1
|
Xu F, Liu X, Wang J. The complete mitochondrial genome of the rice blast fungus Pyricularia oryzae Cavara 1892 strain Guy11 and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1036-1040. [PMID: 37799450 PMCID: PMC10548847 DOI: 10.1080/23802359.2023.2260043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
The complete mitochondrial genome of Pyricularia oryzae Cavara 1892 strain Guy11 is 34,865 bp in length (GenBank accession number OP095391), containing 29 tRNA genes, 2 rRNA genes, and 15 protein-coding genes (PCGs). The gene order and orientation are novel compared to other Sordariomycetes species with sequenced mitogenomes in the GenBank database. Phylogenetic analysis suggests that P. oryzae Guy11 and 19 other Sordariomycetes species form a monophyletic group. The complete mitochondrial sequence of P. oryzae Guy11 will be a valuable resource for species identification, population genetics, phylogenetics, and comparative genomics studies in Sordariomycetes and Magnaporthales.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| |
Collapse
|
2
|
Fang J, Mamut R, Wang L, Anwar G. De novo mitochondrial genome sequencing of Cladonia subulata and phylogenetic analysis with other dissimilar species. PLoS One 2023; 18:e0285818. [PMID: 37220163 DOI: 10.1371/journal.pone.0285818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
In this study, the complete mitochondrial genome of Cladonia subulata (L.) FH Wigg was sequenced and assembled and then compared with those of other Cladonia species. The mitogenome of Cladonia subulata, the type species of Cladonia, consisted of a circular DNA molecule of 58,895 bp 44 genes (15 protein-coding genes, 2 rRNA genes, and 27 tRNA genes). The base composition had shown an obvious AT preference, and all 27 tRNA genes formed a typical clover structure. Comparison with other 7 Cladonia species indicated that the duplication/loss of tRNAs had occurred during evolution, and introns appeared to explain the variation in cox1 genes in Cladonia, the mitochondrial genome tends to be generally conservative and local dynamic changes. Repeat sequences were mainly located in gene intervals, which were mainly distributed among intergenic spacers and may cause rearrangement of the mitogenome. The phylogenetic results showed that Cladonia subulata and C. polycarpoides were assigned to the Cladonia Subclade. The results add to the available mitochondrial genome sequence information of Cladonia subulata, provide basic data for the systematic development, resource protection, and genetic diversity research in Cladonia subulata, and also provide theoretical support for further genomic research of lichens.
Collapse
Affiliation(s)
- Jinjin Fang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Reyim Mamut
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Lidan Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Gulmira Anwar
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Wang Y, Xu WT, Lu RS, Chen M, Liu J, Sun XQ, Zhang YM. Genome Sequence Resource for Colletotrichum gloeosporioides, an Important Pathogenic Fungus Causing Anthracnose of Dioscorea alata. PLANT DISEASE 2023; 107:893-895. [PMID: 36265140 DOI: 10.1094/pdis-03-22-0567-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anthracnose disease is one of the most important diseases of Dioscorea alata and many other food yams, which is caused by Colletotrichum gloeosporioides fungus from the Glomerellaceae family of the Sordariomycetes class. In the present study, a C. gloeosporioides starin named CgDa01 was isolated from D. alata, and its genome was sequenced based on Oxford Nanopore technology (ONT) and the Illumina sequencing platform. The high-quality genome of CgDa01 was assembled with a 62.78 Mb genome size and 15,845 predicted protein-coding genes. The proteins of predicted genes were annotated using multiple public databases, including the nonredundant protein database, the InterProScan databases, and Kyoto Encyclopedia of Genes and Genomes. Among the annotated protein-coding genes, 55 were predicted as potential virulence genes by the fungal virulence factor database. The C. gloeosporioides CgDa01 genome assembly described in this study can serve as a resource for better understanding the pathogenic mechanism of C. gloeosporioides on yam hosts.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wei-Teng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
