1
|
Wang Y, Hu Q, Yao Y, Cui Y, Bai Y, An L, Li X, Ding B, Yao X, Wu K. Transcriptome, miRNA, and degradome sequencing reveal the leaf stripe (Pyrenophora graminea) resistance genes in Tibetan hulless barley. BMC PLANT BIOLOGY 2025; 25:71. [PMID: 39825242 PMCID: PMC11740358 DOI: 10.1186/s12870-025-06055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance. In this study, the transcript expression profiles of normal and infected leaves of resistant Tibetan hulless barley (Hordeum vulgare L. var. nudum Hook. f.) variety Kunlun 14 and susceptible variety Z1141 were analyzed by RNA sequencing (RNA-seq). The results showed a total of 7,669 and 5,943 differentially expressed genes (DEGs) were found in resistant and susceptible Kunlun 14 and Z1141, respectively, with 8,916 DEGs found between Kunlun 14 and Z1141. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the 8,916 DEGs identified many significantly enriched categories and pathways, of which a plant-pathogen interaction pathway, containing a total of 102 genes (100 known genes and two novel genes), was found, that was very important for the study of the leaf stripe resistance mechanism. Using RNA-seq, small RNA sequencing (miRNA-seq) combined with degradome sequencing (degradome-seq), four pairs associated with leaf-stripe miRNAs and target genes were obtained, namely Hvu-miR168-5p and Argonaute1 (HvAGO1), Hvu-novel-52 and growth-regulating factor 6 (HvGRF6), Hvu-miR6195 and chemocyanin-like protein (CLP), and Hvu-miR159b and gibberellin-dependent MYB (GAMYB). Transformation of the important target gene HvAGO1 into Arabidopsis verified that HvAGO1 could against Botrytis cinerea. Then RNA-seq and miRNA-seq of Arabidopsis transformed with overexpressed of HvAGO1 were performed. Based on the above research results, we constructed a Protein-Protein Interaction (PPI) network of barley leaf stripe resistance. This study lays the foundation for the study of the barley leaf stripe resistance mechanism and provides new targets for the genetic improvement of disease-resistant barley varieties.
Collapse
Affiliation(s)
- Yue Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects, Qinghai Institute of Technology, Xining, Qinghai Province, 810016, China
| | - Qian Hu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Baojun Ding
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
| |
Collapse
|
2
|
Coles DW, Bithell SL, Jeffries T, Cuddy WS, Plett JM. Functional genomics identifies a small secreted protein that plays a role during the biotrophic to necrotrophic shift in the root rot pathogen Phytophthora medicaginis. FRONTIERS IN PLANT SCIENCE 2024; 15:1439020. [PMID: 39224851 PMCID: PMC11366588 DOI: 10.3389/fpls.2024.1439020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Introduction Hemibiotrophic Phytophthora are a group of agriculturally and ecologically important pathogenic oomycetes causing severe decline in plant growth and fitness. The lifestyle of these pathogens consists of an initial biotrophic phase followed by a switch to a necrotrophic phase in the latter stages of infection. Between these two phases is the biotrophic to necrotrophic switch (BNS) phase, the timing and controls of which are not well understood particularly in Phytophthora spp. where host resistance has a purely quantitative genetic basis. Methods To investigate this we sequenced and annotated the genome of Phytophthora medicaginis, causal agent of root rot and substantial yield losses to Fabaceae hosts. We analyzed the transcriptome of P. medicaginis across three phases of colonization of a susceptible chickpea host (Cicer arietinum) and performed co-regulatory analysis to identify putative small secreted protein (SSP) effectors that influence timing of the BNS in a quantitative pathosystem. Results The genome of P. medicaginis is ~78 Mb, comparable to P. fragariae and P. rubi which also cause root rot. Despite this, it encodes the second smallest number of RxLR (arginine-any amino acid-leucine-arginine) containing proteins of currently sequenced Phytophthora species. Only quantitative resistance is known in chickpea to P. medicaginis, however, we found that many RxLR, Crinkler (CRN), and Nep1-like protein (NLP) proteins and carbohydrate active enzymes (CAZymes) were regulated during infection. Characterization of one of these, Phytmed_10271, which encodes an RxLR effector demonstrates that it plays a role in the timing of the BNS phase and root cell death. Discussion These findings provide an important framework and resource for understanding the role of pathogenicity factors in purely quantitative Phytophthora pathosystems and their implications to the timing of the BNS phase.
