1
|
Feng J, Huang Y, Wang H, Wang C, Xu H, Ke P, He Y, Tian Q, Cao S, Lu Z. Association between adherence to the Dietary Approaches to Stop Hypertension diet and serum uric acid. Sci Rep 2023; 13:6347. [PMID: 37072454 PMCID: PMC10113210 DOI: 10.1038/s41598-023-31762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
To explore the relationship between Dietary Approaches to Stop Hypertension (DASH) diet and serum uric acid (SUA) levels among the Chinese adult population, and verify the mediating effect of BMI between DASH diet and SUA levels. A total of 1125 adults were investigated using a self-administered food frequency questionnaire. SUA levels were determined by uricase colorimetry. The total DASH score ranged from 9 to 72. The relationship between the DASH diet and SUA levels was examined by multiple adjusted regression analysis. Method of Bootstrap was used to test the mediation effect of BMI in the correlation of the DASH diet and SUA levels. After multivariable adjustment, there was a significant linear relationship between the DASH diet and SUA (P < 0.001). Compared with the lowest group, SUA of participants in group of highest DASH diet score decreased by 34.907 (95% CI - 52.227, - 17.588; P trend < 0.001) μmol/L. The association between the DASH diet scores and SUA levels was partly mediated by BMI (- 0.26, Bootstrap 95% CI - 0.49, - 0.07), with 10.53% of the total effect being mediated. Adopting the DASH diet might be helpful in reducing SUA level, and the effect might be partly mediated by BMI.
Collapse
Affiliation(s)
- Jie Feng
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchai Huang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haozhuo Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Chao Wang
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Hongbin Xu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Ke
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfeng Tian
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyi Cao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhu QM, MacDonald BT, Mizoguchi T, Chaffin M, Leed A, Arduini A, Malolepsza E, Lage K, Kaushik VK, Kathiresan S, Ellinor PT. Endothelial ARHGEF26 is an angiogenic factor promoting VEGF signalling. Cardiovasc Res 2022; 118:2833-2846. [PMID: 34849650 PMCID: PMC9586566 DOI: 10.1093/cvr/cvab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Genetic studies have implicated the ARHGEF26 locus in the risk of coronary artery disease (CAD). However, the causal pathways by which DNA variants at the ARHGEF26 locus confer risk for CAD are incompletely understood. We sought to elucidate the mechanism responsible for the enhanced risk of CAD associated with the ARHGEF26 locus. METHODS AND RESULTS In a conditional analysis of the ARHGEF26 locus, we show that the sentinel CAD-risk signal is significantly associated with various non-lipid vascular phenotypes. In human endothelial cell (EC), ARHGEF26 promotes the angiogenic capacity, and interacts with known angiogenic factors and pathways. Quantitative mass spectrometry showed that one CAD-risk coding variant, rs12493885 (p.Val29Leu), resulted in a gain-of-function ARHGEF26 that enhances proangiogenic signalling and displays enhanced interactions with several proteins partially related to the angiogenic pathway. ARHGEF26 is required for endothelial angiogenesis by promoting macropinocytosis of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) on cell membrane and is crucial to Vascular Endothelial Growth Factor (VEGF)-dependent murine vessel sprouting ex vivo. In vivo, global or tissue-specific deletion of ARHGEF26 in EC, but not in vascular smooth muscle cells, significantly reduced atherosclerosis in mice, with enhanced plaque stability. CONCLUSIONS Our results demonstrate that ARHGEF26 is involved in angiogenesis signaling, and that DNA variants within ARHGEF26 that are associated with CAD risk could affect angiogenic processes by potentiating VEGF-dependent angiogenesis.
Collapse
Affiliation(s)
- Qiuyu Martin Zhu
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan T MacDonald
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Taiji Mizoguchi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Alison Leed
- Center for the Development of Therapeutics, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alessandro Arduini
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Genomics Platform, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sekar Kathiresan
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Purines have several important physiological functions as part of nucleic acids and as intracellular and extracellular signaling molecules. Purine metabolites, particularly uric acid, have been implicated in congenital and complex diseases. However, their role in complex diseases is not clear and they have both beneficial and detrimental effects on disease pathogenesis. In addition, the relationship between purines and complex diseases is affected by genetic and nutritional factors. This review presents latest findings about the relationship between purines and complex diseases and the effect of genes and nutrients on this relationship. RECENT FINDINGS Evidence from recent studies show strong role of purines in complex diseases. Although they are causal in only few diseases, our knowledge about their role in other diseases is still evolving. Of all the purines, uric acid is the most studied. Uric acid acts as an antioxidant as well as a prooxidant under different conditions, thus, its role in disease also varies. Other purines, adenosine and inosine have been less studied, but they have neuroprotective properties which are valuable in neurodegenerative diseases. SUMMARY Purines are molecules with great potential in disease pathogenesis as either metabolic markers or therapeutic targets. More studies need to be conducted to understand their relevance for complex diseases.