4
|
Sun X, Cheng J. Comparative Mitogenomic Analyses and New Insights into the Phylogeny of Thamnocephalidae (Branchiopoda: Anostraca). Genes (Basel) 2022; 13:1765. [PMID: 36292650 PMCID: PMC9602129 DOI: 10.3390/genes13101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Thamnocephalidae, a family of Anostraca which is widely distributed on all continents of the world except Antarctica, currently consists of six genera and approximately 63 recognized species. The relationships among genera in Thamnocephalidae and the monophyly of Thamnocephalidae, determined using morphological characteristics or gene markers, remain controversial. In order to address the relationships within Thamnocephalidae, we sequenced Branchinella kugenumaensis mitogenomes and conducted a comparative analysis to reveal the divergence across mitogenomes of B. kugenumaensis. Using newly obtained mitogenomes together with available Anostracan genomic sequences, we present the most complete phylogenomic understanding of Anostraca to date. We observed high divergence across mitogenomes of B. kugenumaensis. Meanwhile, phylogenetic analyses based on both amino acids and nucleotides of the protein-coding genes (PCG) provide significant support for a non-monophyletic Thamnocephalidae within Anostraca, with Asian Branchinella more closely related to Streptocephalidae than Australian Branchinella. The phylogenetic relationships within Anostraca were recovered as follows: Branchinectidae + Chirocephalidae as the basal group of Anostraca and halophilic Artemiidae as a sister to the clade Thamnocephalidae + Streptocephalidae. Both Bayesian inference (BI)- and maximum likelihood (ML)-based analyses produced identical topologies.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
5
|
Complete Mitochondrial Genome Sequence of
Colletotrichum siamense
Isolated in South Korea. Microbiol Resour Announc 2022; 11:e0105521. [PMID: 35471060 PMCID: PMC9119044 DOI: 10.1128/mra.01055-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The complete mitochondrial genome of Colletotrichum siamense is characterized. The circular genome has a size of 52,710 bp, with a GC content of 34.45%, and contains 15 protein-coding genes, 23 tRNA genes, and 2 rRNA genes.
Collapse
|
6
|
Patricia LCC, María del Socorro RG, Iván RH, Erika DLCA, Carolina DS, Keiko S, José Alberto NZ. Occurrence and infective potential of Colletotrichum gloeosporioides isolates associated to Citrus limon var Eureka. BIOTECHNOLOGY REPORTS 2021; 31:e00651. [PMID: 34277364 PMCID: PMC8261549 DOI: 10.1016/j.btre.2021.e00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022]
Abstract
37 fungi from damaged tissues of Italian lemon were obtained. D1/D2, ITS1-5.8S-ITS2 and COX1 phylogenetic trees allow identify ten fungi genera. Colletotrichum isolates were characterized by species-specific PCR, rep-PCR and multilocus analysis. Colletotrichum isolates had leaves´s infection percentages between 17 to 67%. This the first report of C. gloeosporioides on Italian lemon in Mexico.
A collection of 37 fungi associated to Italian lemon plants with disease symptoms, was obtained. Ten genera including Aspergillus, Alternaria, Nigrospora, Lasiodiplodia, Dothideomycetes, Pleurostoma, Setosphaeria, Penicillium, Fusarium and Colletotrichum were identified by using ITS1–5.8S–ITS2, D1/D2 26S and COX1 loci. The last three genera were abundant on the damaged fruits, being Colletotrichum the more abundant (32.4 %). CaInt2 and CgInt primers support the identity of these isolates as C. gloeosporioides. Variability, inferred by rep-PCR and multilocus sequence analysis shows genetic differences among the C. gloeosporioides isolates. Infective profile evaluated in Colletotrichum isolates shows different leave infection percentages (26 to 60 %). SEM analysis showed mycelium, spores and appressoria on the leaves of selected Colletotrichum isolates. Specifically, the AL-05 and AL-13 isolates showed a high chitin deacetylase activity (CDA) peaking at 1.2 U/mg protein in AL-13. This is the first report on C. gloeosporioides infecting Italian lemon leaves in Mexico.
