1
|
Van Goor A, Pasternak A, Walker KE, Chick S, Harding JCS, Lunney JK. Altered structural and transporter-related gene expression patterns in the placenta play a role in fetal demise during Porcine reproductive and respiratory syndrome virus infection. BMC Genomics 2025; 26:279. [PMID: 40119254 PMCID: PMC11927291 DOI: 10.1186/s12864-025-11397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) can be transmitted across the maternal-fetal-interface from an infected gilt to her fetuses. Although fetal infection status and disease outcomes vary, the mechanisms are not completely understood. The objective was to assess targeted placental structural and transporter-related gene expression patterns. At day 85 of gestation pregnant pigs were challenged with PRRSV, and at 12 days post maternal infection sows and fetuses were sacrificed, and the placental tissue was collected. Grouping of fetuses was by preservation status and PRRS viral load (VL): control (CTRL, n = 14), viable and low VL fetus (VIA_LVF, n = 15), viable and high VL fetus (VIA_HVF, n = 21), meconium mild and low VL fetus (MECm_LVF, n = 14), meconium mild and high VL fetus (MECm_HVF, n = 14), and meconium severe and high VL fetus (MECs_HVF, n = 13). NanoString was used to evaluate the expression of 86 genes: actin cytoskeleton signaling, arachidonic acid pathway, integrin signaling, intercellular junctions, transporters, and VEGF signaling. Statistical analyses were performed using Limma with P ≤ 0.05 considered significant. RESULTS We identified 1, 7, 0, 29, and 39 differentially expressed genes in VIA_LVF, VIA_HVF, MECm_LVF, MECm_HVF, and MECs_HVF, respectively, contrasted to CTRL. Placental transporter genes were significantly impacted (i.e., downregulation of SLC1A3, SLC1A5, SLC2A1, SLC2A3, SLC2A5, SLC2A10, SLC2A12, SLC7A4, SLC16A5, SLC16A10, and SLC27A6; and upregulation of SLC2A2, SLC16A3, and SLC27A4), compared to CTRL. Actin cytoskeleton signaling (ARHGEF6 and ARHGEF7), arachidonic acid (PTGES3 and PTGIS), integrin signaling (FN1 and ITGB6), intercellular junctions (CDH3 and CDH11), and VEGF signaling (MAPK3 and HPSE) gene groupings were significantly impacted, compared to CTRL. CONCLUSION Data reported here indicate that fetal PRRSV infection levels rather than fetal demise is necessary for transcriptional dysregulation of the fetal placenta, with a tendency towards more downregulation in the target gene sets among susceptible fetuses. These results generally support that in susceptible fetuses there is altered solute transportation, placental structural integrity, and reduced angiogenesis. The data described here is associated with fetal PRRS resistance/resilience and susceptibility.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
- Division of Animal Systems, Institute of Food Production and Sustainability, NIFA, USDA, Kansas City, MO, USA
| | - Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Shannon Chick
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA.
| |
Collapse
|
2
|
Rowland RRR, Salgado B, Lowe J, Sonstegard TS, Carlson DF, Martins K, Bostrom JR, Storms S, Brandariz-Nuñez A. Deletion of maternal CD163 PSTII-domain-coding exon 13 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 2024; 298:110255. [PMID: 39332164 DOI: 10.1016/j.vetmic.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Following infection of a porcine dam with PRRSV around 90 days of gestation, the virus crosses the placenta and starts to infect fetuses. This can lead to consequences such as abortions, stillbirths, and respiratory issues in newborn piglets. CD163 is an essential cellular viral entry receptor for porcine reproductive and respiratory syndrome virus (PRRSV). CD163 contains nine scavenger receptor cysteine-rich (SRCR) and two proline-serine-threonine (PST) domains. Gene-edited pigs possessing a complete deletion of CD163 are resistant to PRRSV infection. Recently, we demonstrated that pigs harboring a clean deletion of CD163 exon 13 (ΔExon13 CD163 pigs) which encodes the first 12 amino acids of the CD163 PSTII domain were not susceptible to PRRSV infection. In this study, ΔExon13 CD163 (-/-) gilts were bred with wildtype CD163 (+/+) boars producing heterozygous, CD163 (+/-) fetuses. We found that fetuses with a wildtype CD163, recovered between day 103 of gestation or 17 days after the maternal infection with PRRSV, were fully protected from PRRSV in dams containing a clean deletion of CD163 exon 13. These findings suggest a feasible approach for eliminating PRRSV-related reproductive illness, which is a significant cause of economic losses in agriculture.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Brianna Salgado
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - James Lowe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | | | - Kyra Martins
- Acceligen, A Recombinetics Company, Eagan, MN, USA
| | | | - Suzanna Storms
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
3
|
Walker KE, Pasternak JA, Jones A, Mulligan MK, Van Goor A, Harding JCS, Lunney JK. Gene expression in heart, kidney, and liver identifies possible mechanisms underpinning fetal resistance and susceptibility to in utero PRRSV infection. Vet Microbiol 2024; 295:110154. [PMID: 38959808 DOI: 10.1016/j.vetmic.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.
