| |
Collapse
|
24
|
Yin J, Yan J, Hou L, Jiang L, Xian W, Guo Q. Identification and functional deciphering suggested the regulatory roles of long intergenic ncRNAs (lincRNAs) in increasing grafting pepper resistance to Phytophthora capsici. BMC Genomics 2021; 22:868. [PMID: 34856924 PMCID: PMC8638555 DOI: 10.1186/s12864-021-08183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As a popular and valuable technique, grafting is widely used to protect against soil-borne diseases and nematodes in vegetable production. Growing evidences have revealed that long intergenic ncRNAs (lincRNAs) are strictly regulated and play essential roles in plants development and stress responses. Nevertheless, genome-wide identification and function deciphering of pepper lincRNAs, especially for their roles in improving grafting pepper resistance to Phytophthora capsici is largely unknown. RESULTS In this study, RNA-seq data of grafting and control pepper plants with or without P. capsici inoculation were used to identify lincRNAs. In total, 2,388 reliable lincRNAs were identified. They were relatively longer and contained few exons than protein-coding genes. Similar to coding genes, lincRNAs had higher densities in euchromatin regions; and longer chromosome transcribed more lincRNAs. Expression pattern profiling suggested that lincRNAs commonly had lower expression than mRNAs. Totally, 607 differentially expressed lincRNAs (DE-lincRANs) were identified, of which 172 were found between P. capsici resistance grafting pepper sample GR and susceptible sample LDS. The neighboring genes of DE-lincRNAs and miRNAs competitively sponged by DE-lincRNAs were identified. Subsequently, the expression level of DE-lincRNAs was further confirmed by qRT-PCR and regulation patterns between DE-lincRNAs and neighboring mRNAs were also validated. Function annotation revealed that DE-lincRNAs increased the resistance of grafting prepper to P. capsici by modulating the expression of disease-defense related genes through cis-regulating and/or lincRNA-miRNA-mRNA interaction networks. CONCLUSIONS This study identified pepper lincRNAs and suggested their potential roles in increasing the resistance level of grafting pepper to P. capsici.
Collapse
Affiliation(s)
- Junliang Yin
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, 434000 Jingzhou, Hubei China
| | - Jiahui Yan
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Liling Jiang
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Wenrong Xian
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Qingyun Guo
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University, 810016 Xining, China
| |
Collapse
|
25
|
Kang Q, Meng J, Su C, Luan Y. Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method. Brief Bioinform 2021; 23:6399881. [PMID: 34662389 DOI: 10.1093/bib/bbab440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
The interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play important roles in biological activities. Specially, lncRNAs as endogenous target mimics (eTMs) can bind miRNAs to regulate the expressions of target messenger RNAs (mRNAs). A growing number of studies focus on animals, but the studies on plants are scarce and many functions of plant eTMs are unknown. This study proposes a novel ensemble pruning protocol for predicting plant miRNA-lncRNA interactions at first. It adaptively prunes the base models based on dual-path parallel ensemble method to meet the challenge of cross-species prediction. Then potential eTMs are mined from predicted results. The expression levels of RNAs are identified through biological experiment to construct the lncRNA-miRNA-mRNA regulatory network, and the functions of potential eTMs are inferred through enrichment analysis. Experiment results show that the proposed protocol outperforms existing methods and state-of-the-art predictors on various plant species. A total of 17 potential eTMs are verified by biological experiment to involve in 22 regulations, and 14 potential eTMs are inferred by Gene Ontology enrichment analysis to involve in 63 functions, which is significant for further research.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| |
Collapse
|
26
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
27
|
Cheng C, Liu F, Tian N, Mensah RA, Sun X, Liu J, Wu J, Wang B, Li D, Lai Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci Rep 2021; 11:16363. [PMID: 34381122 PMCID: PMC8358008 DOI: 10.1038/s41598-021-95832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Fan Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raphael Anue Mensah
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueli Sun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiapeng Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junwei Wu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
28
|
Cao P, Fan W, Li P, Hu Y. Genome-wide profiling of long noncoding RNAs involved in wheat spike development. BMC Genomics 2021; 22:493. [PMID: 34210256 PMCID: PMC8252277 DOI: 10.1186/s12864-021-07851-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of plant growth and development. Recent transcriptomic analyses have revealed the gene expression profiling in wheat spike development, however, the possible regulatory roles of lncRNAs in wheat spike morphogenesis remain largely unclear. RESULTS Here, we analyzed the genome-wide profiling of lncRNAs during wheat spike development at six stages, and identified a total of 8,889 expressed lncRNAs, among which 2,753 were differentially expressed lncRNAs (DE lncRNAs) at various developmental stages. Three hundred fifteen differentially expressed cis- and trans-regulatory lncRNA-mRNA pairs comprised of 205 lncRNAs and 279 genes were predicted, which were found to be mainly involved in the stress responses, transcriptional and enzymatic regulations. Moreover, the 145 DE lncRNAs were predicted as putative precursors or target mimics of miRNAs. Finally, we identified the important lncRNAs that participate in spike development by potentially targeting stress response genes, TF genes or miRNAs. CONCLUSIONS This study outlines an overall view of lncRNAs and their possible regulatory networks during wheat spike development, which also provides an alternative resource for genetic manipulation of wheat spike architecture and thus yield.