Collapse
|
7
|
Zhao Z, Zhu K, Tang D, Wang Y, Wang Y, Zhang G, Geng Y, Yu H. Comparative Analysis of Mitochondrial Genome Features among Four Clonostachys Species and Insight into Their Systematic Positions in the Order Hypocreales. Int J Mol Sci 2021; 22:ijms22115530. [PMID: 34073831 PMCID: PMC8197242 DOI: 10.3390/ijms22115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The mycoparasite fungi of Clonostachys have contributed to the biological control of plant fungal disease and nematodes. The Clonostachys fungi strains were isolated from Ophiocordyceps highlandensis, Ophiocordycepsnigrolla and soil, which identified as Clonostachyscompactiuscula, Clonostachysrogersoniana, Clonostachyssolani and Clonostachys sp. To explore the evolutionary relationship between the mentioned species, the mitochondrial genomes of four Clonostachys species were sequenced and assembled. The four mitogenomes consisted of complete circular DNA molecules, with the total sizes ranging from 27,410 bp to 42,075 bp. The GC contents, GC skews and AT skews of the mitogenomes varied considerably. Mitogenomic synteny analysis indicated that these mitogenomes underwent gene rearrangements. Among the 15 protein-coding genes within the mitogenomes, the nad4L gene exhibited the least genetic distance, demonstrating a high degree of conservation. The selection pressure analysis of these 15 PCGs were all below 1, indicating that PCGs were subject to purifying selection. Based on protein-coding gene calculation of the significantly supported topologies, the four Clonostachys species were divided into a group in the phylogenetic tree. The results supplemented the database of mitogenomes in Hypocreales order, which might be a useful research tool to conduct a phylogenetic analysis of Clonostachys. Additionally, the suitable molecular marker was significant to study phylogenetic relationships in the Bionectriaceae family.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Kongfu Zhu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Dexiang Tang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yuanbing Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yao Wang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Guodong Zhang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
| | - Yupeng Geng
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- Correspondence: (Y.G.); (H.Y.)
| | - Hong Yu
- College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China; (K.Z.); (D.T.); (Y.W.); (Y.W.); (G.Z.)
- Correspondence: (Y.G.); (H.Y.)
| |
Collapse
|
8
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Chen C, Wang J, Li Q, Fu R, Jin X, Huang W, Lu D. Mitogenomes of Two Phallus Mushroom Species Reveal Gene Rearrangement, Intron Dynamics, and Basidiomycete Phylogeny. Front Microbiol 2020; 11:573064. [PMID: 33193177 PMCID: PMC7644776 DOI: 10.3389/fmicb.2020.573064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Phallus indusiatus and Phallus echinovolvatus are edible bamboo mushrooms with pharmacological properties. We sequenced, assembled, annotated, and compared the mitogenomes of these species. Both mitogenomes were composed of circular DNA molecules, with sizes of 89,139 and 50,098 bp, respectively. Introns were the most important factor in mitogenome size variation within the genus Phallus. Phallus indusiatus, P. echinovolvatus, and Turbinellus floccosus in the subclass Phallomycetidae have conservative gene arrangements. Large-scale gene rearrangements were observed in species representing 42 different genera of Basidiomycetes. A variety of intron position classes were found in the 44 Basidiomycete species analyzed. A novel group II intron from the P. indusiatus mitogenome was compared with other fungus species containing the same intron, and we demonstrated that the insertion sites of the intron had a base preference. Phylogenetic analyses based on combined gene datasets yielded well-supported Bayesian posterior probability (BPP = 1) topologies. This indicated that mitochondrial genes are reliable molecular markers for analyzing the phylogenetic relationships of the Basidiomycetes. This is the first study of the mitogenome of the genus Phallus, and it increases our understanding of the population genetics and evolution of bamboo mushrooms and related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
10
|
Kulik T, Brankovics B, van Diepeningen AD, Bilska K, Żelechowski M, Myszczyński K, Molcan T, Stakheev A, Stenglein S, Beyer M, Pasquali M, Sawicki J, Wyrȩbek J, Baturo-Cieśniewska A. Diversity of Mobile Genetic Elements in the Mitogenomes of Closely Related Fusarium culmorum and F. graminearum sensu stricto Strains and Its Implication for Diagnostic Purposes. Front Microbiol 2020; 11:1002. [PMID: 32528440 PMCID: PMC7263005 DOI: 10.3389/fmicb.2020.01002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (Fusarium oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Balazs Brankovics
