1
|
Kiessling CM, Greenlund S, Bullows JE, Samuels C, Aboderin F, Ramirez N, Chin KJ. Differential anaerobic oxidation of benzoate in Geotalea daltonii FRC-32. Microbiol Spectr 2025; 13:e0232424. [PMID: 40042335 PMCID: PMC11960108 DOI: 10.1128/spectrum.02324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/15/2025] [Indexed: 04/03/2025] Open
Abstract
The efficient carbon source utilization in dynamic environments, including anoxic subsurface contaminated by aromatic compounds, is a challenge for anaerobic bacteria such as Geotalea daltonii strain FRC-32. The aim of this study was to elucidate the metabolic pathways employed by G. daltonii FRC-32 during anaerobic benzoate oxidation in the presence of acetate, a key intermediate in anaerobic organic matter degradation, to predict carbon source transport and utilization strategies. Simultaneous carbon source oxidation and monoauxic growth were observed in G. daltonii FRC-32 cultures grown on 1 mM benzoate + 5 mM acetate, 1 mM benzoate + 2 mM acetate, and 2 mM acetate spiked with 1 mM benzoate. Sequential carbon source oxidation and diauxic growth were observed only in cultures grown on 5 mM acetate spiked with 1 mM benzoate. Benzoate accumulation in G. daltonii FRC-32 whole cell lysates indicated that intracellular benzoate transport occurred during benzoate oxidation in the presence of acetate. Expression analyses of putative benzoate transporter BenK and protein-ligand binding affinity prediction suggested BenK's specificity for transporting benzoate. Relative expression levels for the gene benK, encoding BenK, and the genes bamNOPQ, involved in the benzoyl-CoA pathway, were significantly higher in cultures grown on both benzoate and acetate than in cultures grown on acetate as sole carbon source, indicating that intracellular benzoate accumulation facilitated the regulation of bamNOPQ. Our results demonstrated that G. daltonii FRC-32 can perform differential benzoate oxidation in the presence of acetate, by either simultaneous or sequential carbon source oxidation, which indicated the metabolic plasticity of G. daltonii FRC-32 in response to varying carbon source availability.IMPORTANCEThe contamination of anaerobic subsurface environments by crude oil derivatives including aromatic compounds is a global concern due to the persistence and toxicity of these pollutants. Anaerobic bacteria play a crucial role in the degradation of aromatic hydrocarbons under anoxic conditions; however, the potential mechanisms involved in metabolic regulation of aromatic degradation pathways are not well understood. This study contributed to elucidating how G. daltonii strain FRC-32 efficiently utilizes benzoate as a carbon source in the presence of acetate. Findings of intracellular benzoate accumulation and regulation of key genes associated with benzoate oxidation contributed to the understanding of G. daltonii FRC-32's aromatic degradation pathways, provided significant insights into potential mechanisms that modulate anaerobic benzoate oxidation in the presence of the energetically favorable carbon source acetate, and indicated metabolic strategies of G. daltonii FRC-32 in response to dynamic environmental conditions.
Collapse
Affiliation(s)
| | - Sujay Greenlund
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Cayden Samuels
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Feranmi Aboderin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Nuria Ramirez
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wöhlbrand L, Dörries M, Siani R, Medrano-Soto A, Schnaars V, Schumacher J, Hilbers C, Thies D, Kube M, Reinhardt R, Schloter M, Saier MH, Winklhofer M, Rabus R. Key role of Desulfobacteraceae in C/S cycles of marine sediments is based on congeneric catabolic-regulatory networks. SCIENCE ADVANCES 2025; 11:eads5631. [PMID: 40053579 PMCID: PMC11887813 DOI: 10.1126/sciadv.ads5631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Marine sediments are highly bioactive habitats, where sulfate-reducing bacteria contribute substantially to seabed carbon cycling by oxidizing ~77 Tmol Corg year-1. This remarkable activity is largely attributable to the deltaproteobacterial family Desulfobacteraceae of complete oxidizers (to CO2), which our biogeography focused meta-analysis verified as cosmopolitan. However, the catabolic/regulatory networks underlying this ecophysiological feat at the thermodynamic limit are essentially unknown. Integrating cultivation-based (80 conditions) proteogenomics of six representative Desulfobacteraceae spp., we identify molecular commonalities explaining the family's environmental relevance and success. Desulfobacteraceae genomes are specifically enriched in substrate uptake, degradation capacities, and regulatory functions including fine-tuned sulfate uptake. Conserved gene arrangements and shared regulatory patterns translate into strikingly similar (sub-)proteome profiles. From 319 proteins, we constructed a meta-network for catabolizing 35 substrates. Therefrom, we defined a Desulfobacteraceae characteristic gene subset, which we found prevalent in metagenomes of organic-rich, marine sediments. These genes are promising targets to advance our mechanistic understanding of Desulfobacteraceae-driven biogeochemical processes in marine sediments and beyond.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the Carl von Ossietzky Universität Oldenburg (HIFMB), Oldenburg, Germany
| | - Roberto Siani
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Vanessa Schnaars
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Julian Schumacher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Hilbers
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestocks, Faculty of Agricultural Sciences, University Hohenheim, Stuttgart, Germany