Collapse
Affiliation(s)
- Kendra L Nelson
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | | |
Collapse
|
4
|
Wan JY, Goodman DL, Willems EL, Freedland AR, Norden-Krichmar TM, Santorico SA, Edwards KL. Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study. Diabetol Metab Syndr 2021; 13:59. [PMID: 34074324 PMCID: PMC8170963 DOI: 10.1186/s13098-021-00670-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. METHODS Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. RESULTS Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. CONCLUSIONS This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Collapse
Affiliation(s)
- Jia Y Wan
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Deborah L Goodman
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Emileigh L Willems
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
| | - Alexis R Freedland
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado, Denver, CO, USA
- Department of Biostatistics & Informatics, University of Colorado, Denver, CO, USA
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen L Edwards
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl Psychiatry 2021; 11:106. [PMID: 33542194 PMCID: PMC7862349 DOI: 10.1038/s41398-021-01223-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer's disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic signaling pathways and brain pathology. A unique risk gene is Contactin 4 (Cntn4), an Ig cell adhesion molecule (IgCAM) gene, which has been associated with several neuropsychiatric disorders including ASD, AN, AD, and SZ. Here, we investigated the Cntn4 gene knockout (KO) mouse model to determine whether memory dysfunction and altered brain plasticity, common neuropsychiatric symptoms, are affected by Cntn4 genetic disruption. For that purpose, we tested if Cntn4 genetic disruption affects CA1 synaptic transmission and the ability to induce LTP in hippocampal slices. Stimulation in CA1 striatum radiatum significantly decreased synaptic potentiation in slices of Cntn4 KO mice. Neuroanatomical analyses showed abnormal dendritic arborization and spines of hippocampal CA1 neurons. Short- and long-term recognition memory, spatial memory, and fear conditioning responses were also assessed. These behavioral studies showed increased contextual fear conditioning in heterozygous and homozygous KO mice, quantified by a gene-dose dependent increase in freezing response. In comparison to wild-type mice, Cntn4-deficient animals froze significantly longer and groomed more, indicative of increased stress responsiveness under these test conditions. Our electrophysiological, neuro-anatomical, and behavioral results in Cntn4 KO mice suggest that Cntn4 has important functions related to fear memory possibly in association with the neuronal morphological and synaptic plasticity changes in hippocampus CA1 neurons.
Collapse
|
6
|
Xu L, Xian W, Li J, Yao X, Long Y. Purkinje cell (PC) antibody positivity in a patient with autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Int J Neurosci 2020; 132:1043-1048. [PMID: 33287611 DOI: 10.1080/00207454.2020.1860965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This case report is the first to describe the detection of antibodies against inositol 1,4,5-trisphosphate receptor 1 (ITPR1, I3PR) in a patient diagnosed with autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. ITPR1 is known as one of the Purkinje cell antibodies present in autoimmune cerebellar ataxia (ACA). Here, we described the association between autoimmune GFAP astrocytopathy and autoimmune cerebellar disease (ACD). MATERIALS AND METHODS Demographic features, clinical characteristics, cerebrospinal fluid (CSF) parameters and neuroimaging findings were collected from this patient. Specifically, antibodies against GFAP and other proteins associated with neurological disorders were measured by immunofluorescence staining in both serum and CSF samples. RESULTS A 52-year-old woman was diagnosed with autoimmune inflammatory meningoencephalitis. She presented with cognitive dysfunction, psychiatric/behavioral abnormalities and serious insomnia with subacute onset. Brain magnetic resonance imaging (MRI) showed bilateral hyperintensity in the semioval centers on axial images and perivascular linear enhancement oriented radially to the ventricles on sagittal images. GFAP-IgG, oligoclonal bands (OBs), N-methyl-D-aspartate receptor (NMDAR)-IgG and ITPR1-IgG co-existed in her CSF. She responded well to immunoglobulin and steroid treatments. CONCLUSION Here, we describe the case of a patient with autoimmune GFAP astrocytopathy whose CSF was positive for ITPR1-IgG; however, she did not show typical ataxia manifestations or cerebellar lesions on her MRI scan. This suggests that ITPR1-IgG is not pathogenic, and the positivity of this antibody in CSF is probably associated with the presence of autoimmune inflammation.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jin Li