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina.,Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Marco Beyer
- Department of Environmental Research and Innovation, Agro-Environmental Systems, Luxembourg Institute of Science and Technology, Belval, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wyrȩbek
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Baturo-Cieśniewska
- Laboratory of Phytopathology and Molecular Mycology, Department of Biology and Plant Protection, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
11
|
Pszczółkowska A, Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A. rps3 as a Candidate Mitochondrial Gene for the Molecular Identification of Species from the Colletotrichum acutatum Species Complex. Genes (Basel) 2020; 11:E552. [PMID: 32422999 PMCID: PMC7290925 DOI: 10.3390/genes11050552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum species form one of the most economically significant groups of pathogenic fungi and lead to significant losses in the production of major crops-in particular, fruits, vegetables, ornamental plants, shrubs, and trees. Members of the genus Colletotrichum cause anthracnose disease in many plants. Due to their considerable variation, these fungi have been widely investigated in genetic studies as model organisms. Here, we report the complete mitochondrial genome sequences of four Colletotrichum species (C. fioriniae, C. lupini, C. salicis, and C. tamarilloi). The reported circular mitogenomes range from 30,020 (C. fioriniae) to 36,554 bp (C. lupini) in size and have identical sets of genes, including 15 protein-coding genes, two ribosomal RNA genes, and 29 tRNA genes. All four mitogenomes are characterized by a rather poor repetitive sequence content with only forward repeat representatives and a low number of microsatellites. The topology of the phylogenetic tree reflects the systematic positions of the studied species, with representatives of each Colletotrichum species complex gathered in one clade. A comparative analysis reveals consistency in the gene composition and order of Colletotrichum mitogenomes, although some highly divergent regions are also identified, like the rps3 gene which appears as a source of potential diagnostic markers for all studied Colletotrichum species.
Collapse
Affiliation(s)
- Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (Ł.P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.P.); (A.O.)
| |
Collapse
|
12
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
13
|
Chen C, Li Q, Fu R, Wang J, Xiong C, Fan Z, Hu R, Zhang H, Lu D. Characterization of the mitochondrial genome of the pathogenic fungus Scytalidium auriculariicola (Leotiomycetes) and insights into its phylogenetics. Sci Rep 2019; 9:17447. [PMID: 31768013 PMCID: PMC6877775 DOI: 10.1038/s41598-019-53941-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Scytalidium auriculariicola is the causative pathogen of slippery scar disease in the cultivated cloud ear fungus, Auricularia polytricha. In the present study, the mitogenome of S. auriculariicola was sequenced and assembled by next-generation sequencing technology. The circular mitogenome is 96,857 bp long and contains 56 protein-coding genes, 2 ribosomal RNA genes, and 30 transfer RNA genes (tRNAs). The high frequency of A and T used in codons contributed to the high AT content (73.70%) of the S. auriculariicola mitogenome. Comparative analysis indicated that the base composition and the number of introns and protein-coding genes in the S. auriculariicola mitogenome varied from that of other Leotiomycetes mitogenomes, including a uniquely positive AT skew. Five distinct groups were found in the gene arrangements of Leotiomycetes. Phylogenetic analyses based on combined gene datasets (15 protein-coding genes) yielded well-supported (BPP = 1) topologies. A single-gene phylogenetic tree indicated that the nad4 gene may be useful as a molecular marker to analyze the phylogenetic relationships of Leotiomycetes species. This study is the first report on the mitochondrial genome of the genus Scytalidium, and it will contribute to our understanding of the population genetics and evolution of S. auriculariicola and related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, 610066, Sichuan, P.R. China
| | - Qiang Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, P.R. China
| | - Rongtao Fu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Jian Wang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Zhonghan Fan
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Rongping Hu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Hong Zhang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Daihua Lu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China.