Collapse
Affiliation(s)
- Donovin W. Coles
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Sean L. Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| | - Thomas Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - William S. Cuddy
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
3
|
Zambounis A, Boutsika A, Gray N, Hossain M, Chatzidimopoulos M, Tsitsigiannis DI, Paplomatas E, Hane J. Pan-genome survey of Septoria pistaciarum, causal agent of Septoria leaf spot of pistachios, across three Aegean sub-regions of Greece. Front Microbiol 2024; 15:1396760. [PMID: 38919498 PMCID: PMC11196620 DOI: 10.3389/fmicb.2024.1396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Septoria pistaciarum, a causal agent of Septoria leaf spot disease of pistachio, is a fungal pathogen that causes substantial losses in the cultivation, worldwide. This study describes the first pan-genome-based survey of this phytopathogen-comprising a total of 27 isolates, with 9 isolates each from 3 regional units of Greece (Pieria, Larissa and Fthiotida). The reference isolate (SPF8) assembled into a total of 43.1 Mb, with 38.6% contained within AT-rich regions of approximately 37.5% G:C. The genomes of the 27 isolates exhibited on average 42% gene-coding and 20% repetitive regions. The genomes of isolates from the southern Fthiotida region appeared to more diverged from each other than the other regions based on SNP-derived trees, and also contained isolates similar to both the Pieria and Larissa regions. In contrast, isolates of the Pieria and Larissa were less diverse and distinct from one another. Asexual reproduction appeared to be typical, with no MAT1-2 locus detected in any isolate. Genome-based prediction of infection mode indicated hemibiotrophic and saprotrophic adaptations, consistent with its long latent phase. Gene prediction and orthology clustering generated a pan-genome-wide gene set of 21,174 loci. A total of 59 ortholog groups were predicted to contain candidate effector proteins, with 36 (61%) of these either having homologs to known effectors from other species or could be assigned predicted functions from matches to conserved domains. Overall, effector prediction suggests that S. pistaciarum employs a combination of defensive effectors with roles in suppression of host defenses, and offensive effectors with a range of cytotoxic activities. Some effector-like ortholog groups presented as divergent versions of the same protein, suggesting region-specific adaptations may have occurred. These findings provide insights and future research directions in uncovering the pathogenesis and population dynamics of S. pistaciarum toward the efficient management of Septoria leaf spot of pistachio.
Collapse
Affiliation(s)
- Antonios Zambounis
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Anastasia Boutsika
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Naomi Gray
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Michael Chatzidimopoulos
- Laboratory of Plant Pathology, Department of Agriculture, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - James Hane
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
4
|
Nisa Q, Gulzar G, Dar MS, Shahnaz E, Banday S, Bhat ZA, El-Sheikh MA, Nabi SU, Arya VM, Anwar A, Mansoor S. New reports of pathogen spectrum associated with bulb rot and their interactions during the development of rot in tulip. BMC Genom Data 2024; 25:40. [PMID: 38724915 PMCID: PMC11080242 DOI: 10.1186/s12863-024-01218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.
Collapse
Affiliation(s)
- Qadrul Nisa
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Gazala Gulzar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Mohammad Saleem Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Efath Shahnaz
- Dryland Agricultural Research Station, 190007, Rangreth, Jammu & Kashmir, India.
| | - Saba Banday
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Zahoor A Bhat
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sajad Un Nabi
- Plant Pathology, Central Institute of Temperate Horticulture, 190007, Jammu & Kashmir, India
| | - Vivak M Arya
- Division of Soil Science and Agriculture Chemistry, Sher e Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Ali Anwar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, 190025, Shalimar, Jammu & Kashmir, India
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Jeju, South Korea.