Collapse
Affiliation(s)
- K E Walker
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States; Department of Biology, Morgan State University, Baltimore, MD, United States
| | - J A Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - A Jones
- Doctor of Veterinary Medicine program, St. George's University, True Blue, Grenada, West Indies
| | - M K Mulligan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - A Van Goor
- United States Department of Agriculture, National Institute of Food and Agriculture, Columbia, MO, United States
| | - J C S Harding
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada
| | - J K Lunney
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States.
| |
Collapse
|
4
|
Lagumdzic E, Pernold CPS, Ertl R, Palmieri N, Stadler M, Sawyer S, Stas MR, Kreutzmann H, Rümenapf T, Ladinig A, Saalmüller A. Gene expression of peripheral blood mononuclear cells and CD8 + T cells from gilts after PRRSV infection. Front Immunol 2023; 14:1159970. [PMID: 37409113 PMCID: PMC10318438 DOI: 10.3389/fimmu.2023.1159970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Nicola Palmieri
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
6
|
The long non-coding RNA LNC_000397 negatively regulates PRRSV replication through induction of interferon-stimulated genes. Virol J 2022; 19:40. [PMID: 35248059 PMCID: PMC8897765 DOI: 10.1186/s12985-022-01761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses. However, lncRNAs participating in virus-host interactions during PRRSV infection remain largely unexplored.
Method
RNA transcripts of porcine alveolar macrophages (PAMs) infected with two different PRRSV strains, GSWW/2015 and VR2332, at 24 h post-infection were sequenced by high-throughput sequencing. Four programs namely, CNCI, CPC, PFAM, and phyloCSF, were utilized to predict the coding potential of transcripts. mRNAs co-localized or co-expressed with differentially expressed lncRNAs were considered as their targets. Fuction of lncRNAs was predicted by GO and KEGG analysis of their target mRNAs. The effect of LNC_000397 on PRRSV replication was validated by knockdown its expression using siRNA. Target genes of LNC_000397 were identified by RNA-Sequencing and validated by RT-qPCR.
Result
In this study, we analyzed lncRNA and mRNA expression profiles of PRRSV GSWW/2015 and VR2332 infected porcine alveolar macrophages. A total of 1,147 novel lncRNAs were characterized, and 293 lncRNAs were differentially expressed. mRNAs co-localized and co-expressed with lncRNAs were enriched in pathogen-infection-related biological processes such as Influenza A and Herpes simplex infection. Functional analysis revealed the lncRNA, LNC_000397, which was up-regulated by PRRSV infection, negatively regulated PRRSV replication. Knockdown of LNC_000397 significantly impaired expression of antiviral ISGs such as MX dynamin-like GTPase 1 (MX1), ISG15 Ubiquitin-like modifier (ISG15), and radical S-adenosyl methionine domain containing 2 (RSAD2).
Conclusions
LNC_000397 negatively regulated PRRSV replication by inducing interferon-stimulated genes (ISGs) expression. Our study is the first report unveiling the role of host lncRNA in regulating PRRSV replication, which might be beneficial for the development of novel antiviral therapeutics.
Collapse
|
7
|
Guidoni PB, Pasternak JA, Hamonic G, MacPhee DJ, Harding JC. Effect of porcine reproductive and respiratory syndrome virus 2 on tight junction gene expression at the maternal-fetal interface. Theriogenology 2022; 184:162-170. [DOI: 10.1016/j.theriogenology.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
8
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Guidoni PB, Pasternak JA, Hamonic G, MacPhee DJ, Harding JCS. Decreased tight junction protein intensity in the placenta of porcine reproductive and respiratory syndrome virus-2 infected fetuses. Placenta 2021; 112:153-161. [PMID: 34352491 DOI: 10.1016/j.placenta.2021.07.300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Existing strategies to control porcine reproductive and respiratory syndrome (PRRS) are not completely effective and require alternative approaches. Although intrauterine growth restricted (IUGR) fetuses are more resilient to transplacental PRRS virus-2 (PRRSV2) infection compared to normal fetuses, the exact mechanisms are unknown. The objective of this research was to assess abundance and localization of a subset of tight junction (TJ) proteins in the maternal-fetal interface and any alterations that may affect the movement of nutrients or PRRSV2 across the epitheliochorial placenta. METHODS Paraffin-embedded samples of placenta from non-infected control (CTRL) and PRRSV2 infected fetuses (IUGR, non(N)-IUGR, meconium-stained (MEC) (n = 6 per group) were randomly selected from a large challenge trial and immunostained for claudins (CLDN) 1, 3, 4, 7 and tight junction protein 1 (TJP1). Immunostaining intensity was semi-subjectively scored by region. RESULTS Intensity of CLDN1 was lower in placenta of IUGR, MEC, and N-IUGR fetuses compared to CTRL, mainly in fetal epithelium and maternal endothelial cells (MECL). CLDN4 intensity was lower in MECL of IUGR compared to CTRL and MEC fetuses. TJP1 intensity was lower in maternal and fetal epithelia of placenta within IUGR, MEC, and N-IUGR fetuses versus CTRL. DISCUSSION Differences were mainly observed between PRRSV2 infected and non-infected groups indicating TJ integrity was affected by PRRSV2 infection. These results provide insights into the potential mechanisms of transplacental transmission of PRRSV2; however, since only CLDN4 differed amongst the infected groups, PRRSV2 induced changes in TJ integrity do not appear to explain variation in fetal outcomes after infection.