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, P.R. China.
| |
Collapse
|
14
|
Li Q, Yang L, Xiang D, Wan Y, Wu Q, Huang W, Zhao G. The complete mitochondrial genomes of two model ectomycorrhizal fungi (Laccaria): features, intron dynamics and phylogenetic implications. Int J Biol Macromol 2019; 145:974-984. [PMID: 31669472 DOI: 10.1016/j.ijbiomac.2019.09.188] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/10/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Laccaria amethystine and L. bicolor have served as model species for studying the life history and genetics of ectomycorrhizal fungi. However, the characterizations and variations of their mitogenomes are still unknown. In the present study, the mitogenomes of the two Laccaria species were assembled, annotated, and compared. The two mitogenomes of L. amethystine and L. bicolor comprised circular DNA molecules, with the sizes of 65,156 bp and 95,304 bp, respectively. Genome collinearity analysis revealed large-scale gene rearrangements between the two Laccaria species. Comparative mitogenome analysis indicated the introns of cox1 genes in Agaricales experienced frequent lost/gain eveants, which promoted the organization and size variations in Agaricales mitogenomes. Evolutionary analysis indicated the core protein-coding genes in the two mitogenomes were subject to strong pressure of purifying selection. Phylogenetic analysis using the Bayesian inference (BI) and Maximum likelihood (ML) methods based on a combined mitochondrial gene set resulted in identical and well-supported tree topologies, wherein the two Laccaria species were most closely related to Coprinopsis cinerea. This study severed as the first study on the mitogenomes of Laccaria species, which promoted a comprehensive understanding of the genetics and evolution of the model ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Luxi Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Li Q, Xiang D, Wan Y, Wu Q, Wu X, Ma C, Song Y, Zhao G, Huang W. The complete mitochondrial genomes of five important medicinal Ganoderma species: Features, evolution, and phylogeny. Int J Biol Macromol 2019; 139:397-408. [DOI: 10.1016/j.ijbiomac.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
|
16
|
Hassan O, Lee YS, Chang T. Colletotrichum Species Associated with Japanese Plum (Prunus salicina) Anthracnose in South Korea. Sci Rep 2019; 9:12089. [PMID: 31427596 PMCID: PMC6700192 DOI: 10.1038/s41598-019-48108-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
A total of 24 Colletotrichum isolates were isolated from diseased Japanese plum (Prunus salicina) fruits showing chlorotic regions with whitish-brown sunken necrotic lesions and phylogenetic relationships among the collected Colletotrichum isolates were determined. A subset of 11 isolates was chosen for further taxonomic study based on morphology and molecular characteristics identified using the internal transcribed spacer (ITS) and beta-tubulin (TUB2) genes. Isolates in the C. acutatum complex were analyzed using partial sequencing of five gene regions (ITS, GAPDH, ACT, TUB2, and CHS), and C. gloeosporioides sensu lato (s.l.) isolates were analyzed using seven gene regions (ITS, TUB2, GAPDH, ACT, CAL, CHS-1, and ApMat). Morphological assessments in combination with phylogenetic analysis delineated four species of Colletotrichum including C. gloeosporioides sensu stricto (s.s.), C. nymphaeae, C. foriniae, and C. siamense; these data identify Colletotrichum fioriniae and C. siamense two new species associated with plum anthracnose in South Korea. Finally, the pathogenicity of these four species in the development of plum anthracnose in South Korea was confirmed by inoculations of plum fruit.