Collapse
Affiliation(s)
- Pei Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Wenjuan Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pengjia Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- National Center for Plant Gene Research, 100093, Beijing, China.
| |
Collapse
|
29
|
Bhatia G, Upadhyay SK, Upadhyay A, Singh K. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection. BMC PLANT BIOLOGY 2021; 21:265. [PMID: 34103007 PMCID: PMC8186045 DOI: 10.1186/s12870-021-03059-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. RESULTS Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for 'response to stress', 'response to biotic stimulus', 'immune system process', etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. CONCLUSIONS Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, 160014, India
| | | | - Anuradha Upadhyay
- National Research Centre for Grapes, Solapur Road, Pune, Maharashtra, 412307, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
30
|
Zheng W, Hu H, Lu Q, Jin P, Cai L, Hu C, Yang J, Dai L, Chen J. Genome-Wide Identification and Characterization of Long Noncoding RNAs Involved in Chinese Wheat Mosaic Virus Infection of Nicotiana benthamiana. BIOLOGY 2021; 10:biology10030232. [PMID: 33802832 PMCID: PMC8002735 DOI: 10.3390/biology10030232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. However, the roles of long non-coding RNAs (lncRNAs) in the interaction between plants and viruses is unclear, particularly for the Chinese wheat mosaic virus (CWMV) interaction. In this study, we used a deep RNA sequencing strategy to profile lncRNAs involved in the response to CWMV infection in Nicotiana benthamiana and analyzed differentially expressed lncRNAs that responded to CWMV infection, using a bioinformatics method. We identified 1175 new lncRNAs in N. benthamiana infected with CWMV, with 65 lncRNAs showing differential expression. These lncRNAs were mainly enriched in plant hormone signal transduction and other pathways according to GO and KEGG pathway enrichment analyses. In addition, differential expression of XLOC_006393 after CWMV infection may be the precursor of NbmiR168c, which can respond to CWMV infection by modulating the expression of its target gene NbAGO1. We believe that our study makes a significant contribution to the literature because these results provide a valuable resource for studying lncRNAs involved in CWMV infection and improving the understanding of the molecular mechanism of CWMV infection. Abstract Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.
Collapse
Affiliation(s)
- Weiran Zheng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
| | - Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Qisen Lu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Linna Cai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Cailin Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- Correspondence: (L.D.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Correspondence: (L.D.); (J.C.)
| |
Collapse
|
31
|
Cao W, Gan L, Wang C, Zhao X, Zhang M, Du J, Zhou S, Zhu C. Genome-Wide Identification and Characterization of Potato Long Non-coding RNAs Associated With Phytophthora infestans Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:619062. [PMID: 33643350 PMCID: PMC7902931 DOI: 10.3389/fpls.2021.619062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/06/2021] [Indexed: 05/26/2023]
Abstract
Long non-coding RNA (lncRNA) is a crucial regulatory mechanism in the plant response to biotic and abiotic stress. However, their roles in potato (Solanum tuberosum L.) resistance to Phytophthora infestans (P. infestans) largely remain unknown. In this study, we identify 2857 lncRNAs and 33,150 mRNAs of the potato from large-scale published RNA sequencing data. Characteristic analysis indicates a similar distribution pattern of lncRNAs and mRNAs on the potato chromosomes, and the mRNAs were longer and had more exons than lncRNAs. Identification of alternative splicing (AS) shows that there were a total of 2491 lncRNAs generated from AS and the highest frequency (46.49%) of alternative acceptors (AA). We performed R package TCseq to cluster 133 specific differentially expressed lncRNAs from resistance lines and found that the lncRNAs of cluster 2 were upregulated. The lncRNA targets were subject to KEGG pathway enrichment analysis, and the interactive network between lncRNAs and mRNAs was constructed by using GENIE3, a random forest machine learning algorithm. Transient overexpression of StLNC0004 in Nicotiana benthamiana significantly suppresses P. infestans growth compared with a control, and the expression of extensin (NbEXT), the ortholog of the StLNC0004 target gene, was significantly upregulated in the overexpression line. Together, these results suggest that lncRNAs play potential functional roles in the potato response to P. infestans infection.