Collapse
Affiliation(s)
- Pauline B Guidoni
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | - Glenn Hamonic
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Malgarin CM, Moser F, Pasternak JA, Hamonic G, Detmer SE, MacPhee DJ, Harding JCS. Fetal hypoxia and apoptosis following maternal porcine reproductive and respiratory syndrome virus (PRRSV) infection. BMC Vet Res 2021; 17:182. [PMID: 33933084 PMCID: PMC8088663 DOI: 10.1186/s12917-021-02883-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mechanisms of fetal death following maternal PRRSV2 infection remain uncharacterized, although hypoxia from umbilical cord lesions and/or placental detachment due to apoptosis are hypothesized. We performed two experiments examining hypoxia and apoptosis in PRRSV-infected and non-infected, third-trimester fetuses to elucidate possible associations with fetal death. Fetuses were selected based on four phenotypic infection groups: fetuses from non-challenged control gilts (CTRL); low viral load fetuses (LVL; Exp 1) or uninfected fetuses (UNINF; Exp 2) from inoculated gilts; viable high viral load fetuses (HVL-VIA); and HVL meconium-stained fetuses (HVL-MEC). Results In experiment 1, paraffin embedded fetal tissues collected 21 days post maternal infection (DPI) were examined for DNA fragmentation associated with apoptosis. Positively stained foci were larger and more numerous (P < 0.05) in heart, liver, and thymus of HVL-VIA and HVL-MEC compared to CTRL and LVL fetuses. In experiment 2, group differences in gene expression within the hypoxia (HIF1a, IDO1, VEGFa, LDHA, NOS2, NOX1) and apoptosis (CASP3, CASP7, CASP8, CASP9, RIPK1, RIPK3) pathways were assessed by RT-qPCR in fetal tissues collected at 12 DPI. High viral load fetuses showed differential expression relative to the CTRL and UNINF (P < 0.05 for all). Brain tissue from HVL-VIA and HVL-MEC fetuses presented increased expression of CASP7, CASP8, RIPK3, HIF1a and IDO1. Fetal heart showed increased expression of CASP8, HIF1a, IDO and NOX1 and a decrease in NOS2 expression in infected groups. CASP7, CASP9, RIPK1 and RIPK3 were only increased in the heart of HVL-VIA while VEGFa was only increased for HVL-MEC fetuses. Thymus from HVL-MEC had decreased expression of CASP9 and there was increased IDO1 in all infected fetuses. Conclusions There is strong evidence of apoptosis occurring in the heart, liver and thymus of highly viral load fetuses at 21 DPI. Furthermore, there was clear upregulation of apoptotic genes in the heart of high viral load infected fetuses and less prominent upregulation in the brain of PRRSV-infected fetuses, whereas thymus appears to be spared at 12 DPI. There was no strong evidence of hypoxia at 12 DPI in brain and thymus but some indication of hypoxia occurring in fetal heart. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02883-0.
