1
|
Shi X, Gols R, de Boer JG, Harvey JA. Host size overrides maternal effects on the development of a secondary hyperparasitoid wasp. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:3. [PMID: 39846895 PMCID: PMC11756310 DOI: 10.1093/jisesa/ieaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/28/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Unraveling the numerous factors that drive phenotypic variation in trait expression among animals has long presented a significant challenge. Whereas traits like growth and adult size are often heritable and are passed on from one generation to the next, these can be significantly affected by the quality and quantity of resources provided by one or both parents to their offspring. In many vertebrates, such as birds and mammals, parents raise their young until adult, providing food, shelter, and protection. On the other hand, in insects, there is often little or no parental care, and the young are left to fend for themselves. Despite that, some insects can enhance the growth of their offspring. In parasitoid wasps, for example, mothers inject biochemical factors, including venoms, teratocytes, and virus-like particles into the host that increase host quality by regulating the nutritional milieu. However, it is not known whether maternal size is positively correlated with host regulation. Here, we evaluate maternal and host size-related effects on the development of an asexually reproducing (= female only) secondary idiobiont ectoparasitoid, Gelis agilis on pre-pupae in cocoons of its host, the primary parasitoid, Cotesia glomerata. Females G. agilis from 2 adult size classes, "small" (mean 0.7 mg) or "large" (mean 1.2 mg), were allowed to parasitize cocoons of differing size along a continuum from ~1.2 mg to ~4.0 mg, and the body size and development time of their offspring were measured. In both body size classes of G. agilis mothers, there was a strong correlation between host size and offspring size. However, there was no effect of adult G. agilis size on this parameter: for a given host size, the size of G. agilis offspring did not differ between small and large mothers. Our results reveal that host quality is mostly pre-determined, irrespective of maternal size.
Collapse
Affiliation(s)
- Xianhui Shi
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Aeres University of Applied Sciences, Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Ecological Science, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
3
|
Russo E, Di Lelio I, Shi M, Becchimanzi A, Pennacchio F. Aphidius ervi venom regulates Buchnera contribution to host nutritional suitability. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104506. [PMID: 37011858 DOI: 10.1016/j.jinsphys.2023.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 06/02/2023]
Abstract
The association between the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), and the endophagous parasitoid wasp Aphidius ervi Haliday (Hymenoptera: Braconidae) offers a unique model system for studying the molecular mechanisms underlying the complex interactions between the parasitoid, its host and the associated primary symbiont. Here, we investigate in vivo the functional role of the most abundant component of A. ervi venom, Ae-γ-glutamyl transpeptidase (Ae-γ-GT), which is known to induce host castration. Microinjections of double-stranded RNA into A. ervi pupae stably knocked down Ae-γ-GT1 and Ae-γ-GT2 paralogue genes in newly emerged females. These females were used to score the phenotypic changes both in parasitized hosts and in the parasitoid's progeny, as affected by a venom blend lacking Ae-γ-GT. Ae-γ-GT gene silencing enhanced growth both of host and parasitoid, supported by a higher load of the primary bacterial symbiont Buchnera aphidicola. Emerging adults showed a reduced survival and fecundity, suggesting a trade-off with body size. This demonstrates in vivo the primary role of Ae-γ-GT in host ovary degeneration and suggests that this protein counterbalances the proliferation of Buchnera likely triggered by other venom components. Our study provides a new approach to unravelling the complexity of aphid parasitoid venom in vivo, and sheds light on a novel role for Ae-γ-GT in host regulation.