Collapse
|
32
|
Liu X, Li X, Wen X, Zhang Y, Ding Y, Zhang Y, Gao B, Zhang D. PacBio full-length transcriptome of wild apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genomics 2021; 22:52. [PMID: 33446096 PMCID: PMC7809858 DOI: 10.1186/s12864-021-07366-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/01/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. RESULTS Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. CONCLUSIONS The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.
Collapse
Affiliation(s)
- Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China.
| |
Collapse
|
33
|
Zhou X, Cui J, Meng J, Luan Y. Interactions and links among the noncoding RNAs in plants under stresses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3235-3248. [PMID: 33025081 DOI: 10.1007/s00122-020-03690-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
The complex interplay among sRNAs, lncRNAs and circRNAs has been implicated in plants under biotic and abiotic stresses. Here, we review current advances in our understanding of ncRNA interactions and links, which have considerable potential for improving the agronomic traits and the environmental adaptability of plants. Plants can respond to biotic or abiotic stresses. To cope with various conditions, numerous intricate molecular regulatory mechanisms have evolved in plants. Noncoding RNAs (ncRNAs) can be divided into small noncoding RNAs (sRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Emerging evidence has demonstrated that interplay among the ncRNAs acts as a novel layer in the regulatory mechanisms, which has attracted substantial interest. Links between sRNAs can affect plant immune responses and development in synergistic or antagonistic manners. Additionally, multiple interactions between lncRNAs and sRNAs are involved in crop breeding, disease resistance and high tolerance to environmental stresses. Here, we summarize current knowledge of the interactions and links among the ncRNAs in plant responses to stresses and the methods for identifying ncRNA interactions. Furthermore, challenges and prospects for further progress in elucidating ncRNA interactions and links are highlighted.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
34
|
Li S, Jia Z, Wang K, Du L, Li H, Lin Z, Ye X. Screening and functional characterization of candidate resistance genes to powdery mildew from Dasypyrum villosum#4 in a wheat line Pm97033. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3067-3083. [PMID: 32685983 DOI: 10.1007/s00122-020-03655-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Three genes designated DvLox, Pm21#4, and Pm21#4-H identified in a wheat-Dasypyrum villosum#4 T6V#4S·6DL translocation line Pm97033 conferred wheat for powdery mildew resistance. Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most devastating diseases in wheat. To date, only a few genes conferring resistance to wheat PM are cloned. Dasypyrum villosum is a wild relative of wheat, which provides Pm21 conferring wheat immunity to PM. In this study, we obtained many differentially expressed genes (DEGs) from a wheat-D. villosum#4 T6V#4S·6DL translocation line Pm97033 using RNA-sequencing. Among them, 7 DEGs associated with pathogen resistance were up-regulated in front of Bgt infection. Virus-induced gene silencing and transformation assays demonstrated that two of them, DvLox and Pm21#4 encoding a lipoxygenase and a encoding coiled-coil/nucleotide-binding site/leucine-rich repeat resistance protein, conferred wheat PM resistance. The transgenic wheat plants expressing DvLox enhanced PM resistance, and the transgenic wheat plants expressing Pm21#4 showed PM immunity. The Pm21#4-silenced Pm97033 plants by the cluster regularly interspaced short palindromic repeats-associated endonuclease (CRISPR/Cas9) system were susceptible to PM. Thus, Pm21#4 is a key gene contributing PM immune resistance in Pm97033. Constitutively expression of Pm21#4-H, which is silenced in Pm97033 and D. villosum#4, endowed a PM-susceptible wheat variety Fielder with PM immune resistance.