Collapse
Affiliation(s)
- Carolina M Malgarin
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Fiona Moser
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - J Alex Pasternak
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada.,Department of Animal Science, Purdue University, West Lafayette, USA
| | - Glenn Hamonic
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Susan E Detmer
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Daniel J MacPhee
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - John C S Harding
- Western College of Veterinary Medicine, Saskatoon, 52 Campus Dr, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
12
|
Malgarin CM, MacPhee DJ, Harding JCS. Fetal Metabolomic Alterations Following Porcine Reproductive and Respiratory Syndrome Virus Infection. Front Mol Biosci 2020; 7:559688. [PMID: 33363202 PMCID: PMC7759636 DOI: 10.3389/fmolb.2020.559688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
PRRSV infection in third-trimester pregnant sows can lead to fetal death and abortions, although the mechanisms triggering these effects are not well understood. Since resistant and susceptible fetuses can coexist in the same litter, we propose that there may be differential mechanisms used by some fetuses to evade infection and/or disease progression. Our objectives were to investigate possible differences in the metabolome of PRRSV-infected and non-infected fetuses, as well as the interaction of altered intrauterine growth development and PRRSV infection to elucidate possible causes of fetal death following PRRSV infection. Near-term serum samples collected from fetuses on gestation day 106, 21 days post PRRSV-2 infection, were processed by direct flow injection mass spectrometry (DI-MS) and nuclear magnetic resonance (NMR) techniques. Experiment one investigated disease progression with 24 fetuses selected from each of four phenotypic groups: fetuses from non-inoculated gilts (CTRL); fetuses from inoculated gilts that escaped infection (UNINF); infected high viral load viable fetuses (INF); and infected high viral load meconium-stained fetuses (MEC). Experiment two investigated the interaction of intrauterine growth retardation (IUGR) and PRRSV infection by analyzing differences among: non-infected normal development (CON-N); CON-IUGR; PRRS infected normal development (PRRS-N); and PRRS-IUGR. Univariate and multivariate (PCA, PLS-DA) statistics determined group differences among various contrasts, and the most important metabolites associated with disease progression and fetal development. Significant differences in the metabolome were observed, especially between PRRSV-negative fetuses (CTRL and UNINF) and MEC fetuses, while INF fetuses appear to span both groups. The two metabolites with highest variable importance in projection (VIP) scores related to disease progression were alpha-aminoadipic acid (alpha-AAA) and kynurenine (KYN), having the highest concentration in MEC and INF fetuses, respectively, compared to CTRL and UNINF. In experiment two, non-IUGR fetuses were found to have increased levels of lysoPCs, PCs and amino acids compared to IUGR fetuses, while the near complete absence of lysoPCs and PCs in IUGR fetuses, even during infection, indicate a distinctive response to infection compared to non-growth retarded fetuses. Possible markers of PRRSV fetal susceptibility, such as alpha-AAA, kynurenine and lysoPCs, are presented and discussed.
Collapse
Affiliation(s)
- Carolina M. Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Van Goor A, Pasternak A, Walker K, Hong L, Malgarin C, MacPhee DJ, Harding JCS, Lunney JK. Differential responses in placenta and fetal thymus at 12 days post infection elucidate mechanisms of viral level and fetal compromise following PRRSV2 infection. BMC Genomics 2020; 21:763. [PMID: 33148169 PMCID: PMC7640517 DOI: 10.1186/s12864-020-07154-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A pregnant gilt infected with porcine reproductive and respiratory syndrome virus (PRRSV) can transmit the virus to her fetuses across the maternal-fetal-interface resulting in varying disease outcomes. However, the mechanisms leading to variation in fetal outcome in response to PRRSV infection are not fully understood. Our objective was to assess targeted immune-related gene expression patterns and pathways in the placenta and fetal thymus to elucidate the molecular mechanisms involved in the resistance/tolerance and susceptibility of fetuses to PRRSV2 infection. Fetuses were grouped by preservation status and PRRS viral load (VL): mock infected control (CTRL), no virus detected (UNINF), virus detected in the placenta only with viable (PLCO-VIA) or meconium-stained fetus (PLCO-MEC), low VL with viable (LVL-VIA) or meconium-stained fetus (LVL-MEC), and high VL with viable (HVL-VIA) or meconium-stained fetus (HVL-MEC). RESULTS The host immune response was initiated only in fetuses with detectable levels of PRRSV. No differentially expressed genes (DEG) in either the placenta or thymus were identified in UNINF, PLCO-VIA, and PLCO-MEC when compared to CTRL fetuses. Upon fetal infection, a set of core responsive IFN-inducible genes (CXCL10, IFIH1, IFIT1, IFIT3, ISG15, and MX1) were strongly upregulated in both tissues. Gene expression in the thymus is a better differentiator of fetal VL; the strong downregulation of several innate and adaptive immune pathways (e.g., B Cell Development) are indicative of HVL. Gene expression in the placenta may be a better differentiator of fetal demise than the thymus, based-on principle component analysis clustering, gene expression patterns, and dysregulation of the Apoptosis and Ubiquitination pathways. CONCLUSION Our data supports the concept that fetal outcome in response to PRRSV2 infection is determined by fetal, and more significantly placental response, which is initiated only after fetal infection. This conceptual model represents a significant step forward in understanding the mechanisms underpinning fetal susceptibility to the virus.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristen Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Carolina Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA.