| | | | - Michael Schloter
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Michael Winklhofer
- Institute of Biology and Environmental Sciences (IBU), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Luo H, Su Z, Liu Y, Yuan DF, Wang R, Ning YH, Zhang DJ, Chen XK, Wang ZB, Gao XY, Zhang YC, Cheng G, Chen LX, Lin JQ. Effective removal of Pb from industrial wastewater: A new approach to remove Pb from wastewater based on engineered yeast. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136516. [PMID: 39561540 DOI: 10.1016/j.jhazmat.2024.136516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
The use of synthetic biology to construct engineered strains has provided new perspectives for addressing Pb contamination; however, the large-scale treatment of contaminants is still limited by high operating costs and technological constraints. This study introduces a novel technique for applying engineered yeast in the removal of heavy metals, offering a solution to the cost and process scale challenges associated with utilizing engineered yeast. Hydrogen sulfide-producing engineered yeast strains were constructed based on existing strategies by knocking out the gene encoding the O-acetyl-L-homoserine mercapturic enzyme, which plays a role in sulfate assimilation. To facilitate the transition of engineered yeast from laboratory settings to industrial applications while reducing operating costs and addressing process scale-up issues, we proposes a new operational technology for engineered yeast based on their mechanistic understanding and a response surface optimization approach. The development and application of low-cost engineered media provide important guidance for utilizing engineered yeast to tackle Pb-contaminated wastewater and for the production of PbS crystalline nanomaterials. The industrial culture system was designed using economical materials and, through the response surface methodology, achieved removal rates of 99.02 ± 0.06 % and 80.95 ± 9.68 % of Pb²⁺ from Pb acid electrolyte and industrial Pb wastewater, respectively. This study presents a new technological solution for cost control and process scale-up based on the bioregulatory mechanisms of engineered yeast, laying the groundwork for their industrial application. Furthermore, it offers essential parameters and theoretical support for the industrial applications of engineered yeast in Pb wastewater treatment.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Zheng Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Yang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Dong-Fang Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Yu-Hang Ning
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Dong-Jiao Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China
| | - Xian-Ke Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhao-Bao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xue-Yan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250102, PR China
| | - Yue-Chao Zhang
- Yinghan Environmental Testing Co., Ltd., Hebei 071000, PR China
| | - Guang Cheng
- Yinghan Environmental Testing Co., Ltd., Hebei 071000, PR China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China.
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
4
|
Li J, Sui Q, Zuo F, Yang Y, Chen M, Wei Y. Insight into nitrogen removal through sulfate reducing anaerobic ammonia oxidation coupled with sulfur cycle: A comparative study on inorganic and organic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123566. [PMID: 39644548 DOI: 10.1016/j.jenvman.2024.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Sulfate reducing anaerobic ammonium oxidation (S-Anammox) is a novel biological process that involves the oxidation of NH4+ coupled with the reduction of SO42-. This process has been observed under both inorganic and organic conditions; however, the nitrogen removal performance and the specific functional species in these two contexts remain poorly understood. Furthermore, the simultaneous occurrence of coupled sulfate reduction and sulfide oxidation adds complexity to the understanding of nitrogen and sulfur conversions. This study conducted a comparative analysis of the effects of inorganic and organic conditions on S-Anammox. The results demonstrated that the inorganic treatment exhibited a higher NH4+-N removal rate and activity (0.11 kgN/(m3 d) and 1.10 mgN/(gVSS h)) compared to the organic treatment (0.04 kgN/(m3 d) and 0.34 mgN/(gVSS h)). The sulfur cycle was particularly evident in the inorganic treatment, which showed a limited sulfate reduction rate of 0.02 kgS/(m3 d). More sulfate was removed in the organic treatment, resulting in an increase in the retention of sulfur (from 0.8% to 6.0%) in the sludge. qPCR analysis revealed that organic matter inhibited the abundances of key genes involved in ammonia oxidation (amoA and hao) and sulfide oxidation (soxB). Inorganic conditions are more favorable for S-Anammox. Sulfate reducing bacteria such as Desulfococcus multivovans and unidentified species, along with sulfide oxidizing bacteria including Comamonas flocculans, Candidatus Desulfobacillus denitrificans, and Thiobacillus denitrificans, were identified as contributors to the enhancement of the sulfur cycle under inorganic conditions.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
6
|
Hu H, Liu S, Li D, Zhou A, Cai W, Luo J, Liu Z, He Z, Yue X, Liu W. Sulfate-reducing bacteria decreases fractional pressure of H 2 to accelerate short-chain fatty acids production from waste activated sludge fermentation assisted with zero-valent iron activated sulfite pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172898. [PMID: 38697543 DOI: 10.1016/j.scitotenv.2024.172898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.