Collapse
Affiliation(s)
- Shijin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zimiao Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Ministry of Agriculture and Rural Affairs of China for Biology and Genetic Breeding of Triticeae Crops, Beijing, 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Ministry of Agriculture and Rural Affairs of China for Biology and Genetic Breeding of Triticeae Crops, Beijing, 100081, China.
| |
Collapse
|
35
|
Genome-Wide Identification and Characterization of Fusarium graminearum-Responsive lncRNAs in Triticum aestivum. Genes (Basel) 2020; 11:genes11101135. [PMID: 32992604 PMCID: PMC7601646 DOI: 10.3390/genes11101135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/24/2023] Open
Abstract
Although the war between wheat and Fusarium has been widely investigated for years, long noncoding RNAs (lncRNAs), which have been proven to regulate important processes in the development and stress responses of plants, are still poorly known in wheat against Fusarium. Herein, we systematically reveal the roles of wheat lncRNAs in the process of Fusarium graminearum infection by high-throughput RNA sequencing. Well over 4130 of the total 4276 differentially expressed lncRNAs were already specifically expressed at 12 h postinoculation (hpi), but only 89 of these were specifically expressed at 24 hpi, indicating that the initial stage was the crucial stage for lncRNA-mediated gene regulation of wheat defense against F. graminearum. Target analysis showed the lncRNAs participated in various biological stress processes and had exclusive regulation models at different infection stages. Further H2O2 accumulation and protein ubiquitination assays supported this idea. Moreover, two lncRNAs (XLOC_302848 and XLOC_321638) were identified as Fusarium seedling blight resistance candidates by lncRNA-target expression pattern validation, and two lncRNAs (XLOC_113815, XLOC_123624) were Fusarium head blight resistance potential regulators by cross-validating the RNAseq data with the refined meta-QTL of wheat FHB resistance. These findings extend our knowledge on wheat lncRNAs response to F. graminearum attack and provide new insights for the functional and molecular research of future interactions between wheat and Fusarium.
Collapse
|
36
|
Yang Z, Yang Z, Xie Y, Liu Q, Mei Y, Wu Y. Systematic Identification and Analysis of Light-Responsive Circular RNA and Co-expression Networks in Lettuce ( Lactuca sativa). G3 (BETHESDA, MD.) 2020; 10:2397-2410. [PMID: 32398233 PMCID: PMC7341150 DOI: 10.1534/g3.120.401331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Circular RNA (circRNA) is a covalently-closed single-stranded RNA molecule that plays an important role in transcriptional regulation of gene expression in a variety of species. Light intensity is a pivotal environmental factor affecting plant growth and development. However, little is known regarding photoresponsive plant circRNAs. Here, we aimed to investigate the expression and function of circRNAs in lettuce leaves in response to different light intensity treatments. We performed RNA sequencing (RNA-Seq) on leaves of lettuce (Lactuca sativa) to determine circRNA expression profiles and reverse-transcription polymerase chain reaction (PCR) to validate the candidate circRNA molecules. We then combined bioinformatics approach to explore the function of the parental genes of circRNA, including network, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis. We identified 1650 circRNAs in lettuce, of which 1508 (86.40%) were derived from exons. Using real-time PCR, we characterized 10 validated differentially expressed circRNAs and their parental genes, all of which showed expression patterns consistent with RNA-Seq data. Interestingly, the expression of circRNA was, in some cases, inversely correlated with the expression of the parental gene. Furthermore, analysis of the circRNA-microRNA-mRNA network suggests that circRNAs may be involved in plant hormone signaling and chlorophyll metabolism during photoreactivity. These findings provide an essential reference basis for studying circRNAs' biological mechanisms in light-treated plants.