| |
Collapse
|
14
|
Longitudinal blood transcriptomic analysis to identify molecular regulatory patterns of bovine respiratory disease in beef cattle. Genomics 2020; 112:3968-3977. [PMID: 32650099 DOI: 10.1016/j.ygeno.2020.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
Abstract
Bovine respiratory disease (BRD) is the most common disease in beef cattle and leads to considerable economic losses in both beef and dairy cattle. It is important to uncover the molecular mechanisms underlying BRD and to identify biomarkers for early identification of BRD cattle in order to address its impact on production and welfare. In this study, a longitudinal transcriptomic analysis was conducted using blood samples collected from 24 beef cattle at three production stages in the feedlot: 1) arrival (Entry group); 2) when identified as sick (diagnosed as BRD) and separated for treatment (Pulled); 3) prior to marketing (Close-out, representing healthy animals). Expressed genes were significantly different in the same animal among Entry, Pulled and Close-out stages (false discovery rate (FDR) < 0.01 & |Fold Change| > 2). Beef steers at both Entry and Pulled stages presented obvious difference in GO terms (FDR < 0.05) and affected biological functions (FDR < 0.05 & |Z-score| > 2) when compared with animals at Close-out. However, no significant functional difference was observed between Entry and Pulled animals. The interferon signaling pathway showed the most significant difference between animals at Entry/Pulled and Close-out stages (P < .001 & |Z-score| > 2), suggesting the animals initiated antiviral responses at an early stage of infection. Six key genes including IFI6, IFIT3, ISG15, MX1, and OAS2 were identified as biomarkers to predict and recognize sick cattle at Entry. A gene module with 169 co-expressed genes obtained from WGCNA analysis was most positively correlated (R = 0.59, P = 6E-08) with sickness, which was regulated by 11 transcription factors. Our findings provide an initial understanding of the BRD infection process in the field and suggests a subset of novel marker genes for identifying BRD in cattle at an early stage of infection.
Collapse
|
15
|
Alex Pasternak J, MacPhee DJ, Harding JCS. Fetal cytokine response to porcine reproductive and respiratory syndrome virus-2 infection. Cytokine 2019; 126:154883. [PMID: 31629108 DOI: 10.1016/j.cyto.2019.154883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
To understand the fetal immune response to porcine reproductive and respiratory virus-2 (PRRSV) and to evaluate the association with fetal viability, pregnant gilts were challenged on gestation day 85 and euthanized 21 days post infection. Based on preservation status and viral load in serum and thymus, fetuses were classified as either uninfected-viable (UNIF), high viral load viable (HV-VIA), or high viral load meconium stained (HV-MEC) and were compared with age matched control (CON) fetuses derived from mock infected gilts. Gene expression of IFNB, IFNG, CCL2, CCL5, CXCL10 and IL10, were all found to be significantly upregulated in the thymus and spleen of both high viral load groups. UNIF fetuses remained largely unaffected, with only small upregulations in IFNA and IL10 in the thymus, and IFNA, CCL5 and CXCL10 in the spleen. Regarding fetal viability, expression of CCL5 was significantly elevated in the thymus and spleen of HV-MEC compared to HV-VIA fetuses. The concentrations of IFNα, IFNγ, TNFα and CCL2 were elevated in the sera of all infected fetuses, whereas IFNβ was below the detection limit in all fetal sera. Additional gene expression analysis in the thymus showed significant downregulation of CDK1, CDK2 and CDK4, and upregulation of the inhibitor CDKN1A, suggesting altered regulation of cell cycle progression. Collectively, these results show near complete compartmentalization of the fetal immune response to infected fetuses and suggest this immune response is not a major contributor to fetal death.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
16
|
Hu L, Gui W, Chen B, Chen L. Transcriptome profiling of maternal stress-induced wing dimorphism in pea aphids. Ecol Evol 2019; 9:11848-11862. [PMID: 31695892 PMCID: PMC6822051 DOI: 10.1002/ece3.5692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
Wing dimorphism, that is, wingless and winged forms, can be induced by maternal stress signals and is an adaptive response of aphids to environmental changes. Here, we investigated the ecological and molecular effects of three kinds of stress, namely crowding, predation, and aphid alarm pheromone, on wing dimorphism. These three stressors induced high proportion of up to 60% of winged morphs in offspring. Transcriptome analysis of stress-treated female aphids revealed different changes in maternal gene expression induced by the three stressors. Crowding elicited widespread changes in the expression of genes involved in nutrient accumulation and energy mobilization. Distinct from crowding, predation caused dramatic expression changes in cuticle protein (CP) genes. Twenty-three CP genes that belong to CP RR2 subfamily and are highly expressed in legs and embryos were greatly repressed by the presence of ladybird. By contrast, application of alarm pheromone, E-β-farnesene, caused slight changes in gene expression. The three factors shared a responsive gene, cuticle protein 43. This study reveals the adaptive response of aphids to environmental stresses and provides a rich resource on genome-wide expression genes for exploring molecular mechanisms of ecological adaptation in aphids. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.55b2b15.