Collapse
Affiliation(s)
- Oliul Hassan
- Department of Ecology & Environmental System, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, Gyeongbuk, 37224, Republic of Korea
| | - Yong Se Lee
- Division of Life and Environmental Sciences, College of Life and Environmental Sciences, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Taehyun Chang
- Department of Ecology & Environmental System, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, Gyeongbuk, 37224, Republic of Korea.
| |
Collapse
|
17
|
Kolesnikova AI, Putintseva YA, Simonov EP, Biriukov VV, Oreshkova NV, Pavlov IN, Sharov VV, Kuzmin DA, Anderson JB, Krutovsky KV. Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics 2019; 20:351. [PMID: 31068137 PMCID: PMC6506933 DOI: 10.1186/s12864-019-5732-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/24/2019] [Indexed: 12/03/2022] Open
Abstract
Background Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. Results Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. Conclusions Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5732-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna I Kolesnikova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
| | - Evgeniy P Simonov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Institute of Animal Systematics and Ecology, Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia
| | - Vladislav V Biriukov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Igor N Pavlov
- Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - James B Anderson
- Department of Biology, University of Toronto, Mississauga, ON, l5L 1C6, Canada
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia. .,Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany. .,Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia. .,Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
18
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
19
|
Ma X, Nontachaiyapoom S, Jayawardena RS, yde KD, Gentekaki E, Zhou S, Qian Y, Wen T, Kang J. Endophytic Colletotrichum species from Dendrobium spp. in China and Northern Thailand. MycoKeys 2018; 43:23-57. [PMID: 30568535 PMCID: PMC6290043 DOI: 10.3897/mycokeys.43.25081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/03/2018] [Indexed: 11/17/2022] Open
Abstract
Species of Colletotrichum are commonly found in many plant hosts as pathogens, endophytes and occasionally saprobes. Twenty-two Colletotrichum strains were isolated from three Dendrobium species - D.cariniferum, D.catenatum and D.harveyanum, as well as three unidentified species. The taxa were identified using morphological characterisation and phylogenetic analyses of ITS, GAPDH, ACT and ß-tubulin sequence data. This is the first time to identify endophytic fungi from Dendrobium orchids using the above method. The known species, Colletotrichumboninense, C.camelliae-japonicae, C.fructicola, C.jiangxiense and C.orchidophilum were identified as fungal endophytes of Dendrobium spp., along with the new species, C.cariniferi, C.chiangraiense, C.doitungense, C.parallelophorum and C.watphraense, which are introduced in this paper. One strain is recorded as an unidentified species. Corn meal agar is recommended as a good sporulation medium for Colletotrichum species. This is the first report of fungal endophytes associated with Dendrobiumcariniferum and D.harveyanum. Colletotrichumcamelliae-japonicae, C.jiangxiense, and C.orchidophilum are new host records for Thailand.
Collapse
Affiliation(s)
- Xiaoya Ma
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, People’s Republic of China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sureeporn Nontachaiyapoom
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. yde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sixuan Zhou
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, People’s Republic of China
- Guizhou institute of animal husbandry and veterinary, Guiyang, Guizhou province, 550005, People’s Republic of China
| | - Yixin Qian
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, People’s Republic of China
| | - Tingchi Wen
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, People’s Republic of China
| | - Jichuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, People’s Republic of China
| |
Collapse
|
20
|
Li Q, Liao M, Yang M, Xiong C, Jin X, Chen Z, Huang W. Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus Cantharellus and phylogeny of Agaricomycetes. Int J Biol Macromol 2018; 118:756-769. [DOI: 10.1016/j.ijbiomac.2018.06.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
|
21
|
Li Q, Wang Q, Chen C, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2018; 119:792-802. [PMID: 30076929 DOI: 10.1016/j.ijbiomac.2018.07.197] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
In this study, the mitochondrial genomes of six Russula species were sequenced using next generation sequencing. The six mitogenomes were all composed of circular DNA molecules, with lengths ranging from 40,961 bp to 69,423 bp. The length and number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among the six mitogenomes. The increased number and total size of introns likely contributed to the size expansion of mitogenomes in some Russula species. Gene synteny analysis revealed some gene rearrangements among the six mitochondrial genomes. The nad4L gene had the lowest K2P genetic distance of the 15 core PCGs among the six Russula species, indicating that this gene was highly conserved. The Ka/Ks values for all 15 core PCGs were <1, suggesting that they were all subject to purifying selection. Phylogenetic analyses based on two gene datasets (15 core PCGs, and 15 core PCGs + rnl + rns) recovered identical and well-supported trees. In addition, cox1 was identified as a potential single-gene molecular marker for the phylogenetic analysis of relationships among Agaricomycetes species. This study provides the first report of mitogenomes from the Russulaceae family and facilitates the investigation of population genetics and evolution of other ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Zuqin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China.