Collapse
Affiliation(s)
| | - Zhao Yang
- College of Life Sciences, and
- College of Science, Northwest A&F University, 712100 Yangling, Shaan Xi, China
| | - Yingge Xie
- College of Science, Northwest A&F University, 712100 Yangling, Shaan Xi, China
- College of Life Sciences, and
| | | | - Yanhao Mei
- College of Horticulture
- College of Horticulture
| | | |
Collapse
|
37
|
Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet 2020. [DOI: 10.1007/s12041-020-01206-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
39
|
Hou X, Cui J, Liu W, Jiang N, Zhou X, Qi H, Meng J, Luan Y. LncRNA39026 Enhances Tomato Resistance to Phytophthora infestans by Decoying miR168a and Inducing PR Gene Expression. PHYTOPATHOLOGY 2020; 110:873-880. [PMID: 31876247 DOI: 10.1094/phyto-12-19-0445-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our previous study has indicated that a long noncoding RNA (lncRNA), lncRNA39026, can be responsive to Phytophthora infestans infection. However, the function and regulation mechanism of lncRNA39026 during tomato resistance to P. infestans are unknown. In this study, an lncRNA39026 sequence was cloned from tomato Zaofen No. 2, and this sequence contained an endogenous target mimicry for miR168a, which might suppress the expression of miR168a. LncRNA39026 was strongly downregulated at 3 h in the tomato plants infected with P. infestans, and its expression level displayed a negative correlation with the expression level of miR168a and a positive correlation with the expression levels of SlAGO1 genes (target gene of miR168a) upon P. infestans infection. Tomato plants in which lncRNA39026 was overexpressed displayed enhanced resistance to P. infestans, decreased level of miR168a, and increased level of SlAGO1, whereas the resistance was impaired, level of miR168a was increased, and level of SlAGO1 was decreased after lncRNA39026 silencing. In addition, lncRNA39026 could also induce the expression of pathogenesis-related (PR) genes, as shown by increased and decreased expression levels of PR genes in tomato plants with overexpressed and silenced lncRNA39026, respectively. The result demonstrated that lncRNA39026 might function to decoy miR168a and affect the expression of PR genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
40
|
Pereira WJ, Melo ATDO, Coelho ASG, Rodrigues FA, Mamidi S, Alencar SAD, Lanna AC, Valdisser PAMR, Brondani C, Nascimento-Júnior IRD, Borba TCDO, Vianello RP. Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean. Genet Mol Biol 2020; 43:e20180259. [PMID: 31429863 PMCID: PMC7307723 DOI: 10.1590/1678-4685-gmb-2018-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Genes related to the response to drought stress in leaf and root tissue of
drought-susceptible (DS) and tolerant (DT) genotypes were characterized by
RNA-Seq. In total, 54,750 transcripts, representative of 28,590 genes, were
identified; of these, 1,648 were of high-fidelity (merge of 12 libraries) and
described for the first time in the Andean germplasm. From the 1,239
differentially expressed genes (DEGs), 458 were identified in DT, with a
predominance of genes in categories of oxidative stress, response to stimulus
and kinase activity. Most genes related to oxidation-reduction terms in roots
were early triggered in DT (T75) compared to DS (T150) suggestive of a mechanism
of tolerance by reducing the damage from ROS. Among the KEGG enriched by DEGs
up-regulated in DT leaves, two related to the formation of Sulfur-containing
compounds, which are known for their involvement in tolerance to abiotic
stresses, were common to all treatments. Through qPCR, 88.64% of the DEGs were
validated. A total of 151,283 variants were identified and functional effects
estimated for 85,780. The raw data files were submitted to the NCBI database. A
transcriptome map revealed new genes and isoforms under drought. These results
supports a better understanding of the drought tolerance mechanisms in
beans.
Collapse
Affiliation(s)
- Wendell Jacinto Pereira
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Goiânia, GO, Brazil.,Universidade de Brasília, Departamento de Biologia Celular, Brasília, DF, Brazil
| | | | | | | | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Brasília, DF, Brazil
| | - Anna Cristina Lanna
- EMBRAPA Arroz e Feijão, Rod. GO - 462, Km 12, Santo Antônio de Goiás, GO, Brazil
| | | | - Claudio Brondani
- EMBRAPA Arroz e Feijão, Rod. GO - 462, Km 12, Santo Antônio de Goiás, GO, Brazil
| | | | | | | |
Collapse
|
41
|
Genome-Wide Identification of lncRNAs During Rice Seed Development. Genes (Basel) 2020; 11:genes11030243. [PMID: 32110990 PMCID: PMC7140839 DOI: 10.3390/genes11030243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rice seed is a pivotal reproductive organ that directly determines yield and quality. Long non-coding RNAs (lncRNAs) have been recognized as key regulators in plant development, but the roles of lncRNAs in rice seed development remain unclear. In this study, we performed a paired-end RNA sequencing in samples of rice pistils and seeds at three and seven days after pollination (DAP) respectively. A total of 540 lncRNAs were obtained, among which 482 lncRNAs had significantly different expression patterns during seed development. Results from semi-qPCR conducted on 15 randomly selected differentially expressed lncRNAs suggested high reliability of the transcriptomic data. RNA interference of TCONS_00023703, which is predominantly transcribed in developing seeds, significantly reduced grain length and thousand-grain weight. These results expanded the dataset of lncRNA in rice and enhanced our understanding of the biological functions of lncRNAs in rice seed development.