Collapse
Affiliation(s)
- Huitao Hu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Shuli Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China.
| | - Weiwei Cai
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi 710055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Cai R, Li R, Cao X, Xu C. Available sulfur and phosphorus transformation mechanism and functional microorganisms during sheep manure composting on Qinghai-Tibet Plateau under two moisture contents. BIORESOURCE TECHNOLOGY 2024; 394:130191. [PMID: 38081470 DOI: 10.1016/j.biortech.2023.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
Understanding the mechanisms of sulfur and phosphorus transformation during composting is important for improving compost fertility. This study aims to investigate the microbial mechanism of available sulfur and phosphorus transformation during sheep manure composting under different moisture contents (45%: M45 and 60%: M60) on the Qinghai-Tibet Plateau using metagenomics technology. The results showed that the final available sulfur and phosphorus contents of M45 were 11% and 13% higher than those of M60, respectively. M45 enhanced sulfur oxidation, sulfate reduction, and thiosulfate disproportionation. These steps were significantly positively correlated with available sulfur, and Pseudomonas, Thermobifida, Luteimonas, Brevibacterium, Planifilum, and Xinfangfangia were the main participants. Available phosphorus was significantly positively correlated with polyphosphate degradation and inorganic P solubilization, and the main participants in these steps were Luteimonas, Brachybacterium, Corynebacterium, Jeotgalicoccus, Microbacterium, Streptomyces, and Pseudoxanthomonas. These findings reveal the microbial mechanisms of available and phosphorus transformation during composting at two moisture contents.
Collapse
Affiliation(s)
- Rui Cai
- College of Engineering, China Agricultural University, Beijing 100083, China; School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Rongrong Li
- College of Environment and Life Sciences, Weinan Normal University, Weinan, Shaanxi Province 714099, China
| | - Xiaohui Cao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Bounaga A, Alsanea A, Danouche M, Rittmann BE, Zhou C, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Effect of alkaline leaching of phosphogypsum on sulfate reduction activity and bacterial community composition using different sources of anaerobic microbial inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166296. [PMID: 37591387 DOI: 10.1016/j.scitotenv.2023.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Phosphogypsum (PG), a by-product of the phosphate industry, is high in sulfate, (SO42-), which makes it an excellent substrate for sulfate-reducing bacteria (SRB) to produce hydrogen sulfide. This work aimed to optimize SO42- leaching from PG to achieve a high biological reduction of SO42- and generate high sulfide concentrations for subsequent use in the biological recovery of elemental sulfur. Five SRB consortia were isolated and enriched from: IS (Industrial sludges), MS (Marine sediments), WC (Winogradsky column), SNV (petroleum industry sediments) and PG (stored Phosphogypsum). The five consortia showed reduction activity when using PG leachate (with water) as source of SO42- and lactate, acetate, or glucose as the electron donor. The highest reduction rate (81.5 %) was registered using lactate and the IS consortium (81.5 %) followed by MS (79 %) and PG (71 %). To enhance the concentration of leached SO42- from PG for future utilization with the isolated consortia, PG was treated with NaOH solutions (2 % and 5 %). SO42- release of 97 % was achieved with a 5 % concentration and the resulting leachate was further diluted to target a SO42- concentration of 12.4 g·L-1 for utilization with the isolated consortia. Compared to water leachate, a significantly higher reduction rate was registered (2 g·L-1 of SO42) using the IS consortium, demonstrating limited inhibition effect of sulfide- concentration on SRB functionalities. Moreover, metagenomic analysis of the consortia revealed that using PG as a source of SO42- increased the abundance of Deltaproteobacteria, including known SRB like Desulfovibrio, Desulfomicrobium, and Desulfosporosinus, as well as novel SRB genera (Cupidesulfovibrio, Desulfocurvus, Desulfococcus) that showed, for the first time, significant potential as novel sulfate-reducers using PG as a SO42- source.
Collapse
Affiliation(s)
- Ayoub Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Anwar Alsanea
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Mohammed Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Rachid Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Youssef Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar El Jadida 24000, Morocco
| | - Rachid Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - Karim Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, Agrobioscience program, Mohammed VI Polytechnic University, Benguerir 43150, Morocco.
| |
Collapse
|
9
|
Shangjie C, Yongqiong W, Fuqing X, Zhilin X, Xiaoping Z, Xia S, Juan L, Tiantao Z, Shibin W. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas. ENVIRONMENTAL RESEARCH 2023; 227:115804. [PMID: 37003556 DOI: 10.1016/j.envres.2023.115804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.