| |
Collapse
|
5
|
Lemcke R, Kamble M, Schneider S, Lyngkjær MF, Radutoiu S, Wienkoop S. Integrative transcript to proteome analysis of barley during Ramularia collo-cygni leaf spot development identified several proteins that are related to fungal recognition and infection responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1367271. [PMID: 38606065 PMCID: PMC11007159 DOI: 10.3389/fpls.2024.1367271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Introduction Ramularia leaf spot (RLS) disease is a growing threat to barley cultivation, but with no substantial resistance identified to date. Similarly, the understanding of the lifestyle of Ramularia collo-cygni (Rcc) and the prediction of RLS outbreak severity remain challenging, with Rcc displaying a rather untypical long endophytic phase and a sudden change to a necrotrophic lifestyle. The aim of this study was to provide further insights into the defense dynamics during the different stages of colonization and infection in barley in order to identify potential targets for resistance breeding. Methods Utilizing the strength of proteomics in understanding plant-pathogen interactions, we performed an integrative analysis of a published transcriptome dataset with a parallel generated proteome dataset. Therefore, we included two spring barley cultivars with contrasting susceptibilities to Rcc and two fungal isolates causing different levels of RLS symptoms. Results Interestingly, early responses in the pathogen recognition phase of the host were driven by strong responses differing between isolates. An important enzyme in this process is a xylanase inhibitor, which protected the plant from cell wall degradation by the fungal xylanase. At later time points, the differences were driven by cultivar-specific responses, affecting mostly features contributing to the pathogenesis- and senescence-related pathways or photosynthesis. Discussion This supports the hypothesis of a hemibiotrophic lifestyle of Rcc, with slight differences in trophism of the two analyzed isolates. The integration of these data modalities highlights a strength of protein-level analysis in understanding plant-pathogen interactions and reveals new features involved in fungal recognition and susceptibility in barley cultivars.
Collapse
Affiliation(s)
- René Lemcke
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Manoj Kamble
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Sebastian Schneider
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michael F. Lyngkjær
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stefanie Wienkoop
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
7
|
Hietala AM, Agan A, Nagy NE, Børja I, Timmermann V, Drenkhan R, Solheim H. The Native Hymenoscyphus albidus and the Invasive Hymenoscyphus fraxineus Are Similar in Their Necrotrophic Growth Phase in Ash Leaves. Front Microbiol 2022; 13:892051. [PMID: 35711744 PMCID: PMC9196304 DOI: 10.3389/fmicb.2022.892051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1-2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.
Collapse
Affiliation(s)
- Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Steinkjer, Norway
| | - Ahto Agan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Nina E Nagy
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | | |
Collapse
|
8
|
Knight NL, Moslemi A, Begum F, Dodhia KN, Covarelli L, Hills AL, Lopez-Ruiz FJ. Detection of Ramularia collo-cygni from barley in Australia using triplex quantitative and droplet digital PCR. PEST MANAGEMENT SCIENCE 2022; 78:1367-1376. [PMID: 34889505 DOI: 10.1002/ps.6753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ramularia leaf spot (RLS), caused by Ramularia collo-cygni, is an emerging threat to barley (Hordeum vulgare L.) production. RLS has been reported in Australia, however only minimal information is available regarding its detection and distribution. Due to initial asymptomatic growth in planta, slow growth in vitro and symptomatic similarities to net blotch and physiological leaf spots, detection of this pathogen can be challenging. Quantitative polymerase chain reaction (PCR)-based methods for R. collo-cygni-specific identification and detection have been described, however these assays have been demonstrated to lack specificity. False-positive detections may have serious implications, thus we aimed to design a robust R. collo-cygni-specific PCR method. RESULTS Using the phylogenetically informative RNA polymerase II second largest subunit (rpb2) and translation elongation factor 1-alpha (tef1-α) genes, along with the tef1-α gene of H. vulgare, a triplex assay was developed for both quantitative and droplet digital PCR. The triplex assay detected R. collo-cygni DNA in barley leaves from New South Wales, South Australia, Tasmania, Victoria and Western Australia. No R. collo-cygni DNA was detected in barley seed grown in Western Australia. CONCLUSION The presence of R. collo-cygni DNA has been confirmed in Australian barley crops, suggesting a distribution ranging across the southern barley growing regions of Australia. The R. collo-cygni-specific assay will be a valuable tool to assist with monitoring the distribution and impact of R. collo-cygni in Australia and other regions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noel L Knight
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Azin Moslemi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Farhana Begum
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Kejal N Dodhia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Lorenzo Covarelli
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Andrea L Hills
- Department of Primary Industries and Regional Development, State government office in Myrup, Esperance, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| |
Collapse
|
9
|
Dussart F, Jakubczyk D. Biosynthesis of Rubellins in Ramularia collo-cygni-Genetic Basis and Pathway Proposition. Int J Mol Sci 2022; 23:ijms23073475. [PMID: 35408835 PMCID: PMC8998751 DOI: 10.3390/ijms23073475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
The important disease Ramularia leaf spot of barley is caused by the fungus Ramularia collo-cygni. The disease causes yield and quality losses as a result of a decrease in photosynthesis efficiency due to the appearance of necrotic spots on the leaf surface. The development of these typical Ramularia leaf spot symptoms is thought to be linked with the release of phytotoxic secondary metabolites called rubellins in the host. However, to date, neither the biosynthetic pathways leading to the production of these metabolites nor their exact role in disease development are known. Using a combined in silico genetic and biochemistry approach, we interrogated the genome of R. collo-cygni to identify a putative rubellin biosynthetic gene cluster. Here we report the identification of a gene cluster containing homologues of genes involved in the biosynthesis of related anthraquinone metabolites in closely related fungi. A putative pathway to rubellin biosynthesis involving the genes located on the candidate cluster is also proposed.
