1
|
Annamalai C, Viswanathan P. Vitamin D and Acute Kidney Injury: A Reciprocal Relationship. Biomolecules 2025; 15:586. [PMID: 40305356 PMCID: PMC12025042 DOI: 10.3390/biom15040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Vitamin D is a sterol prohormone with no intrinsic biological activity. Calcitriol, the active form of vitamin D, is synthesized in the kidneys. It has well-known pleiotropic and cytoprotective properties. In addition to regulating parathyroid hormone secretion and enhancing gut calcium absorption, it exhibits antioxidant, anti-inflammatory, antiproliferative, and antineoplastic effects. However, the role of vitamin D in AKI is unclear, unlike in CKD. Thus, this review aimed to understand how dysregulated vitamin D homeostasis occurs in AKI, as well as to explore how vitamin D deficiency and excess influence AKI. A comprehensive literature search was conducted between January 2000 and June 2024 to uncover relevant works detailing vitamin D homeostasis in health as well as investigating the impact of vitamin D deficiency and excess in humans, animals, and in vitro cell models of AKI. According to the findings of this review, vitamin D appears to have a reciprocal relationship with AKI. Acute renal injury, among other factors, can cause hypo- or hypervitaminosis D. Conversely, AKI can also be caused by vitamin D deficiency and toxicity. Even though hypovitaminosis D is associated with AKI, it is uncertain how it impacts AKI outcomes in distinct clinical scenarios. Newer therapeutic options might emerge as a result of understanding these challenges. Vitamin D supplementation may ameliorate renal injury but needs further validation. Furthermore, hypervitaminosis D has also been implicated in AKI by causing hypercalcemia and hyperphosphatemia. It is crucial to avoid prolonged, uncontrolled, and unsupervised supraphysiological vitamin D administration, especially intramuscular injection.
Collapse
Affiliation(s)
| | - Pragasam Viswanathan
- Renal Research Lab, Pearl Research Park, School of Biosciences and Technology, VIT, Vellore 632014, Tamil Nadu, India;
| |
Collapse
|
2
|
Taracha-Wisniewska A, Parks EGC, Miller M, Lipinska-Zubrycka L, Dworkin S, Wilanowski T. Vitamin D Receptor Regulates the Expression of the Grainyhead-Like 1 Gene. Int J Mol Sci 2024; 25:7913. [PMID: 39063155 PMCID: PMC11276664 DOI: 10.3390/ijms25147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular functions, as well as in extraskeletal health, ensuring the proper functioning of multiple human organs, including the skin. Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. Even though they are involved in many processes regulated by vitamin D, a direct link between vitamin D-mediated cellular pathways and GRHL genes has never been described. We employed various bioinformatic methods, quantitative real-time PCR, chromatin immunoprecipitation, reporter gene assays, and calcitriol treatments to investigate this issue. We report that the vitamin D receptor (VDR) binds to a regulatory region of the Grainyhead-like 1 (GRHL1) gene and regulates its expression. Ectopic expression of VDR and treatment with calcitriol alters the expression of the GRHL1 gene. The evidence presented here indicates a role of VDR in the regulation of expression of GRHL1 and correspondingly a role of GRHL1 in mediating the actions of vitamin D.
Collapse
Affiliation(s)
- Agnieszka Taracha-Wisniewska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Emma G. C. Parks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Michal Miller
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Lidia Lipinska-Zubrycka
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (E.G.C.P.); (S.D.)
| | - Tomasz Wilanowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland; (A.T.-W.); (L.L.-Z.)
| |
Collapse
|
3
|
Shintani T, Higaki M, Rosli SNZ, Okamoto T. Potential treatment of squamous cell carcinoma by targeting heparin-binding protein 17/fibroblast growth factor-binding protein 1 with vitamin D 3 or eldecalcitol. In Vitro Cell Dev Biol Anim 2024; 60:583-589. [PMID: 38713345 PMCID: PMC11286729 DOI: 10.1007/s11626-024-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Heparin-binding protein 17 (HBp17), first purified in 1991 from the conditioned medium of the human A431 squamous cell carcinoma (SCC) cell line, was later renamed fibroblast growth factor-binding protein 1 (FGFBP-1). HBp17/FGFBP-1 is specifically expressed and secreted by epithelial cells, and it reversibly binds to fibroblast growth factor (FGF)-1 and FGF-2, as well as FGFs-7, -10, and -22, indicating a crucial involvement in the transportation and function of these FGFs. Our laboratory has investigated and reported several studies to elucidate the function of HBp17/FGFBP-1 in SCC cells and its potential as a molecular therapeutic target. HBp17/FGFBP-1 transgene exoression in A431-4 cells, a clonal subline of A431 that lacks tumorigenicity and does not express HBp17/FGFBP-1, demonstrated a significantly enhanced proliferation in vitro compared with A431-4 cells, and it acquired tumorigenicity in the subcutis of nude mice. Knockout (KO) of the HBp17/FGFBP-1 by genome editing significantly suppressed tumor growth, cell motility, and tumorigenicity compared with control cells. A comprehensive analysis of expressed molecules in both cell types revealed that molecules that promote epithelial cell differentiation were highly expressed in HBp17/FGFBP-1 KO cells. Additionally, we reported that 1α,25(OH)2D3 or eldecalcitol (ED-71), which is an analog of 1α,25(OH)2D3, suppresses HBp17/FGFBP-1 expression and tumor growth in vitro and in vivo by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here, we discuss the prospects of molecular targeted therapy targeting HBp17/FGFBP-1 with 1α,25(OH)2D3 or ED71 in SCC and oral SCC.