Collapse
|
42
|
Gao C, Sun J, Dong Y, Wang C, Xiao S, Mo L, Jiao Z. Comparative transcriptome analysis uncovers regulatory roles of long non-coding RNAs involved in resistance to powdery mildew in melon. BMC Genomics 2020; 21:125. [PMID: 32024461 PMCID: PMC7003419 DOI: 10.1186/s12864-020-6546-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with more than 200 nucleotides in length, which play vital roles in a wide range of biological processes. Powdery mildew disease (PM) has become a major threat to the production of melon. To investigate the potential roles of lncRNAs in resisting to PM in melon, it is necessary to identify lncRNAs and uncover their molecular functions. In this study, we compared the lncRNAs between a resistant and a susceptible melon in response to PM infection. Results It is reported that 11,612 lncRNAs were discovered, which were distributed across all 12 melon chromosomes, and > 85% were from intergenic regions. The melon lncRNAs have shorter transcript lengths and fewer exon numbers than protein-coding genes. In addition, a total of 407 and 611 lncRNAs were found to be differentially expressed after PM infection in PM-susceptible and PM-resistant melons, respectively. Furthermore, 1232 putative targets of differently expressed lncRNAs (DELs) were discovered and gene ontology enrichment (GO) analysis showed that these target genes were mainly enriched in stress-related terms. Consequently, co-expression patterns between LNC_018800 and CmWRKY21, LNC_018062 and MELO3C015771 (glutathione reductase coding gene), LNC_014937 and CmMLO5 were confirmed by qRT-PCR. Moreover, we also identified 24 lncRNAs that act as microRNA (miRNA) precursors, 43 lncRNAs as potential targets of 22 miRNA families and 13 lncRNAs as endogenous target mimics (eTMs) for 11 miRNAs. Conclusion This study shows the first characterization of lncRNAs involved in PM resistance in melon and provides a starting point for further investigation into the functions and regulatory mechanisms of lncRNAs in the resistance to PM.
Collapse
Affiliation(s)
- Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Longfei Mo
- College of horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
43
|
Cui J, Jiang N, Hou X, Wu S, Zhang Q, Meng J, Luan Y. Genome-Wide Identification of lncRNAs and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:456-464. [PMID: 31448997 DOI: 10.1094/phyto-04-19-0137-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our previous studies have revealed the function of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in tomato in response to Phytophthora infestans infection. However, the interaction relationships between lncRNAs and miRNAs during tomato resistance to P. infestans infection are unknown. In this study, 9,011 lncRNAs were identified from tomato plants, including 115 upregulated and 81 downregulated lncRNAs. Among these, 148 were found to be differentially expressed and might affect the expression of 771 genes, which are composed of 887 matched lncRNA-mRNA pairs. In total, 88 lncRNAs were identified as endogenous RNAs (ceRNAs) and predicted to decoy 46 miRNAs. Degradome sequencing revealed that 11 miRNAs that were decoyed by 20 lncRNAs could target 30 genes. These lncRNAs, miRNAs, and target genes were predicted to form 10 regulatory modules. Among them, lncRNA42705/lncRNA08711, lncRNA39896, and lncRNA11265/lncRNA15816 might modulate MYB, HD-Zip, and NAC transcription factors by decoying miR159, miR166b, and miR164a-5p, respectively. Upon P. infestans infection, the expression levels of lncRNA42705 and lncRNA08711 displayed a negative correlation with the expression level of miR159 and a positive correlation with the expression levels of MYB genes. Tomato plants in which lncRNA42705 and lncRNA08711 were silenced displayed increased levels of miR159 and decreased levels of MYB, respectively. The result demonstrated that lncRNAs might function as ceRNAs to decoy miRNAs and affect their target genes in tomato plants, increasing resistance to disease.