Collapse
Affiliation(s)
- Chen Shangjie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wang Yongqiong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Fuqing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xing Zhilin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Zhang Xiaoping
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Su Xia
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Juan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Zhao Tiantao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wan Shibin
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
10
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
11
|
Bruns S, Cakić N, Mitschke N, Kopke BJ, Rabus R, Wilkes H. A Novel Coenzyme A Analogue in the Anaerobic, Sulfate-Reducing, Marine Bacterium Desulfobacula toluolica Tol2 T. Chembiochem 2023; 24:e202200584. [PMID: 36331165 PMCID: PMC10107677 DOI: 10.1002/cbic.202200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Coenzyme A (CoA) thioesters are formed during anabolic and catabolic reactions in every organism. Degradation pathways of growth-supporting substrates in bacteria can be predicted by differential proteogenomic studies. Direct detection of proposed metabolites such as CoA thioesters by high-performance liquid chromatography coupled with high-resolution mass spectrometry can confirm the reaction sequence and demonstrate the activity of these degradation pathways. In the metabolomes of the anaerobic sulfate-reducing bacterium Desulfobacula toluolica Tol2T grown with different substrates various CoA thioesters, derived from amino acid, fatty acid or alcohol metabolism, have been detected. Additionally, the cell extracts of this bacterium revealed a number of CoA analogues with molecular masses increased by 1 dalton. By comparing the chromatographic and mass spectrometric properties of synthetic reference standards with those of compounds detected in cell extracts of D. toluolica Tol2T and by performing co-injection experiments, these analogues were identified as inosino-CoAs. These CoA thioesters contain inosine instead of adenosine as the nucleoside. To the best of our knowledge, this finding represents the first detection of naturally occurring inosino-CoA analogues.
Collapse
Affiliation(s)
- Stefan Bruns
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Nevenka Cakić
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Nico Mitschke
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Marine Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Bernd Johann Kopke
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), General and Molecular Microbiology, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
12
|
Gong X, Del Río ÁR, Xu L, Chen Z, Langwig MV, Su L, Sun M, Huerta-Cepas J, De Anda V, Baker BJ. New globally distributed bacterial phyla within the FCB superphylum. Nat Commun 2022; 13:7516. [PMID: 36473838 PMCID: PMC9727166 DOI: 10.1038/s41467-022-34388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Microbes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Marguerite V Langwig
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Mingxue Sun
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78701, USA.
| |
Collapse
|
13
|
Li JT, Jia P, Wang XJ, Ou SN, Yang TT, Feng SW, Lu JL, Fang Z, Liu J, Liao B, Shu WS, Liang JL. Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland. NPJ Biofilms Microbiomes 2022; 8:71. [PMID: 36068230 PMCID: PMC9448743 DOI: 10.1038/s41522-022-00333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Chen SC, Ji J, Popp D, Jaekel U, Richnow HH, Sievert SM, Musat F. Genome and proteome analyses show the gaseous alkane degrader Desulfosarcina sp. strain BuS5 as an extreme metabolic specialist. Environ Microbiol 2022; 24:1964-1976. [PMID: 35257474 DOI: 10.1111/1462-2920.15956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The metabolic potential of the sulfate-reducing bacterium Desulfosarcina sp. strain BuS5, currently the only pure culture able to oxidize the volatile alkanes propane and butane without oxygen, was investigated via genomics, proteomics and physiology assays. Complete genome sequencing revealed that strain BuS5 encodes a single alkyl-succinate synthase, an enzyme which apparently initiates oxidation of both propane and butane. The formed alkyl-succinates are oxidized to CO2 via beta oxidation and the oxidative Wood-Ljungdahl pathways as shown by proteogenomics analyses. Strain BuS5 conserves energy via the canonical sulfate reduction pathway and electron bifurcation. An ability to utilize long-chain fatty acids, mannose and oligopeptides, suggested by automated annotation pipelines, was not supported by physiology assays and in-depth analyses of the corresponding genetic systems. Consistently, comparative genomics revealed a streamlined BuS5 genome with a remarkable paucity of catabolic modules. These results establish strain BuS5 as an exceptional metabolic specialist, able to grow only with propane and butane, for which we propose the name Desulfosarcina aeriophaga BuS5. This highly restrictive lifestyle, most likely the result of habitat-driven evolutionary gene loss, may provide D. aeriophaga BuS5 a competitive edge in sediments impacted by natural gas seeps. Etymology: Desulfosarcina aeriophaga, aério (Greek): gas; phágos (Greek): eater; D. aeriophaga: a gas eating or gas feeding Desulfosarcina.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jiaheng Ji
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Voskuhl L, Brusilova D, Brauer VS, Meckenstock RU. Inhibition of sulfate-reducing bacteria with formate. FEMS Microbiol Ecol 2022; 98:6510814. [PMID: 35040992 PMCID: PMC8831227 DOI: 10.1093/femsec/fiac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Despite hostile environmental conditions, microbial communities have been found in µL-sized water droplets enclosed in heavy oil of the Pitch Lake, Trinidad. Some droplets showed high sulfate concentrations and surprisingly low relative abundances of sulfate-reducing bacteria in a previous study. Hence, we investigated here whether sulfate reduction might be inhibited naturally. Ion chromatography revealed very high formate concentrations around 2.37 mM in 21 out of 43 examined droplets. Since these concentrations were unexpectedly high, we performed growth experiments with the three sulfate-reducing type strains Desulfovibrio vulgaris, Desulfobacter curvatus, and Desulfococcus multivorans, and tested the effects of 2.5, 8 or 10 mM formate on sulfate reduction. Experiments demonstrated that 8 or 10 mM formate slowed down the growth rate of D. vulgaris and D. curvatus and the sulfate reduction rate of D. curvatus and D. multivorans. Concerning D. multivorans, increasing formate concentrations delayed the onsets of growth and sulfate reduction, which were even inhibited completely while formate was added constantly. Contrary to previous studies, D. multivorans was the only organism capable of formate consumption. Our study suggests that formate accumulates in the natural environment of the water droplets dispersed in oil and that such levels are very likely inhibiting sulfate-reducing microorganisms.