- Department of Neurology, Zhuzhou 331 Hospital, Zhuzhou, Hunan Province, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Cheng CF, Lin YJ, Lin MC, Liang WM, Chen CC, Chen CH, Wu JY, Lin TH, Liao CC, Huang SM, Hsieh AR, Tsai FJ. Genetic risk score constructed from common genetic variants is associated with cardiovascular disease risk in type 2 diabetes mellitus. J Gene Med 2020; 23:e3305. [PMID: 33350037 DOI: 10.1002/jgm.3305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) experience a two-fold increased risk of cardiovascular diseases. Genome-wide association studies (GWAS) have identified T2DM susceptibility genetic variants. Interestingly, the genetic variants associated with cardiovascular disease risk in T2DM Han Chinese remain to be elucidated. The present study aimed to investigate the genetic variants associated with cardiovascular disease risk in T2DM. METHODS We performed bootstrapping, GWAS and an investigation of genetic variants associated with cardiovascular disease risk in a discovery T2DM cohort and in a replication cohort. The discovery cohort included 326 cardiovascular disease patients and 1209 noncardiovascular disease patients. The replication cohort included 68 cardiovascular disease patients and 317 noncardiovascular disease patients. The main outcome measures were genetic variants for genetic risk score (GRS) in cardiovascular disease risk in T2DM. RESULTS In total, 35 genetic variants were associated with cardiovascular disease risk. A GRS was generated by combining risk alleles from these variants weighted by their estimated effect sizes (log odds ratio [OR]). T2DM patients with weighted GRS ≥ 12.63 had an approximately 15-fold increase in cardiovascular disease risk (odds ratio = 15.67, 95% confidence interval [CI] = 10.33-24.00) compared to patients with weighted GRS < 10.39. With the addition of weighted GRS, receiver-operating characteristic curves showed that area under the curve with conventional risk factors was improved from 0.719 (95% CI = 0.689-0.750) to 0.888 (95% CI = 0.866-0.910). CONCLUSIONS These 35 genetic variants are associated with cardiovascular disease risk in T2DM, alone and cumulatively. T2DM patients with higher levels of weighted genetic risk score have higher cardiovascular disease risks.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Taipei, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Xia X, Jin J, Chen ZJ, Zhou Z, Chen H, Zhang C, Zhang L, Sun L. Unraveling the genetic causes in large pedigrees with gout by whole‑exome sequencing. Int J Mol Med 2020; 45:1047-1058. [PMID: 32124961 PMCID: PMC7053847 DOI: 10.3892/ijmm.2020.4501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/08/2020] [Indexed: 11/06/2022] Open
Abstract
Gout is a common type of inflammatory arthritis that is clinically and genetically heterogeneous. The genetic aetiology remains unclear, and mainly relies on previous genome-wide association studies focused on sporadic cases. The present study aimed to identify the genetic basis of gout in three families using whole-exome sequencing (WES). WES was performed in the probands, and family members were involved in the co-segregation analysis. In total, three deleterious rare or novel missense mutations were identified in ATP-binding cassette super-family G member 2 (ABCG2), protein kinase CGMP-dependent 2 (PRKG2) and adrenoceptor β3 (ADRB3) genes in three different families. In addition, certain gout-associated candidate genes were revealed to be shared among the co-expression and protein-protein interaction (PPI) networks of ABCG2, PRKG2 and ADRB3. Furthermore, the disease ontology analysis of the genes present in the co-expression network exhibited significant (P<0.05) enrichment in hyperuricemia, gout, cardiovascular system disease and metabolic disease. In addition, genes involved in the PPI network were significantly enriched in the purine nucleoside monophosphate biosynthetic process, urate transport and biological processes associated with glycose metabolism. Collectively, to the best of our knowledge, the present study was the first to use WES to identify three candidate rare or novel deleterious mutations in three families with gout. The present results provided novel insights that may improve the current understanding of the molecular genetic basis underlying gout. Importantly, the present results may facilitate the improvement of clinical diagnosis and the development of novel personalized therapies.
Collapse
Affiliation(s)
- Xiaoru Xia
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Jing Jin
- Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhen-Ji Chen
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenni Zhou
- Department of Internal Medicine, Yueqing People's Hospital, Yueqing, Wenzhou, Zhejiang 325600, P.R. China
| | - Hui Chen
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Chunwu Zhang
- Department of Injury Orthopaedics, The First Affiliated Hospital of Wenzhou University, Wenzhou, Zhejiang 325023, P.R. China
| | - Linhua Zhang
- Department of Clinical Laboratory, Yuhuan People's Hospital, Taizhou, Zhejiang 317600, P.R. China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| |
Collapse
|
9
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
10
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
11
|
Mazdeh M, Noroozi R, Komaki A, Azari I, Ghafouri-Fard S, Taheri M. A single nucleotide polymorphism in the metabotropic glutamate receptor 7 gene is associated with multiple sclerosis in Iranian population. Mult Scler Relat Disord 2019; 28:189-192. [DOI: 10.1016/j.msard.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
12
|
Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients. Indian J Clin Biochem 2017; 33:163-170. [PMID: 29651206 DOI: 10.1007/s12291-017-0661-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.
Collapse
|