Collapse
Affiliation(s)
- Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Sihan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
44
|
Zhou X, Cui J, Cui H, Jiang N, Hou X, Liu S, Gao P, Luan Y, Meng J, Luan F. Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 2020; 735:144403. [PMID: 32004668 DOI: 10.1016/j.gene.2020.144403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/24/2023]
Abstract
Melon (Cucumis melo L.), an economically beneficial crop widely cultivated around the world, is vulnerable to powdery mildew (PM). However, the studies on molecular mechanism of melon response to PM fungi is still limited. Long non coding RNAs (lncRNAs) have emerged as new regulators in plants response to biotic stresses. We predicted and identified the intricate regulatory roles of lncRNAs in melon response to PM fungi. A total of 539 lncRNAs were identified from PM-resistant (MR-1) and susceptible melon (Top Mark), in which 254 were significantly altered after PM fungi infection. Multiple target genes of lncRNAs were found to be involved in the hydrolysis of chitin, callose deposition and cell wall thickening, plant-pathogen interaction and plant hormone signal transduction pathway. Additionally, a total of 42 lncRNAs possess the various functions with microRNAs (miRNAs), including lncRNAs that are targeted by miRNAs and function as miRNA precursors or miRNA sponges. These findings provide a comprehensive view of potentially functional lncRNAs, corresponding target genes and related lncRNA-miRNA pairs, which will greatly increase our knowledge of the mechanism underlying susceptibility and resistance to PM in melon.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haonan Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K. Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 2019; 9:18191. [PMID: 31796783 PMCID: PMC6890743 DOI: 10.1038/s41598-019-54340-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNA’s like miRNA, lncRNA, have gained immense importance as a significant regulatory factor in different physiological and developmental processes in plants. In an effort to understand the molecular role of these regulatory agents, in the present study, 3019 lncRNAs and 227 miRNAs were identified from different seed and pod developmental stages in Pigeonpea, a major grain legume of Southeast Asia and Africa. Target analysis revealed that 3768 mRNAs, including 83 TFs were targeted by lncRNAs; whereas 3060 mRNA, including 154 TFs, were targeted by miRNAs. The targeted transcription factors majorly belong to WRKY, MYB, bHLH, etc. families; whereas the targeted genes were associated with the embryo, seed, and flower development. Total 302 lncRNAs interact with miRNAs and formed endogenous target mimics (eTMs) which leads to sequestering of the miRNAs present in the cell. Expression analysis showed that notably, Cc_lncRNA-2830 expression is up-regulated and sequestrates miR160h in pod leading to higher expression of the miR160h target gene, Auxin responsive factor-18. A similar pattern was observed for SPIKE, Auxin signaling F-box-2, Bidirectional sugar transporter, and Starch synthetase-2 eTMs. All the identified target mRNAs code for transcription factor and genes are involved in the processes like cell division, plant growth and development, starch synthesis, sugar transportation and accumulation of storage proteins which are essential for seed and pod development. On a combinatorial basis, our study provides a lncRNA and miRNA based regulatory insight into the genes governing seed and pod development in Pigeonpea.