Collapse
Affiliation(s)
- L Voskuhl
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - D Brusilova
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - V S Brauer
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - R U Meckenstock
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
16
|
Ma Y, Zhao H, Shan Q, Xu Y, Yu M, Cui J, Liu T, Qiao L, He X. K-strategy species plays a pivotal role in the natural attenuation of petroleum hydrocarbon pollution in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126559. [PMID: 34252660 DOI: 10.1016/j.jhazmat.2021.126559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The natural attenuation of petroleum hydrocarbons is inseparable from the action of microorganisms, while the degradation methods and ecological strategies of microorganisms in petroleum-contaminated aquifers are still under debate. In the present study, 16 S rRNA sequencing and quantitative real-time polymerase chain reaction were used to assess the potential microbial degradation of petroleum hydrocarbons, and the ecological strategy of microorganisms under petroleum stress was analyzed through a co-occurrence network. The results showed that the microbial community in sediments exhibit higher efficiency and stability and stronger ecological function than that in groundwater. Keystone species coordinated with the community to execute ecosystem processes and tended to choose a K-strategy to survive, with the aquifer sediment being the main site of petroleum hydrocarbon degradation. Under natural conditions, the presence of petroleum hydrocarbons at concentrations higher than 126 μg kg-1 and 5557 μg kg-1 was not conducive to the microbial degradation of polycyclic aromatic hydrocarbons and alkanes, respectively. These results can be used as a reference for an enhanced bioremediation of contaminated groundwater. Overall, these findings provide support to managers for developing environmental management strategies.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hangzheng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianjuan Shan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiu Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longkai Qiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, Wang Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Environ Microbiol 2021; 23:6844-6858. [PMID: 34622529 DOI: 10.1111/1462-2920.15796] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Lu
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Li Zhou
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Fei Zheng
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Dong Feng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Wang
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| |
Collapse
|
18
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
19
|
Watanabe M, Higashioka Y, Kojima H, Fukui M. Proposal of Desulfosarcina ovata subsp. sediminis subsp. nov., a novel toluene-degrading sulfate-reducing bacterium isolated from tidal flat sediment of Tokyo Bay. Syst Appl Microbiol 2020; 43:126109. [PMID: 32847784 DOI: 10.1016/j.syapm.2020.126109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
Strain 28bB2TT is a sulfate-reducing bacterium isolated in a previous study, obtained from a p-xylene-degrading enrichment culture. Physiological, phylogenetic and genomic characterizations of strain 28bB2TT were performed to establish the taxonomic status of the strain. Cells of strain 28bB2TT were short oval-shaped (0.8-1.2×1.2-2.7μm), motile, and Gram-negative. For growth, the optimum pH was pH 6.5-7.0 and the optimum temperature was 28-32°C. Strain 28bB2TT oxidized toluene but could not utilize p-xylene. Sulfate and thiosulfate were used as electron acceptors. The G+C content of the genomic DNA was 53.8mol%. The genome consisted of an approximately 8.3 Mb of chromosome and two extrachromosomal elements. On the basis of 16S rRNA gene analysis, strain 28bB2TT was revealed to belong to the genus Desulfosarcina, with high sequence identities to Desulfosarcina ovata oXyS1T (99.5%) and Desulfosarcina cetonica DSM 7267T (98.7%). Results of Average Nucleotide Identity (ANI) calculation and digital DNA-DNA hybridization (dDDH) analysis showed that the strain 28bB2TT should be classified as a subspecies under D. ovata. Based on physiological and phylogenetic data, strain 28bB2TT (=NBRC 106234 =DSM 23484) is proposed as the type strain of a novel species in genus Desulfosarcina, Desulfosarcina ovata subsp. sediminis subsp. nov.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Yuriko Higashioka