Collapse
Affiliation(s)
- Lin Hu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of EducationNanning Normal UniversityNanningChina
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceHebei UniversityBaodingChina
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Islam MA, Neuhoff C, Aqter Rony S, Große-Brinkhaus C, Uddin MJ, Hölker M, Tesfaye D, Tholen E, Schellander K, Pröll-Cornelissen MJ. PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLoS One 2019; 14:e0222513. [PMID: 31536525 PMCID: PMC6752781 DOI: 10.1371/journal.pone.0222513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Sharmin Aqter Rony
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christine Große-Brinkhaus
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- School of Veterinary Science, The University of Queensland, Gatton campus, Brisbane, QLD, Australia
| | - Michael Hölker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Maren Julia Pröll-Cornelissen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- * E-mail:
| |
Collapse
|
18
|
Malgarin CM, Nosach R, Novakovic P, Suleman M, Ladinig A, Detmer SE, MacPhee DJ, Harding JCS. Classification of fetal resilience to porcine reproductive and respiratory syndrome (PRRS) based on temporal viral load in late gestation maternal tissues and fetuses. Virus Res 2018; 260:151-162. [PMID: 30529234 DOI: 10.1016/j.virusres.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Abstract
Although porcine reproductive and respiratory syndrome virus (PRRSV) readily crosses the maternal fetal interface (MFI) in third trimester, fetal resilience varies within litters. The aim of this study was to characterize PRRSV-2 concentration in MFI and fetuses at five time points after experimental inoculation of late gestation gilts and use this information to classify potentially resistant, resilient and susceptible fetuses. The secondary objective was to verify the relationship between PRRS viral load and intrauterine growth retardation (IUGR). Three PRRSV-inoculated pregnant gilts and 1 sham-inoculated control were euthanized at five time points in days post infection (DPI; 2, 5, 8, 12, 14). The preservation status of each fetus was determined and MFI samples adjacent to the umbilical stump of each fetus, as well as serum, thymus, umbilical cord and amniotic fluid were collected. Viral load was quantified using probe-based reverse-transcriptase quantitative PCR (RT-qPCR) targeting PRRSV NVSL 97-7895 ORF7. Our result show the MFI was largely PRRSV infected by 2 DPI and virus was first detected in fetal sera and umbilical cord by 5 DPI, and in fetal thymus and amniotic fluid by 8 DPI. This indicates that PRRSV-2 quickly crossed the placenta and traveled toward the fetus via umbilical circulation within one week of the dam's inoculation. Fetal compromise was first observed on 8 DPI and increased progressively through to 14 DPI. However, several factors were associated with fetal resilience. The random forest model identified that 'viral load in fetal thymus' and duration of infection ('DPI') as the most important factors predicting fetal resilience and resistance. Moreover, IUGR fetuses had lower viral load and were less frequently compromised or dead compared to non-IUGR and average cohorts. Understanding the mechanisms of fetal resilience to PRRSV will improve selection strategies for replacement gilts.
Collapse
Affiliation(s)
- Carolina M Malgarin
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Roman Nosach
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Predrag Novakovic
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Muhammad Suleman
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Andrea Ladinig
- University of Veterinary Medicine, 1210, Vienna, Austria.
| | - Susan E Detmer
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - Daniel J MacPhee
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| | - John C S Harding
- Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
19
|
Transcriptional profiles of PBMCs from pigs infected with three genetically diverse porcine reproductive and respiratory syndrome virus strains. Mol Biol Rep 2018; 45:675-688. [PMID: 29882085 PMCID: PMC6156768 DOI: 10.1007/s11033-018-4204-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/31/2018] [Indexed: 01/23/2023]
Abstract
Porcine reproductive and respiratory syndrome virus is the cause of reproductive failure in sows and respiratory disease in young pigs, which has been considered as one of the most costly diseases to the worldwide pig industry for almost 30 years. This study used microarray-based transcriptomic analysis of PBMCs from experimentally infected pigs to explore the patterns of immune dysregulation after infection with two East European PRRSV strains from subtype 2 (BOR and ILI) in comparison to a Danish subtype 1 strain (DAN). Transcriptional profiles were determined at day 7 post infection in three tested groups of pigs and analysed in comparison with the expression profile of control group. Microarray analysis revealed differential regulation (> 1.5-fold change) of 4253 and 7335 genes in groups infected with BOR and ILI strains, respectively, and of 12518 genes in pigs infected with Danish strain. Subtype 2 PRRSV strains showed greater induction of many genes, especially those involved in innate immunity, such as interferon stimulated antiviral genes and inflammatory markers. Functional analysis of the microarray data revealed a significant up-regulation of genes involved in processes such as acute phase response, granulocyte and agranulocyte adhesion and diapedesis, as well as down-regulation of genes enrolled in pathways engaged in protein synthesis, cell division, as well as B and T cell signaling. This study provided an insight into the host response to three different PRRSV strains at a molecular level and demonstrated variability between strains of different pathogenicity level.