Collapse
Affiliation(s)
- Francois Dussart
- Department of Agriculture, Horticulture and Engineering Science, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- Correspondence: (F.D.); (D.J.); Tel.: +48-61-8528503 (ext. 1184) (F.D. & D.J.)
| | - Dorota Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
- Correspondence: (F.D.); (D.J.); Tel.: +48-61-8528503 (ext. 1184) (F.D. & D.J.)
| |
Collapse
|
10
|
Lemcke R, Sjökvist E, Visentin S, Kamble M, James EK, Hjørtshøj R, Wright KM, Avrova A, Newton AC, Havis ND, Radutoiu S, Lyngkjær MF. Deciphering Molecular Host-Pathogen Interactions During Ramularia Collo-Cygni Infection on Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:747661. [PMID: 34745181 PMCID: PMC8570322 DOI: 10.3389/fpls.2021.747661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.
Collapse
Affiliation(s)
- René Lemcke
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Elisabet Sjökvist
- Crop and Soils Systems, Scotland’s Rural College, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stefano Visentin
- Ecological Sciences, The James Hutton Institute, Invergowrie, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, United Kingdom
| | - Manoj Kamble
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, United Kingdom
| | | | - Kathryn M. Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, United Kingdom
| | - Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, United Kingdom
| | - Adrian C. Newton
- Ecological Sciences, The James Hutton Institute, Invergowrie, United Kingdom
| | - Neil D. Havis
- Crop and Soils Systems, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael F. Lyngkjær
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| |
Collapse
|
11
|
Nagel JH, Wingfield MJ, Slippers B. Increased abundance of secreted hydrolytic enzymes and secondary metabolite gene clusters define the genomes of latent plant pathogens in the Botryosphaeriaceae. BMC Genomics 2021; 22:589. [PMID: 34348651 PMCID: PMC8336260 DOI: 10.1186/s12864-021-07902-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes. RESULTS The Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions. CONCLUSION The abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.
Collapse
Affiliation(s)
- Jan H Nagel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
12
|
Fungicide Resistance Evolving in Ramularia collo-cygni Population in Estonia. Microorganisms 2021; 9:microorganisms9071514. [PMID: 34361949 PMCID: PMC8307248 DOI: 10.3390/microorganisms9071514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Ramularia leaf spot caused by the fungus Ramularia collo-cygni, has recently become widespread in Estonian barley fields. Currently, disease control in barley fields relies on SDHI and DMI fungicides, which might be threatened by R. collo-cygni isolates that are well-adapted to fungicide pressure. In a two-year study, 353 R. collo-cygni isolates were collected from spring barley fields in Estonia. A total of 153 R. collo-cygni isolates were examined for sensitivity to azoles (DMIs; prothioconazole-desthio, epoxiconazole, mefentrifluconazole) and succinate dehydrogenase inhibitors (SDHIs; boscalid, fluxapyroxad). Epoxiconazole was the least effective and a new fungicide mefentrifluconazole was the most effective DMI. Among SDHIs, fluxapyroxad was more effective than boscalid. Also, single R. collo-cygni isolates with high resistance to tested fungicides occurred, which could affect fungicide control of the pathogen. The entire collection of R. collo-cygni was analysed for mutations in fungicide target proteins. Six mutations were identified in CYP51 gene, the most dominant being I381T, I384T, and S459C. Also, numerous point mutations in the SdhC gene were present. The mutation G143A in strobilurin target protein CytB dominates in over 80% of the R. collo-cygni population, confirming the low efficacy of strobilurin fungicides in barley disease control.