Collapse
Affiliation(s)
- Elia Russo
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy
| | - Ilaria Di Lelio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Min Shi
- Jiaxing Nanhu University, Jiaxing, China
| | - Andrea Becchimanzi
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Francesco Pennacchio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
4
|
Inwood SN, Harrop TWR, Dearden PK. The venom composition and parthenogenesis mechanism of the parasitoid wasp Microctonus hyperodae, a declining biocontrol agent. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103897. [PMID: 36584929 DOI: 10.1016/j.ibmb.2022.103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A biocontrol system in New Zealand using the endoparasitoid Microctonus hyperodae is failing, despite once being one of the most successful examples of classical biocontrol worldwide. Though it is of significant economic importance as a control agent, little is known about the genetics of M. hyperodae. In this study, RNA-seq was used to characterise two key traits of M. hyperodae in this system, the venom, critical for the initial success of biocontrol, and the asexual reproduction mode, which influenced biocontrol decline. Expanded characterisation of M. hyperodae venom revealed candidates involved in manipulating the host environment to source nutrition for the parasitoid egg, preventing a host immune response against the egg, as well as two components that may stimulate the host's innate immune system. Notably lacking from the venom-specific expression list was calreticulin, as it also had high expression in the ovaries. In-situ hybridisation revealed this ovarian expression was localised to the follicle cells, which may result in the deposition of calreticulin into the egg exochorion. Investigating the asexual reproduction of M. hyperodae revealed core meiosis-specific genes had conserved expression patterns with the highest expression in the ovaries, suggesting M. hyperodae parthenogenesis involves meiosis and that the potential for sexual reproduction may have been retained. Upregulation of genes involved in endoreduplication provides a potential mechanism for the restoration of diploidy in eggs after meiosis.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand; Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
5
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
6
|
Identification and Functional Characterization of Toxoneuron nigriceps Ovarian Proteins Involved in the Early Suppression of Host Immune Response. INSECTS 2022; 13:insects13020144. [PMID: 35206718 PMCID: PMC8876978 DOI: 10.3390/insects13020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The endophagous parasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) of the larval stages of the tobacco budworm Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae) injects the egg, the venom, the calyx fluid, which includes a Polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian Proteins (OPs) into the host body during oviposition. The host metabolism and immune system are disrupted prematurely shortly after parasitization by the combined action of the TnBV, venom, and OPs. OPs are involved in the early suppression of host immune response, before TnBV infects and expresses its genes in the host tissues. In this work, we evaluated the effect of HPLC fractions deriving from in toto OPs. Two fractions caused a reduction in hemocyte viability and were subsequently tested to detect changes in hemocyte morphology and functionality. The two fractions provoked severe oxidative stress and actin cytoskeleton disruption, which might explain the high rate of hemocyte mortality, loss of hemocyte functioning, and hence the host’s reduced hemocyte encapsulation ability. Moreover, through a transcriptome and proteomic approach we identify the proteins of the two fractions: eight proteins were identified that might be involved in the observed host hemocyte changes. Our findings will contribute to a better understanding of the secreted ovarian components and their role in parasitoid wasp strategy for evading host immune responses.
Collapse
|
7
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Benoist R, Capdevielle-Dulac C, Chantre C, Jeannette R, Calatayud PA, Drezen JM, Dupas S, Le Rouzic A, Le Ru B, Moreau L, Van Dijk E, Kaiser L, Mougel F. Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Mol Ecol 2020; 29:3476-3493. [PMID: 32731311 DOI: 10.1111/mec.15567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site-associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high-quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.
Collapse
Affiliation(s)
- Romain Benoist
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Claire Capdevielle-Dulac
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Célina Chantre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Rémi Jeannette
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Paul-André Calatayud
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France.,icipe, International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université Tours, Tours, France
| | - Stéphane Dupas
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Bruno Le Ru
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE - Le Moulon, Gif-sur-Yvette, France
| | - Erwin Van Dijk
- Université Paris-Saclay, CNRS, CEA, UMR Institut de Biologie Intégrative de la Cellule, Gif-sur-Yvette, France
| | - Laure Kaiser
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Florence Mougel