- National Institute of Technology, Kochi College, 200-1 Otsu, Monobe, Nankoku-city, Kochi 783-8508, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
20
|
Chen YT, Zeng Y, Li J, Zhao XY, Yi Y, Gou M, Kamagata Y, Narihiro T, Nobu MK, Tang YQ. Novel Syntrophic Isovalerate-Degrading Bacteria and Their Energetic Cooperation with Methanogens in Methanogenic Chemostats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9618-9628. [PMID: 32667198 DOI: 10.1021/acs.est.0c01840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isovalerate is an important intermediate in anaerobic degradation of proteins/amino acids. Little is known about how this compound is degraded due to challenges in cultivation and characterization of isovalerate-degrading bacteria, which are thought to symbiotically depend on methanogenic archaea. In this study, we successfully enriched novel syntrophic isovalerate degraders (uncultivated Clostridiales and Syntrophaceae members) through operation of mesophilic and thermophilic isovalerate-fed anaerobic reactors. Metagenomics- and metatranscriptomics-based metabolic reconstruction of novel putative syntrophic isovalerate metabolizers uncovered the catabolic pathway and byproducts (i.e., acetate, H2, and formate) of isovalerate degradation, mechanisms for electron transduction from isovalerate degradation to H2 and formate generation (via electron transfer flavoprotein; ETF), and biosynthetic metabolism. The identified organisms tended to prefer formate-based interspecies electron transfer with methanogenic partners. The byproduct acetate was further converted to CH4 and CO2 by either Methanothrix (mesophilic) and Methanosarcina (thermophilic), which employed different approaches for acetate degradation. This study presents insights into novel mesophilic and thermophilic isovalerate degraders and their interactions with methanogens.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, Sichuan 610207, China
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Jie Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Xin-Yu Zhao
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
21
|
Li J, Wang HZ, Yi Y, Gou M, Nobu MK, Chen YT, Tang YQ. Response of Isovalerate-Degrading Methanogenic Microbial Community to Inhibitors. Appl Biochem Biotechnol 2020; 191:1010-1026. [PMID: 31950447 DOI: 10.1007/s12010-020-03234-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
Isovalerate is one of the key intermediates during anaerobic digestion treating protein-containing waste/wastewater. Investigating the effect of different kinds of inhibitors on isovalerate-degrading microbial community is necessary to develop measures for improving the effectiveness of the treatment plants. In the present study, dynamic changes in the isovalerate-degrading microbial community in presence of inhibitors (ammonium, sulfide, mixed ammonium and sulfide, and chlortetracycline (CTC)) were investigated using high-throughput sequencing of 16S rRNA gene. Our observations showed that the isovalerate-degrading microbial community responded differently to different inhibitors and that the isovalerate degradation and gas production were strongly repressed by each inhibitor. We found that sulfide inhibited both isovalerate oxidation followed by methanogenesis, while ammonium, mixed ammonium and sulfide, and CTC mainly inhibited isovalerate oxidation. Genera classified into Proteobacteria and Chloroflexi were less sensitive to inhibitors. The two dominant genera, which are potential syntrophic isovalerate oxidizers, exhibited different responses to inhibitors that the unclassified_Peptococcaceae_3 was more sensitive to inhibitors than the unclassified_Syntrophaceae. Upon comparison to acetoclastic methanogen Methanosaeta, hydrogenotrophic methanogens Methanoculleus and Methanobacterium were less sensitive to inhibitors.