| |
Collapse
|
22
|
Li Q, Yang M, Chen C, Xiong C, Jin X, Pu Z, Huang W. Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus Laetiporus sulphureus. Sci Rep 2018; 8:9104. [PMID: 29904057 PMCID: PMC6002367 DOI: 10.1038/s41598-018-27489-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The medicinal fungus Laetiporus sulphureus is widely distributed worldwide. To screen for molecular markers potentially useful for phylogenetic analyses of this species and related species, the mitochondrial genome of L. sulphureus was sequenced and assembled. The complete circular mitochondrial genome was 101,111 bp long, and contained 38 protein-coding genes (PCGs), 2 rRNA genes, and 25 tRNA genes. Our BLAST search aligned about 6.1 kb between the mitochondrial and nuclear genomes of L. sulphureus, indicative of possible gene transfer events. Both the GC and AT skews in the L. sulphureus mitogenome were negative, in contrast to the other seven Polyporales species tested. Of the 15 PCGs conserved across the seven species of Polyporales, the lengths of 11 were unique in the L. sulphureus mitogenome. The Ka/Ks of these 15 PCGs were all less than 1, indicating that PCGs were subject to purifying selection. Our phylogenetic analysis showed that three single genes (cox1, cob, and rnl) were potentially useful as molecular markers. This study is the first publication of a mitochondrial genome in the family Laetiporaceae, and will facilitate the study of population genetics and evolution in L. sulphureus and other species in this family.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Mei Yang
- Panzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, 617061, Sichuan, P.R. China
| | - Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
23
|
de Queiroz CB, Santana MF, Pereira Vidigal PM, de Queiroz MV. Comparative analysis of the mitochondrial genome of the fungus Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Appl Microbiol Biotechnol 2018; 102:2763-2778. [PMID: 29453633 DOI: 10.1007/s00253-018-8812-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 01/25/2023]
Abstract
Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C. lindemuthianum is a typical circular molecule 37,446 bp (isolate 89 A2 2-3) and 37,440 bp (isolate 83.501) in length. The difference of six nucleotides between the two genomes is the result of a deletion in the ribosomal protein S3 (rps3) gene in the 83.501 isolate. In addition, substitution of adenine for guanine within the rps3 gene in the mitochondrial genome of the 83.501 isolate was observed. Compared to the previously sequenced C. lindemuthianum mitochondrial genome, an exon no annotated in the cytochrome c oxidase I (cox1) gene and a non-conserved open reading frame (ncORF) were observed. The size of the mitochondrial genomes of the seven species of Colletotrichum was highly variable, being attributed mainly to the ncORF, ranging from one to 10 and also from introns ranging from one to 11 and which encode a total of up to nine homing endonucleases. This paper reports for the first time by means of transcriptome that then ncORFs are transcribed in Colletotrichum spp. Phylogeny data revealed that core mitochondrial genes could be used as an alternative in phylogenetic relationship studies in Colletotrichum spp. This work contributes to the genetic and biological knowledge of Colletotrichum spp., which is of great economic and scientific importance.
Collapse
Affiliation(s)
- Casley Borges de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Pedro M Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências Biológicas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil.
| |
Collapse
|