Collapse
|
20
|
Skinkyte-Juskiene R, Kogelman LJ, Kadarmideen HN. Transcription Factor Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of Obesity. Curr Genomics 2018; 19:289-299. [PMID: 29755291 PMCID: PMC5930450 DOI: 10.2174/1389202918666171005095059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/28/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Transcription Factors (TFs) control actuation of genes in the genome and are key mediators of complex processes such as obesity. Master Regulators (MRs) are the genes at the top of a regulation hierarchy which regulate other genes. OBJECTIVE To elucidate clusters of highly co-expressed TFs (modules), involved pathways, highly inter-connected TFs (hub-TFs) and MRs leading to obesity and leanness, using porcine model for human obesity. METHODS We identified 817 expressed TFs in RNA-Sequencing dataset representing extreme degrees of obesity (DO; lean, obese). We built a single Weighted Transcription Factor Co-expression Network (WTFCN) and TF sub-networks (based on the DO). Hub-TFs and MRs (using iRegulon) were identi-fied in biologically relevant WTFCNs modules. RESULTS Single WTFCN detected the Red module significantly associated with DO (P < 0.03). This module was enriched for regulation processes in the immune system, e.g.: Immune system process (Padj = 2.50E-06) and metabolic lifestyle disorders, e.g. Circadian rhythm - mammal pathway (Padj = 2.33E-11). Detected MR, hub-TF SPI1 was involved in obesity, immunity and osteoporosis. Within the obese sub-network, the Red module suggested possible associations with immunity, e.g. TGF-beta signaling pathway (Padj = 1.73E-02) and osteoporosis, e.g. Osteoclast differentiation (Padj = 1.94E-02). Within the lean sub-network, the Magenta module displayed associations with type 2 diabetes, obesity and os-teoporosis e.g. Notch signaling pathway (Padj = 2.40E-03), osteoporosis e.g. hub-TF VDR (a prime candidate gene for osteoporosis). CONCLUSION Our results provide insights into the regulatory network of TFs and biologically relevant hub TFs in obesity.
Collapse
Affiliation(s)
- Ruta Skinkyte-Juskiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Lisette J.A. Kogelman
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Haja N. Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Novakovic P, Detmer SE, Suleman M, Malgarin CM, MacPhee DJ, Harding JCS. Histologic Changes Associated With Placental Separation in Gilts Infected with Porcine Reproductive and Respiratory Syndrome Virus. Vet Pathol 2018; 55:521-530. [DOI: 10.1177/0300985818765067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)–induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.
Collapse
Affiliation(s)
- Predrag Novakovic
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan E. Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Muhammad Suleman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carol M. Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Prather RS, Wells KD, Whitworth KM, Kerrigan MA, Samuel MS, Mileham A, Popescu LN, Rowland RRR. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV). Sci Rep 2017; 7:13371. [PMID: 29042674 PMCID: PMC5645351 DOI: 10.1038/s41598-017-13794-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023] Open
Abstract
After infection of the porcine dam at about 90 days of gestation, porcine reproductive and respiratory syndrome virus (PRRSV) crosses the placenta and begins to infect fetuses. Outcomes of include abortion, fetal death and respiratory disease in newborn piglets. CD163 is the receptor for the virus. In this study, CD163-positive fetuses, recovered between 109 days of gestation or 20 days after maternal infection, were completely protected from PRRSV in dams possessing a complete knockout of the CD163 receptor. The results demonstrate a practical means to eliminate PRRSV-associated reproductive disease, a major source of economic hardship to agriculture.
Collapse
Affiliation(s)
- Randall S Prather
- Division of Animal Science, College of Food Agriculture and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Kevin D Wells
- Division of Animal Science, College of Food Agriculture and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Kristin M Whitworth
- Division of Animal Science, College of Food Agriculture and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Maureen A Kerrigan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Melissa S Samuel
- Division of Animal Science, College of Food Agriculture and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | | | - Luca N Popescu
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
23
|
Giles TA, Belkhiri A, Barrow PA, Foster N. Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Res Vet Sci 2017; 114:266-272. [PMID: 28535467 PMCID: PMC7118804 DOI: 10.1016/j.rvsc.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Aouatif Belkhiri
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| |
Collapse
|
24
|
Harding JC, Ladinig A, Novakovic P, Detmer SE, Wilkinson JM, Yang T, Lunney JK, Plastow GS. Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2. Vet Microbiol 2017; 209:114-123. [DOI: 10.1016/j.vetmic.2017.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
|
25
|
Wang O, McAllister TA, Plastow G, Stanford K, Selinger B, Guan LL. Host mechanisms involved in cattle Escherichia coli O157 shedding: a fundamental understanding for reducing foodborne pathogen in food animal production. Sci Rep 2017; 7:7630. [PMID: 28794460 PMCID: PMC5550497 DOI: 10.1038/s41598-017-06737-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
The host mechanisms involved in Escherichia coli O157 super-shedding in cattle is largely unknown. In this study, the comparison of transcriptomes of intestinal tissues between super-shedders (SS) and cattle negative for E. coli O157 (NS) was performed, aiming to identify genes that are potentially associated with super-shedding. In total, 16,846 ± 639 (cecum) to 18,137 ± 696 (distal jejunum) were expressed throughout the intestine, with the expressed genes associated with immune functions more pronounced in the small intestine. In total, 351 differentially expressed (DE) genes were identified throughout the intestine between SS and NS, with 101 being up-regulated and 250 down-regulated in SS. Functional analysis revealed DE genes were involved in increased T-cell responses and cholesterol absorption in the distal jejunum and descending colon, and decreased B-cell maturation in the distal jejunum of SS. RNA-Seq based SNP discovery revealed that the mutations in seven DE genes involved in leukocyte activation and cholesterol transportation were associated with E. coli O157 shedding. Our findings suggest that T-cell responses and cholesterol metabolism in the intestinal tract may be associated with super-shedding phenomenon, and the SNPs in the DE genes are possibly associated with the observed gene expression difference between SS and NS.