Collapse
|
13
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
14
|
Jakubczyk D, Dussart F. Selected Fungal Natural Products with Antimicrobial Properties. Molecules 2020; 25:E911. [PMID: 32085562 PMCID: PMC7070998 DOI: 10.3390/molecules25040911] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/14/2023] Open
Abstract
Fungal natural products and their effects have been known to humankind for hundreds of years. For example, toxic ergot alkaloids produced by filamentous fungi growing on rye poisoned thousands of people and livestock throughout the Middle Ages. However, their later medicinal applications, followed by the discovery of the first class of antibiotics, penicillins and other drugs of fungal origin, such as peptidic natural products, terpenoids or polyketides, have altered the historically negative reputation of fungal "toxins". The development of new antimicrobial drugs is currently a major global challenge, mainly due to antimicrobial resistance phenomena. Therefore, the structures, biosynthesis and antimicrobial activity of selected fungal natural products are described here.
Collapse
Affiliation(s)
- Dorota Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Francois Dussart
- Department of Agriculture, Horticulture and Engineering Science, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK;
| |
Collapse
|
15
|
Stam R, Sghyer H, Tellier A, Hess M, Hückelhoven R. The Current Epidemic of the Barley Pathogen Ramularia collo-cygni Derives from a Population Expansion and Shows Global Admixture. PHYTOPATHOLOGY 2019; 109:2161-2168. [PMID: 31322487 DOI: 10.1094/phyto-04-19-0117-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ramularia leaf spot is becoming an ever-increasing problem in main barley-growing regions since the 1980s, causing up to 70% yield loss in extreme cases. Yet, the causal agent Ramularia collo-cygni remains poorly studied. The diversity of the pathogen in the field thus far remains unknown. Furthermore, it is unknown to what extent the pathogen has a sexual reproductive cycle. The teleomorph of R. collo-cygni has not been observed. To study the genetic diversity of R. collo-cygni and get more insights in its biology, we sequenced the genomes of 19 R. collo-cygni isolates from multiple geographic locations and diverse hosts. Nucleotide polymorphism analyses of all isolates shows that R. collo-cygni is genetically diverse worldwide, with little geographic or host specific differentiation. Next, we used two different methods to detect signals of recombination in our sample set. Both methods find putative recombination events, which indicate that sexual reproduction happens or has happened in the global R. collo-cygni population. Lastly, we used these data on recombination to perform historic population size analyses. These suggest that the effective population size of R. collo-cygni decreased during the domestication of barley and subsequently grew with the rise of agriculture. Our findings deepen our understanding of R. collo-cygni biology and can help us to understand the current epidemic. We discuss how our findings support possible global spread through seed transfer, and we highlight how recombination, clonal spreading, and lack of host specificity could amplify global epidemics of this increasingly important disease and suggest specific approaches to combat the pathogen.
Collapse
Affiliation(s)
- Remco Stam
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Hind Sghyer
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Michael Hess
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
16
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
17
|
Sjokvist E, Lemcke R, Kamble M, Turner F, Blaxter M, Havis NHD, Lyngkjær MF, Radutoiu S. Dissection of Ramularia Leaf Spot Disease by Integrated Analysis of Barley and Ramularia collo-cygni Transcriptome Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:176-193. [PMID: 30681911 DOI: 10.1094/mpmi-05-18-0113-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ramularia leaf spot disease (RLS), caused by the ascomycete fungus Ramularia collo-cygni, has emerged as a major economic disease of barley. No substantial resistance has been identified, so far, among barley genotypes and, based on the epidemiology of the disease, a quantitative genetic determinacy of RLS has been suggested. The relative contributions of barley and R. collo-cygni genetics to disease infection and epidemiology are practically unknown. Here, we present an integrated genome-wide analysis of host and pathogen transcriptome landscapes identified in a sensitive barley cultivar following infection by an aggressive R. collo-cygni isolate. We compared transcriptional responses in the infected and noninfected leaf samples in order to identify which molecular events are associated with RLS symptom development. We found a large proportion of R. collo-cygni genes to be expressed in planta and that many were also closely associated with the infection stage. The transition from surface to apoplastic colonization was associated with downregulation of cell wall-degrading genes and upregulation of nutrient uptake and resistance to oxidative stresses. Interestingly, the production of secondary metabolites was dynamically regulated within the fungus, indicating that R. collo-cygni produces a diverse panel of toxic compounds according to the infection stage. A defense response against R. collo-cygni was identified in barley at the early, asymptomatic infection and colonization stages. We found activation of ethylene signaling, jasmonic acid signaling, and phenylpropanoid and flavonoid pathways to be highly induced, indicative of a classical response to necrotrophic pathogens. Disease development was found to be associated with gene expression patterns similar to those found at the onset of leaf senescence, when nutrients, possibly, are used by the infecting fungus. These analyses, combining both barley and R. collo-cygni transcript profiles, demonstrate the activation of complex transcriptional programs in both organisms.