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Wang J, Song J, Fang Q, Yao H, Wang F, Song Q, Ye G. Insight into the Functional Diversification of Lipases in the Endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) by Genome-scale Annotation and Expression Analysis. INSECTS 2020; 11:E227. [PMID: 32260574 PMCID: PMC7240578 DOI: 10.3390/insects11040227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Lipases play essential roles in digestion, transport, and processing of dietary lipids in insects. For parasitoid wasps with a unique life cycle, lipase functions could be multitudinous in particular. Pteromalus puparum is a pupal endoparasitoid of butterflies. The female adult deposits eggs into its host, along with multifunctional venom, and the developing larvae consume host as its main nutrition source. Parasitoid lipases are known to participate in the food digestion process, but the mechanism remains unclear. P. puparum genome and transcriptome data were interrogated. Multiple alignments and phylogenetic trees were constructed. We annotated a total of 64 predicted lipase genes belonging to five lipase families and suggested that eight venom and four salivary lipases could determine host nutrition environment post-parasitization. Many putative venom lipases were found with incomplete catalytic triads, relatively long β9 loops, and short lids. Data analysis reveals the loss of catalytic activities and weak triacylglycerol (TAG) hydrolytic activities of lipases in venom. Phylogenetic trees indicate various predicted functions of lipases in P. puparum. Our information enriches the database of parasitoid lipases and the knowledge of their functional diversification, providing novel insight into how parasitoid wasps manipulate host lipid storage by using venom lipases.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Jiqiang Song
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| |
Collapse
|
10
|
Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics 2020; 21:34. [PMID: 31924169 PMCID: PMC6954513 DOI: 10.1186/s12864-019-6396-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). RESULTS Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. CONCLUSION The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maddalena Avolio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Infrastrutture di Ricerca per le Risorse Biologiche Marine, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Donato Mancini
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Pietro Pucci
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| |
Collapse
|
11
|
Martinson EO, Siebert AL, He M, Kelkar YD, Doucette LA, Werren JH. Evaluating the evolution and function of the dynamic Venom Y protein in ectoparasitoid wasps. INSECT MOLECULAR BIOLOGY 2019; 28:499-508. [PMID: 30636014 PMCID: PMC6606371 DOI: 10.1111/imb.12565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Venom of the parasitoid wasp Nasonia vitripennis changes the metabolism and gene expression in its fly host Sarcophaga bullata to induce developmental arrest, suppression of the immune response and various other venom effects. Yet, the venom of ectoparasitoid wasps has not been fully characterized. A major component of N. vitripennis venom is an uncharacterized, high-expressing protein referred to as Venom Y. Here we describe the evolutionary history and possible functions of this venom protein. We found that Venom Y is a relatively young gene that has duplicated to form two distinct paralogue groups. A copy of Venom Y has been recruited as a venom protein in at least five wasp species. Functional analysis found that Venom Y affects detoxification and immunity genes in envenomated fly hosts. Many of these genes are fat-body specific, suggesting that Venom Y may have a targeted effect on fat body tissue. We also show that Venom Y may mitigate negative effects of other venom proteins. Finally, protein sequencing indicates that Venom Y is post-translationally modified. This study contributes to elucidating parasitoid venom by using RNA interference knockdown to investigate venom protein function in the context of the whole venom cocktail.
Collapse
Affiliation(s)
- Ellen O. Martinson
- Biology Department, University of Rochester, Rochester, NY 14627 USA
- Current Address: Department of Entomology, University of Georgia, Athens, Georgia 30602 USA
| | - Aisha L. Siebert
- Translational Biomedical Science Department, University of Rochester School of Medicine and Dentistry, Rochester NY 14627 USA
- Current Address: Department of Urology, Northwestern University, Chicago, IL 60611 USA
| | - Mengni He
- Biology Department, University of Rochester, Rochester, NY 14627 USA
- Current Address: Johns Hopkins University, Baltimore, MD 21218 USA
| | | | - Luticha A. Doucette
- Biology Department, University of Rochester, Rochester, NY 14627 USA
- Current Address: Mayor’s Office of Innovation, Rochester, NY 14614 USA
| | - John H. Werren
- Biology Department, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
12
|
Teng Z, Wu H, Ye X, Xiong S, Xu G, Wang F, Fang Q, Ye G. An Ovarian Protein Involved in Passive Avoidance of an Endoparasitoid To Evade Its Host Immune Response. J Proteome Res 2019; 18:2695-2705. [PMID: 31244211 DOI: 10.1021/acs.jproteome.8b00824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through a combination of transcriptomic and proteomic analyses, we identified 817 secreted ovarian proteins from an endoparasitoid wasp, Cotesia chilonis, of which five proteins are probably involved in passive evasion. The results of an encapsulation assay revealed that one of these passive evasion-associated proteins (Crp32B), a homologue of a 32-kDa protein (Crp32) from C. rubecula, could protect resin beads from being encapsulated by host hemocytes in a dose-dependent manner. Crp32B is transcribed in ovarian cells, nurse cells, follicular cells, and oocytes, and the protein is located throughout the ovary and on the egg surface. Moreover, Crp32B has antigenic similarity to several host components. These results indicate that C. chilonis may use molecular mimicry as a mechanism to avoid host cellular immune response.