Collapse
Affiliation(s)
- Jie Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Ya-Ting Chen
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
22
|
Watanabe M, Kojima H, Umezawa K, Fukui M. Genomic Characteristics of Desulfonema ishimotonii Tokyo 01 T Implying Horizontal Gene Transfer Among Phylogenetically Dispersed Filamentous Gliding Bacteria. Front Microbiol 2019; 10:227. [PMID: 30837965 PMCID: PMC6390638 DOI: 10.3389/fmicb.2019.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Desulfonema ishimotonii strain Tokyo 01T is a filamentous sulfate-reducing bacterium isolated from a marine sediment. In this study, the genome of this strain was sequenced and analyzed with a focus on gene transfer from phylogenetically distant organisms. While the strain belongs to the class Deltaproteobacteria, hundreds of proteins encoded in the genome showed the highest sequence similarities to those of organisms outside of the class Deltaproteobacteria, suggesting that more than 20% of the genome is putatively of foreign origins. Many of these proteins had the highest sequence identities with proteins encoded in the genomes of filamentous bacteria, including giant sulfur oxidizers of the orders Thiotrichales, cyanobacteria of various genera, and uncultured bacteria of the candidate phylum KSB3. As mobile genetic elements transferred from phylogenetically distant organisms, putative inteins were identified in the GyrB and DnaE proteins encoded in the genome of strain Tokyo 01T. Genes involved in DNA recombination and repair were enriched in comparison to the closest relatives in the same family. Some of these genes were also related to those of organisms outside of the class Deltaproteobacteria, suggesting that they were acquired by horizontal gene transfer from diverse bacteria. The genomic data suggested significant genetic transfer among filamentous gliding bacteria in phylogenetically dispersed lineages including filamentous sulfate reducers. This study provides insights into the genomic evolution of filamentous bacteria belonging to diverse lineages, characterized by various physiological functions and different ecological roles.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Mori F, Umezawa Y, Kondo R, Wada M. Dynamics of Sulfate-Reducing Bacteria Community Structure in Surface Sediment of a Seasonally Hypoxic Enclosed Bay. Microbes Environ 2018; 33:378-384. [PMID: 30449831 PMCID: PMC6308007 DOI: 10.1264/jsme2.me18092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We herein report on the dynamics of a sulfate-reducing bacteria (SRB) community structure in the surface sediment of a seasonally hypoxic enclosed bay for two consecutive years (2012 and 2013). The uppermost (0–5 mm) and subsurface (5–10 mm) layers of sediment were examined with a terminal-restriction fragment length polymorphism (T-RFLP) analysis based on the dissimilatory sulfite reductase (dsrA) gene. The SRB community significantly differed between the two sediment layers over the sampling period. This difference was mainly attributed to operational taxonomic units (OTUs) that were unique to either of the sediment layers. However, nearly 70% of total OTUs were shared between the two layers, with a few predominating. Therefore, no significant shift was observed in the SRB community structure under varying dissolved oxygen (DO) conditions in bottom water overlying the sediment surface. An additional analysis of 16S rRNA gene amplicon sequences, conducted for three uppermost sediment samples (July, August, and September in 2012), revealed that Desulfococcus, a member of SRB with high tolerance to oxygen, was the predominant Deltaproteobacteria across the uppermost sediment samples. Based on the predominance of shared OTUs across the SRB community in the sediment (0–10 mm) regardless of bottom-water DO, some SRB that are physiologically tolerant of a wide range of DO conditions may have dominated and masked changes in responsive SRB to DO concentrations. These results suggest that the SRB community structure in the enclosed bay became stable under repeated cycles of seasonal hypoxia, but may be compromised if the severity of hypoxia increases in the future.
Collapse
Affiliation(s)
- Fumiaki Mori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Yu Umezawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University
| | - Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| |
Collapse
|
24
|
Ugarelli K, Laas P, Stingl U. The Microbial Communities of Leaves and Roots Associated with Turtle Grass ( Thalassia testudinum) and Manatee Grass ( Syringodium filliforme) are Distinct from Seawater and Sediment Communities, but Are Similar between Species and Sampling Sites. Microorganisms 2018; 7:microorganisms7010004. [PMID: 30587804 PMCID: PMC6352278 DOI: 10.3390/microorganisms7010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 11/16/2022] Open
Abstract
Seagrasses are vital members of coastal systems, which provide several important ecosystem services such as improvement of water quality, shoreline protection, and serving as shelter, food, and nursery to many species, including economically important fish. They also act as a major carbon sink and supply copious amounts of oxygen to the ocean. A decline in seagrasses has been observed worldwide, partly due to climate change, direct and indirect human activities, diseases, and increased sulfide concentrations in the coastal porewaters. Several studies have shown a symbiotic relationship between seagrasses and their microbiome. For instance, the sulfur, nitrogen, and carbon cycles are important biochemical pathways that seem to be linked between the plant and its microbiome. The microbiome presumably also plays a key role in the health of the plant, for example in oxidizing phyto-toxic sulfide into non-toxic sulfate, or by providing protection for seagrasses from pathogens. Two of the most abundant seagrasses in Florida include Thalassiatestudinum (turtle grass) and Syringodium filliforme (manatee grass), yet there is little data on the composition of the microbiome of these two genera. In this study, the microbial composition of the phyllosphere and rhizosphere of Thalassia testudinum and Syringodium filiforme were compared to water and sediment controls using amplicon sequencing of the V4 region of the 16S rRNA gene. The microbial composition of the leaves, roots, seawater, and sediment differ from one another, but are similar between the two species of seagrasses.