Collapse
Affiliation(s)
- Elisabet Sjokvist
- 1 Scotlands Rural College, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, Scotland, U.K
- 2 Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, U.K
| | - Rene Lemcke
- 3 Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Manoj Kamble
- 4 Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, Aarhus, Denmark; and
| | - Frances Turner
- 5 Edinburgh Genomics, School of Biological Sciences, The University of Edinburgh; Scotland, U.K
| | - Mark Blaxter
- 2 Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, U.K
| | - Neil H D Havis
- 1 Scotlands Rural College, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, Scotland, U.K
| | - Michael F Lyngkjær
- 3 Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Simona Radutoiu
- 4 Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, Aarhus, Denmark; and
| |
Collapse
|
18
|
Stam R, Münsterkötter M, Pophaly SD, Fokkens L, Sghyer H, Güldener U, Hückelhoven R, Hess M. A New Reference Genome Shows the One-Speed Genome Structure of the Barley Pathogen Ramularia collo-cygni. Genome Biol Evol 2018; 10:3243-3249. [PMID: 30371775 PMCID: PMC6301796 DOI: 10.1093/gbe/evy240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/17/2023] Open
Abstract
Ramularia leaf spot has recently emerged as a major threat to barley production world-wide, causing 25% yield loss in many barley growing regions. Here, we provide a new reference genome of the causal agent, the Dothideomycete Ramularia collo-cygni. The assembly of 32 Mb consists of 78 scaffolds. We used RNA-seq to identify 11,622 genes of which 1,303 and 282 are coding for predicted secreted proteins and putative effectors respectively. The pathogen separated from its nearest sequenced relative, Zymoseptoria tritici ∼27 Ma. We calculated the divergence of the two species on protein level and see remarkably high synonymous and nonsynonymous divergence. Unlike in many other plant pathogens, the comparisons of transposable elements and gene distributions, show a very homogeneous genome for R. collo-cygni. We see no evidence for higher selective pressure on putative effectors or other secreted proteins and repetitive sequences are spread evenly across the scaffolds. These findings could be associated to the predominantly endophytic life-style of the pathogen. We hypothesize that R. collo-cygni only recently became pathogenic and that therefore its genome does not yet show the typical pathogen characteristics. Because of its high scaffold length and improved CDS annotations, our new reference sequence provides a valuable resource for the community for future comparative genomics and population genetics studies.