Collapse
Affiliation(s)
- Ou Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, T1J 4V6, Canada
| | - Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
26
|
Novel approaches for Spatial and Molecular Surveillance of Porcine Reproductive and Respiratory Syndrome Virus (PRRSv) in the United States. Sci Rep 2017; 7:4343. [PMID: 28659596 PMCID: PMC5489505 DOI: 10.1038/s41598-017-04628-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/17/2017] [Indexed: 01/29/2023] Open
Abstract
The US swine industry has been impaired over the last 25 years by the far-reaching financial losses caused by the porcine reproductive and respiratory syndrome (PRRS). Here, we explored the relations between the spatial risk of PRRS outbreaks and its phylodynamic history in the U.S during 1998–2016 using ORF5 sequences collected from swine farms in the Midwest region. We used maximum entropy and Bayesian phylodynamic models to generate risk maps for PRRS outbreaks and reconstructed the evolutionary history of three selected phylogenetic clades (A, B and C). High-risk areas for PRRS were best-predicted by pig density and climate seasonality and included Minnesota, Iowa and South Dakota. Phylodynamic models demonstrated that the geographical spread of the three clades followed a heterogeneous spatial diffusion process. Furthermore, PRRS viruses were characterized by typical seasonality in their population size. However, endemic strains were characterized by a substantially slower population growth and evolutionary rates, as well as smaller spatial dispersal rates when compared to emerging strains. We demonstrated the prospects of combining inferences derived from two unique analytical methods to inform decisions related to risk-based interventions of an important pathogen affecting one of the largest food animal industries in the world.
Collapse
|
27
|
Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 2017; 84:926-933. [DOI: 10.1002/mrd.22811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Randall S. Prather
- Division of Animal Science; University of Missouri-Columbia; Columbia Missouri
| |
Collapse
|
28
|
Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2016; 2:27. [PMID: 28405453 PMCID: PMC5382513 DOI: 10.1186/s40813-016-0045-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
PRRS is one of the most challenging diseases for world-wide pig production. Attempts for a sustainable control of this scourge by vaccination have not yet fully satisfied. With an increasing knowledge and methodology in disease resistance, a new world-wide endeavour has been started to support the combat of animal diseases, based on the existence of valuable gene variants with regard to any host-pathogen interaction. Several groups have produced a wealth of evidence for natural variability in resistance/susceptibility to PRRS in our commercial breeding lines. However, up to now, exploiting existing variation has failed because of the difficulty to detect the carriers of favourable and unfavourable alleles, especially with regard to such complex polygenic traits like resistance to PRRS. New hope comes from new genomic tools like next generation sequencing which have become extremely fast and low priced. Thus, research is booming world-wide and the jigsaw puzzle is filling up – slowly but steadily. On the other hand, knowledge from virological and biomedical basic research has opened the way for an “intervening way”, i.e. the modification of identified key genes that occupy key positions in PRRS pathogenesis, like CD163. CD163 was identified as the striking receptor in PRRSV entry and its knockout from the genome by gene editing has led to the production of pigs that were completely resistant to PRRSV – a milestone in modern pig breeding. However, at this early step, concerns remain about the acceptance of societies for gene edited products and regulation still awaits upgrading to the new technology. Further questions arise with regard to upcoming patents from an ethical and legal point of view. Eventually, the importance of CD163 for homeostasis, defence and immunity demands for more insight before its complete or partial silencing can be answered. Whatever path will be followed, even a partial abolishment of PRRSV replication will lead to a significant improvement of the disastrous herd situation, with a significant impact on welfare, performance, antimicrobial consumption and consumer protection. Genetics will be part of a future solution.
Collapse
|