Collapse
Affiliation(s)
- Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
13
|
Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, Nolan C, Pan S, Stajich JE, Libersat F, Adams ME. Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Mol Cell Proteomics 2019; 18:99-114. [PMID: 30293061 PMCID: PMC6317478 DOI: 10.1074/mcp.ra118.000908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The parasitoid emerald jewel wasp Ampulex compressa induces a compliant state of hypokinesia in its host, the American cockroach Periplaneta americana through direct envenomation of the central nervous system (CNS). To elucidate the biochemical strategy underlying venom-induced hypokinesia, we subjected the venom apparatus and milked venom to RNAseq and proteomics analyses to construct a comprehensive "venome," consisting of 264 proteins. Abundant in the venome are enzymes endogenous to the host brain, including M13 family metalloproteases, phospholipases, adenosine deaminase, hyaluronidase, and neuropeptide precursors. The amphipathic, alpha-helical ampulexins are among the most abundant venom components. Also prominent are members of the Toll/NF-κB signaling pathway, including proteases Persephone, Snake, Easter, and the Toll receptor ligand Spätzle. We find evidence that venom components are processed following envenomation. The acidic (pH∼4) venom contains unprocessed neuropeptide tachykinin and corazonin precursors and is conspicuously devoid of the corresponding processed, biologically active peptides. Neutralization of venom leads to appearance of mature tachykinin and corazonin, suggesting that the wasp employs precursors as a prolonged time-release strategy within the host brain post-envenomation. Injection of fully processed tachykinin into host cephalic ganglia elicits short-term hypokinesia. Ion channel modifiers and cytolytic toxins are absent in A. compressa venom, which appears to hijack control of the host brain by introducing a "storm" of its own neurochemicals. Our findings deepen understanding of the chemical warfare underlying host-parasitoid interactions and in particular neuromodulatory mechanisms that enable manipulation of host behavior to suit the nutritional needs of opportunistic parasitoid progeny.
Collapse
Affiliation(s)
- Ryan Arvidson
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Maayan Kaiser
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sang Soo Lee
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521
| | - Jean-Paul Urenda
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Christopher Dail
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Haroun Mohammed
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Cebrina Nolan
- **Department of Entomology, University of California, Riverside, California 92521
| | - Songqin Pan
- ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521
| | - Jason E Stajich
- §§Department of Microbiology & Plant Pathology, University of California, Riverside, California 92521
| | - Frederic Libersat
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521;; **Department of Entomology, University of California, Riverside, California 92521;; ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;.
| |
Collapse
|
14
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
15
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
16
|
Cook N, Boulton RA, Green J, Trivedi U, Tauber E, Pannebakker BA, Ritchie MG, Shuker DM. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171718. [PMID: 29515880 PMCID: PMC5830769 DOI: 10.1098/rsos.171718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/15/2018] [Indexed: 03/14/2024]
Abstract
Whole-transcriptome technologies have been widely used in behavioural genetics to identify genes associated with the performance of a behaviour and provide clues to its mechanistic basis. Here, we consider the genetic basis of sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Female Nasonia facultatively vary their offspring sex ratio in line with Hamilton's theory of local mate competition (LMC). A single female or 'foundress' laying eggs on a patch will lay just enough sons to fertilize her daughters. As the number of 'foundresses' laying eggs on a patch increases (and LMC declines), females produce increasingly male-biased sex ratios. Phenotypic studies have revealed the cues females use to estimate the level of LMC their sons will experience, but our understanding of the genetics underlying sex allocation is limited. Here, we exposed females to three foundress number conditions, i.e. three LMC conditions, and allowed them to oviposit. mRNA was extracted from only the heads of these females to target the brain tissue. The subsequent RNA-seq experiment confirmed that differential gene expression is not associated with the response to sex allocation cues and that we must instead turn to the underlying neuroscience to reveal the underpinnings of this impressive behavioural plasticity.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Rebecca A. Boulton
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Jade Green
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Urmi Trivedi
- Edinburgh Genomics, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Eran Tauber
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bart A. Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Michael G. Ritchie
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - David M. Shuker
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| |
Collapse
|
17
|