Collapse
Affiliation(s)
- Remco Stam
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technische University Munich, Germany
| | - Martin Münsterkötter
- Functional Genomics and Bioinformatics, Research Centre for Forestry and Wood Industry, University of Sopron, Hungary.,Institute of Bioinformatics and Systems Biology, Helmholtz Centre Munich, Germany
| | - Saurabh Dilip Pophaly
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Germany.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden and Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Germany
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Hind Sghyer
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technische University Munich, Germany
| | - Ulrich Güldener
- Department of Bioinformatics, School of Life Sciences Weihenstephan, Technische University Munich, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technische University Munich, Germany
| | - Michael Hess
- Chair of Phytopathology, School of Life Sciences Weihenstephan, Technische University Munich, Germany
| |
Collapse
|
19
|
Dussart F, Douglas R, Sjökvist E, Hoebe PN, Spoel SH, McGrann GRD. Genome-Based Discovery of Polyketide-Derived Secondary Metabolism Pathways in the Barley Pathogen Ramularia collo-cygni. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:962-975. [PMID: 29561700 DOI: 10.1094/mpmi-12-17-0299-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ramularia collo-cygni causes Ramularia leaf spot (RLS) disease of barley. The fungus develops asymptomatically within its host until late in the growing season, when necrotic lesions become visible on upper leaves. Fungal secondary metabolites (SM) have been proposed as important factors in RLS lesion formation but the biosynthetic pathways involved remain largely unknown. Mining the R. collo-cygni genome revealed the presence of 10 polyketide synthases (PKS), 10 nonribosomal peptide synthetases (NRPS), and 3 hybrid PKS-NRPS (HPS) identified within clusters of genes with predicted functions associated with secondary metabolism. SM core genes along with their predicted transcriptional regulators exhibited transcriptional coexpression during infection of barley plants. Moreover, their expression peaked during early stages of host colonization and preceded or overlapped with the appearance of disease symptoms, suggesting that SM may manipulate the host to promote colonization or protect R. collo-cygni from competing organisms. Accordingly, R. collo-cygni inhibited the growth of several fungi in vitro, indicating that it synthesized and excreted antifungal agents. Taken together, these findings demonstrate that the R. collo-cygni genome contains the genetic architecture to synthesize a wide range of SM and suggests that coexpression of PKS and HPS is associated with competitive colonization of the host and early symptom development.
Collapse
Affiliation(s)
- F Dussart
- 1 Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K
- 2 Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.; and
| | - R Douglas
- 1 Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K
- 2 Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.; and
| | - E Sjökvist
- 1 Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K
- 3 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3TF, U.K
| | - P N Hoebe
- 1 Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K
| | - S H Spoel
- 2 Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.; and
| | - G R D McGrann
- 1 Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K
| |
Collapse
|
20
|
Syme RA, Martin A, Wyatt NA, Lawrence JA, Muria-Gonzalez MJ, Friesen TL, Ellwood SR. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host-Pathogen Genetic Interactions. Front Genet 2018; 9:130. [PMID: 29720997 PMCID: PMC5915480 DOI: 10.3389/fgene.2018.00130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host-pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host-pathogen interactions.
Collapse
Affiliation(s)
- Robert A. Syme
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Nathan A. Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Julie A. Lawrence
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Mariano J. Muria-Gonzalez
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Timothy L. Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Simon R. Ellwood
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| |
Collapse
|
21
|
McGrann GRD, Brown JKM. The role of reactive oxygen in the development of Ramularia leaf spot disease in barley seedlings. ANNALS OF BOTANY 2018; 121:415-430. [PMID: 29309539 PMCID: PMC5838821 DOI: 10.1093/aob/mcx170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Ramularia collo-cygni is an ascomycete fungus that colonizes barley primarily as a benign endophyte, although this interaction can become pathogenic, causing the disease Ramularia leaf spot (RLS). Factors, particularly reactive oxygen species, that resulted in the transition of the fungus from endophyte to necrotrophic parasite and the development of disease symptoms were investigated. METHODS Disease development in artificially inoculated seedlings of barley varieties varying in partial resistance to RLS was related to exposure to abiotic stress prior to inoculation. Histochemical and molecular analysis determined the effect of R. collo-cygni colonization on accumulation of reactive oxygen species and antioxidant gene expression. Development of RLS on barley lines defective in antioxidant enzymes and with altered redox status or non-functional chloroplasts was compared with the accumulation of fungal biomass to determine how these factors affect disease symptom expression. KEY RESULTS Exposure to abiotic stress increased symptom development in all susceptible and most partially resistant barley varieties, in association with greater hydrogen peroxide (H2O2) levels in leaves. Decreased activity of the antioxidant enzymes superoxide dismutase and catalase in transgenic and mutant plants had no effect on the disease transition, whereas manipulation of H2O2 levels during asymptomatic growth of the fungus increased disease symptoms in most susceptible varieties but not in partially resistant plants. Barley mutants that undergo rapid loss of green leaf area when infected by R. collo-cygni or albino mutants with non-functional chloroplasts showed reduced development of RLS symptoms. CONCLUSIONS These results imply that in seedlings the pathogenic transition of the normally endophytic fungus R. collo-cygni does not result from senescence as such, but rather is promoted by factors that result in changes to host reactive oxygen species. Barley varieties vary in the extent to which these factors promote RLS disease.