Collapse
Affiliation(s)
- Kelly Ugarelli
- Ft. Lauderdale Research and Education Center, Department of Microbiology and Cell Science, UF/IFAS, University of Florida, Davie, FL 33314, USA.
| | - Peeter Laas
- Ft. Lauderdale Research and Education Center, Department of Microbiology and Cell Science, UF/IFAS, University of Florida, Davie, FL 33314, USA.
| | - Ulrich Stingl
- Ft. Lauderdale Research and Education Center, Department of Microbiology and Cell Science, UF/IFAS, University of Florida, Davie, FL 33314, USA.
| |
Collapse
|
25
|
Bertran E, Leavitt WD, Pellerin A, Zane GM, Wall JD, Halevy I, Wing BA, Johnston DT. Deconstructing the Dissimilatory Sulfate Reduction Pathway: Isotope Fractionation of a Mutant Unable of Growth on Sulfate. Front Microbiol 2018; 9:3110. [PMID: 30619187 PMCID: PMC6302107 DOI: 10.3389/fmicb.2018.03110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
The sulfur isotope record provides key insight into the history of Earth's redox conditions. A detailed understanding of the metabolisms driving this cycle, and specifically microbial sulfate reduction (MSR), is crucial for accurate paleoenvironmental reconstructions. This includes a precise knowledge of the step-specific sulfur isotope effects during MSR. In this study, we aim at resolving the cellular-level fractionation factor during dissimilatory sulfite reduction to sulfide within MSR, and use this measured isotope effect as a calibration to enhance our understanding of the biochemistry of sulfite reduction. For this, we merge measured isotope effects associated with dissimilatory sulfite reduction with a quantitative model that explicitly links net fractionation, reaction reversibility, and intracellular metabolite levels. The highly targeted experimental aspect of this study was possible by virtue of the availability of a deletion mutant strain of the model sulfate reducer Desulfovibrio vulgaris (strain Hildenborough), in which the sulfite reduction step is isolated from the rest of the metabolic pathway owing to the absence of its QmoABC complex (ΔQmo). This deletion disrupts electron flux and prevents the reduction of adenosine phosphosulfate (APS) to sulfite. When grown in open-system steady-state conditions at 10% maximum growth rate in the presence of sulfite and lactate as electron donor, sulfur isotope fractionation factors averaged -15.9‰ (1 σ = 0.4), which appeared to be statistically indistinguishable from a pure enzyme study with dissimilatory sulfite reductase. We coupled these measurements with an understanding of step-specific equilibrium and kinetic isotope effects, and furthered our mechanistic understanding of the biochemistry of sulfite uptake and ensuing reduction. Our metabolically informed isotope model identifies flavodoxin as the most likely electron carrier performing the transfer of electrons to dissimilatory sulfite reductase. This is in line with previous work on metabolic strategies adopted by sulfate reducers under different energy regimes, and has implications for our understanding of the plasticity of this metabolic pathway at the center of our interpretation of modern and palaeo-environmental records.
Collapse
Affiliation(s)
- Emma Bertran
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MD, United States
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Cambridge, MD, United States.,Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Andre Pellerin
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Grant M Zane
- Department of Biochemistry, University of Missouri, Columbia, SC, United States
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, SC, United States
| | - Itay Halevy
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MD, United States
| |
Collapse
|
26
|
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. THE ISME JOURNAL 2018; 12:495-507. [PMID: 29087380 PMCID: PMC5776465 DOI: 10.1038/ismej.2017.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/26/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023]
Abstract
Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.
Collapse
Affiliation(s)
- Christine B Wenk
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Dörries M, Wöhlbrand L, Rabus R. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2. Proteomics 2017; 16:2878-2893. [PMID: 27701823 DOI: 10.1002/pmic.201600041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023]
Abstract
The marine sulfate-reducing bacterium Desulfobacterium autotrophicum HRM2 belongs to the deltaproteobacterial family Desulfobacteraceae and stands out for its capacity of facultative chemolithoautotrophic growth (next to heterotrophy). Here, proteomics-driven metabolic reconstruction was based on a combination of 2D-DIGE, shotgun proteomics, and analysis of the membrane protein enriched fraction applied to eight different substrate adaptation conditions (seven aliphatic compounds plus H2 /CO2 ). In total, 1344 different proteins were identified (∼27% of the 4947 genome-predicted), from which a complex metabolic network was reconstructed consisting of 136 proteins (124 detected; ∼91%). Peripheral degradation routes for organic substrates feed directly or via the methylmalonyl-CoA pathway into the Wood-Ljungdahl pathway (WLP) for terminal oxidation to CO2 . Chemolithoautotrophic growth apparently involves the periplasmic [Ni/Fe/Se]-containing hydrogenase HysAB (H2 oxidation), the reductively operating WLP (CO2 fixation), and classical gluconeogenesis. Diverse soluble proteins (e.g., Hdr, Etf) probably establish a fine balanced cytoplasmic electron transfer network connecting individual catabolic reactions with the membrane menaquinone pool. In addition, multiple membrane protein complexes (Nqr, Qmo, Qrc, Rnf1, Rnf2, and Tmc) provide ample routes for interacting with the reducing equivalent pool and delivering electrons to dissimilatory sulfate reduction (both localized in the cytoplasm). Overall, this study contributes to the molecular understanding of the habitat-relevant Desulfobacteraceae.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Department Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
28
|
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:323-344. [PMID: 28419734 PMCID: PMC5573963 DOI: 10.1111/1758-2229.12538] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| |
Collapse
|