Li R, Yan Z, Wang J, Song Q, Wang Z. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein. BMC Biotechnol 2017; 17:73. [PMID: 29115956 PMCID: PMC5678584 DOI: 10.1186/s12896-017-0392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pardosa pseudoannulata is a prevailing spider species, and has been regarded as an important bio-control agent of insect pests in farmland of China. However, the available genomic and transcriptomic databases of P. pseudoannulata and their venom are limited, which severely hampers functional genomic analysis of P. pseudoannulata. Recently high-throughput sequencing technology has been proved to be an efficient tool for profiling the transcriptome of relevant non-target organisms exposed to Bacillus thuringiensis (Bt) protein through food webs. Results In this study, the transcriptome of the venom apparatus was analyzed. A total of 113,358 non-redundant unigenes were yielded, among which 34,041 unigenes with complete or various length encoding regions were assigned biological function annotations and annotated with gene ontology and karyotic orthologous group terms. In addition, 3726 unigenes involved in response to stimulus and 720 unigenes associated with immune-response pathways were identified. Furthermore, we investigated transcriptomic changes in the venom apparatus using tag-based DGE technique. A total of 1724 differentially expressed genes (DEGs) were detected, while 75 and 372 DEGs were functionally annotated with KEGG pathways and GO terms, respectively. qPCR analyses were performed to verify the DEGs directly or indirectly related to immune and stress responses, including genes encoding heat shock protein, toll-like receptor, GST and NADH dehydrogenase. Conclusion This is the first study conducted to specifically investigate the venom apparatus of P. pseudoannulata in response to Bt protein exposure through tritrophic chain. A substantial fraction of transcript sequences was generated by high-throughput sequencing of the venom apparatus of P. pseudoannulata. Then a comparative transcriptome analysis showing a large number of candidate genes involved in immune response were identified by the tag-based DGE technology. This transcriptome dataset will provide a comprehensive sequence resource for furture molecular genetic research of the venom apparatus of P. pseudoannulata. Electronic supplementary material The online version of this article (10.1186/s12896-017-0392-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Li
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.,Department of Biosciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Zhenzhen Yan
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Juan Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
18
|
Shafeeq T, UlAbdin Z, Lee KY. Induction of stress- and immune-associated genes in the Indian meal moth Plodia interpunctella against envenomation by the ectoparasitoid Bracon hebetor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21405. [PMID: 28730731 DOI: 10.1002/arch.21405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Envenomation is an important process in parasitism by parasitic wasps; it suppresses the immune and development of host insects. However, the molecular mechanisms of host responses to envenomation are not yet clear. This study aimed to determine the transcription-level responses of the Indian meal moth Plodia interpunctella against envenomation of the ectoparasitoid Bracon hebetor. Quantitative real-time reverse-transcription PCR was used to determine the transcriptional changes of 13 selected genes, which are associated with development, metabolism, stress, or immunity, in the feeding and wandering fifth instar larvae over a 4-day period after envenomation. The effects of envenomation on the feeding-stage larvae were compared with those of starvation in the transcriptional levels of the 13 genes. Most selected genes were altered in their expression by either envenomation or starvation. In particular, a heat shock protein, hsp70, was highly upregulated in envenomated larvae in both the feeding and wandering stages as well as in starved larvae. Further, some genes were upregulated by envenomation in a stage-specific manner. For example, hsp25 was upregulated after envenomation in the feeding larvae, but hsp90 and an immune-associated gene, hemolin, were upregulated in the wandering larvae. However, both envenomation and starvation resulted in the downregulation of genes associated with development and metabolism. Taken together, P. interpunctella upregulated stress- and immune-responsive genes, but downregulated genes associated with development and metabolism after envenomation. This study provides important information for understanding the molecular mechanisms of host responses to parasitism.
Collapse
Affiliation(s)
- Tahir Shafeeq
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Zain UlAbdin
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, Republic of Korea
| |
Collapse
|
19
|
Xin B, Liu P, Xu X, Zhang S, Zheng Y. Identification of Venom Proteins of the Indigenous Endoparasitoid Chouioia cunea (Hymenoptera: Eulophidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2022-2030. [PMID: 28981711 DOI: 10.1093/jee/tox200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Chouioia cunea (Yang) (Hymenoptera: Eulophidae) is an indigenous pupal endoparasitoid that effectively attacks the exotic fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. In this novel association, the parasitoid's venom has played an important role in subduing the immune defense of the host although little is known about the composition and functions of the parasitoid's venom. We therefore first identified the parasitoid's major venom proteins using electrospray ionization-mass spectrometry (ESI-MS). Approximately 207 different proteins were identified from C. cunea's venom; among them 26 types widely existed in other endoparasitoids' venom, including calreticulin and arginine kinase, which inhibited the host immune system.
Collapse
Affiliation(s)
- Bei Xin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Peixuan Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaorui Xu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Shun Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanan Zheng
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|