Collapse
|
22
|
Zaccaron AZ, Bluhm BH. The genome sequence of Bipolaris cookei reveals mechanisms of pathogenesis underlying target leaf spot of sorghum. Sci Rep 2017; 7:17217. [PMID: 29222463 PMCID: PMC5722872 DOI: 10.1038/s41598-017-17476-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/23/2022] Open
Abstract
Bipolaris cookei (=Bipolaris sorghicola) causes target leaf spot, one of the most prevalent foliar diseases of sorghum. Little is known about the molecular basis of pathogenesis in B. cookei, in large part due to a paucity of resources for molecular genetics, such as a reference genome. Here, a draft genome sequence of B. cookei was obtained and analyzed. A hybrid assembly strategy utilizing Illumina and Pacific Biosciences sequencing technologies produced a draft nuclear genome of 36.1 Mb, organized into 321 scaffolds with L50 of 31 and N50 of 378 kb, from which 11,189 genes were predicted. Additionally, a finished mitochondrial genome sequence of 135,790 bp was obtained, which contained 75 predicted genes. Comparative genomics revealed that B. cookei possessed substantially fewer carbohydrate-active enzymes and secreted proteins than closely related Bipolaris species. Novel genes involved in secondary metabolism, including genes implicated in ophiobolin biosynthesis, were identified. Among 37 B. cookei genes induced during sorghum infection, one encodes a putative effector with a limited taxonomic distribution among plant pathogenic fungi. The draft genome sequence of B. cookei provided novel insights into target leaf spot of sorghum and is an important resource for future investigation.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR, 72701, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR, 72701, USA.
| |
Collapse
|
23
|
Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Host-Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1806. [PMID: 29118773 PMCID: PMC5660990 DOI: 10.3389/fpls.2017.01806] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 05/04/2023]
Abstract
Studies of plant-pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| |
Collapse
|
24
|
Abstract
The goal of many genome sequencing projects is to provide a complete representation of a target genome (or genomes) as underpinning data for further analyses. However, it can be problematic to identify which sequences in an assembly truly derive from the target genome(s) and which are derived from associated microbiome or contaminant organisms. We present BlobTools, a modular command-line solution for visualisation, quality control and taxonomic partitioning of genome datasets. Using guanine+cytosine content of sequences, read coverage in sequencing libraries and taxonomy of sequence similarity matches, BlobTools can assist in primary partitioning of data, leading to improved assemblies, and screening of final assemblies for potential contaminants. Through simulated paired-end read dataset,s containing a mixture of metazoan and bacterial taxa, we illustrate the main BlobTools workflow and suggest useful parameters for taxonomic partitioning of low-complexity metagenome assemblies.
Collapse
|
25
|
Piotrowska MJ, Fountaine JM, Ennos RA, Kaczmarek M, Burnett FJ. Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2017; 73:1187-1196. [PMID: 27644008 DOI: 10.1002/ps.4442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ramularia collo-cygni (Rcc) is responsible for Ramularia leaf spot (RLS), a foliar disease of barley contributing to serious economic losses. Protection against the disease has been almost exclusively based on fungicide applications, including succinate dehydrogenase inhibitors (SDHIs). In 2015, the first field isolates of Rcc with reduced sensitivity to SDHIs were recorded in some European countries. In this study we established baseline sensitivity of Rcc to SDHIs in the United Kingdom and characterised mutations correlating with resistance to SDHIs in UV-generated mutants. RESULTS Five SDHI-resistant isolates were generated by UV mutagenesis. In four of these mutants a single amino acid change in a target succinate dehydrogenase (Sdh) protein was associated with decrease in sensitivity to SDHIs. Three of these mutations were stably inherited in the absence of SDHI fungicide, and resistant isolates did not demonstrate a fitness penalty. There were no detectable declines in sensitivity in field populations in the years 2010-2012 in the United Kingdom. CONCLUSIONS SDHIs remained effective in controlling Rcc in the United Kingdom in the years 2010-2012. However, given that the first isolates of Rcc with reduced sensitivity appeared in other European countries in 2015, robust antiresistance strategies need to be continuously implemented to maintain effective disease control. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marta J Piotrowska
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
| | - James M Fountaine
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Richard A Ennos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Maciej Kaczmarek
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
- Forest Research, Farnham, Surrey, UK
| | - Fiona J Burnett
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
| |
Collapse
|