Collapse
Affiliation(s)
- Antara Das
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Deepti Nigam
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Alim Junaid
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Kuldeep Kumar
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - N K Singh
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|
46
|
Lv Y, Hu F, Zhou Y, Wu F, Gaut BS. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics 2019; 20:864. [PMID: 31729949 PMCID: PMC6858665 DOI: 10.1186/s12864-019-6245-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs – and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. Results We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Conclusions Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Collapse
Affiliation(s)
- Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA
| | - Fengqin Hu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA
| | - Feilong Wu
- Department of Civil and Environmental, Engineering, UC Irvine, Irvine, CA, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
47
|
Zhang H, Mao R, Wang Y, Zhang L, Wang C, Lv S, Liu X, Wang Y, Ji W. Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110160. [PMID: 31521219 DOI: 10.1016/j.plantsci.2019.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 05/07/2023]
Abstract
Alternative splicing (AS) enhances the diversities of both transcripts and proteins in eukaryotes, which contribute to stress adaptation. To catalog wheat (Triticum aestivum L.) AS genes, we characterized 45 RNA-seq libraries from wheat seedlings infected by powdery mildew, Blumeria graminis f. sp. tritici (Bgt) or stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst). We discovered that 11.2% and 10.4% of the multiexon genes had AS transcripts during Bgt and Pst infections, respectively. In response to fungal infection, wheat modulated AS not only in disease resistance proteins, but also in splicing related factors. Apart from the stress induced or activated splicing variants by pathogen, the differential expression profiles were fold increased through changing the ratio of full spliced transcripts versus intron retention (IR) transcripts. Comparing AS transcripts produced by the same gene in Bgt with Pst stress, the spliced terminal exons and the stranded introns are independent and different. This demonstrated that differential induction of specific splice variants were activated against two fungal pathogens. The specific induced AS genes in the Pst-resistant plants were enriched in improving the membrane permeability and protein modification ability, whereas gene expression involved in protein translation and transport were strengthened in Pst-susceptible plants.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rui Mao
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
48
|
Chen R, Li M, Zhang H, Duan L, Sun X, Jiang Q, Zhang H, Hu Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genomics 2019; 20:730. [PMID: 31606033 PMCID: PMC6790039 DOI: 10.1186/s12864-019-6101-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses. RESULTS In this study, soybean seedlings were continuously cultured for 15 days with high salinity solutions started from seed germination. Strand-specific whole transcriptome sequencing and stringent bioinformatic analysis led to the identification of 3030 long intergenic non-coding RNAs (lincRNAs) and 275 natural antisense transcripts (lncNATs) in soybean roots. In contrast to mRNAs, newly identified lncRNAs exhibited less exons, similar AU content to UTRs, even distribution across the genome and low evolutionary conservation. Remarkably, more than 75% of discovered lncRNAs that were activated or up-regulated by continuous salt stress mainly targeted proteins with binding and catalytic activities. Furthermore, two DNA methylation maps with single-base resolution were generated by using reduced representation bisulfite sequencing, offering a genome-wide perspective and important clues for epigenetic regulation of stress-associated lncRNAs and protein-coding genes. CONCLUSIONS Taken together, our findings systematically demonstrated the characteristics of continuous salt stress-induced lncRNAs and extended the knowledge of corresponding methylation profiling, providing valuable evidence for a better understanding of how plants cope with long-term salt stress circumstances.
Collapse
Affiliation(s)
- Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ming Li
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijin Duan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
49
|
Han G, Cheng C, Zheng Y, Wang X, Xu Y, Wang W, Zhu S, Cheng B. Identification of Long Non-Coding RNAs and the Regulatory Network Responsive to Arbuscular Mycorrhizal Fungi Colonization in Maize Roots. Int J Mol Sci 2019; 20:E4491. [PMID: 31514333 PMCID: PMC6769569 DOI: 10.3390/ijms20184491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have emerged as vital regulators of many biological processes in animals and plants. However, to our knowledge no investigations on plant lncRNAs which respond to arbuscular mycorrhizal (AM) fungi have been reported thus far. In this study, maize roots colonized with AM fungus were analyzed by strand-specific RNA-Seq to identify AM fungi-responsive lncRNAs and construct an associated regulatory network. A total of 1837 differentially expressed protein coding genes (DEGs) were identified from maize roots with Rhizophagus irregularis inoculation. Many AM fungi-responsive genes were homologs to MtPt4, STR, STR2, MtFatM, and enriched pathways such as fatty acid biosynthesis, response to phosphate starvation, and nitrogen metabolism are consistent with previous studies. In total, 5941 lncRNAs were identified, of which more than 3000 were new. Of those, 63 lncRNAs were differentially expressed. The putative target genes of differentially expressed lncRNAs (DELs) were mainly related to phosphate ion transmembrane transport, cellular response to potassium ion starvation, and lipid catabolic processes. Regulatory network analysis showed that DELs might be involved in the regulation of bidirectional nutrient exchange between plant and AM fungi as mimicry of microRNA targets. The results of this study can broaden our knowledge on the interaction between plant and AM fungi.
Collapse
Affiliation(s)
- Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Chen Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yanmei Zheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
50
|
Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics 2019; 111:997-1005. [DOI: 10.1016/j.ygeno.2018.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
|