Collapse
Affiliation(s)
- Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| | - Mirai Higaki
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Siti Nur Zawani Rosli
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Infectious Disease Research Center, Institute for Medical Research, Bacteriology Unit, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Malaysia
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- School of Medical Sciences, University of East Asia, Shimonoseki, 751-8503, Japan
| |
Collapse
|
4
|
Xia X, Xu F, Dai D, Xiong A, Sun R, Ling Y, Qiu L, Wang R, Ding Y, Lin M, Li H, Xie Z. VDR is a potential prognostic biomarker and positively correlated with immune infiltration: a comprehensive pan-cancer analysis with experimental verification. Biosci Rep 2024; 44:BSR20231845. [PMID: 38639057 PMCID: PMC11065647 DOI: 10.1042/bsr20231845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.
Collapse
MESH Headings
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Humans
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Cell Line, Tumor
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Cancer-Associated Fibroblasts/pathology
- Databases, Genetic
Collapse
Affiliation(s)
- Xuedi Xia
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Dexing Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - An Xiong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ruoman Sun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Yali Ling
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Lei Qiu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Rui Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ya Ding
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Miaoying Lin
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Haibo Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
5
|
Wen Y, Latham CM, Moore AN, Thomas NT, Lancaster BD, Reeves KA, Keeble AR, Fry CS, Johnson DL, Thompson KL, Noehren B, Fry JL. Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction. JCI Insight 2023; 8:e170518. [PMID: 37856482 PMCID: PMC10795826 DOI: 10.1172/jci.insight.170518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Collapse
Affiliation(s)
- Yuan Wen
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine
| | | | | | | | | | | | - Alexander R. Keeble
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
| | | | | | - Katherine L. Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Center for Muscle Biology, College of Health Sciences
- Department of Orthopaedic Surgery & Sports Medicine, and
| | - Jean L. Fry
- Center for Muscle Biology, College of Health Sciences
| |
Collapse
|
6
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
7
|
Hussain S, Yates C, Campbell MJ. Vitamin D and Systems Biology. Nutrients 2022; 14:5197. [PMID: 36558356 PMCID: PMC9782494 DOI: 10.3390/nu14245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biological actions of the vitamin D receptor (VDR) have been investigated intensively for over 100 years and has led to the identification of significant insights into the repertoire of its biological actions. These were initially established to be centered on the regulation of calcium transport in the colon and deposition in bone. Beyond these well-known calcemic roles, other roles have emerged in the regulation of cell differentiation processes and have an impact on metabolism. The purpose of the current review is to consider where applying systems biology (SB) approaches may begin to generate a more precise understanding of where the VDR is, and is not, biologically impactful. Two SB approaches have been developed and begun to reveal insight into VDR biological functions. In a top-down SB approach genome-wide scale data are statistically analyzed, and from which a role for the VDR emerges in terms of being a hub in a biological network. Such approaches have confirmed significant roles, for example, in myeloid differentiation and the control of inflammation and innate immunity. In a bottom-up SB approach, current biological understanding is built into a kinetic model which is then applied to existing biological data to explain the function and identify unknown behavior. To date, this has not been applied to the VDR, but has to the related ERα and identified previously unknown mechanisms of control. One arena where applying top-down and bottom-up SB approaches may be informative is in the setting of prostate cancer health disparities.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Moray J. Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
9
|
Szymczak-Tomczak A, Ratajczak AE, Kaczmarek-Ryś M, Hryhorowicz S, Rychter AM, Zawada A, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Pleiotropic Effects of Vitamin D in Patients with Inflammatory Bowel Diseases. J Clin Med 2022; 11:jcm11195715. [PMID: 36233580 PMCID: PMC9573215 DOI: 10.3390/jcm11195715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/07/2022] Open
Abstract
The multifaceted activity of vitamin D in patients with inflammatory bowel disease (IBD) presents a challenge for further research in this area. Vitamin D is involved in the regulation of bone mineral metabolism, it participates in the regulation of the immune system, and it is an underlying factor in the pathogenesis of IBD. Additionally, vitamin D affects Th1 and Th2 lymphocytes, influencing the release of cytokines and inhibiting tumor necrosis factor (TNF) expression and the wnt/β-catenin pathway. As far as IBDs are concerned, they are associated with microbiota dysbiosis, abnormal inflammatory response, and micronutrient deficiency, including vitamin D hypovitaminosis. In turn, the biological activity of active vitamin D is regulated by the vitamin D receptor (VDR) which is associated with several processes related to IBD. Therefore, in terms of research on vitamin D supplementation in IBD patients, it is essential to understand the metabolic pathways and genetic determinants of vitamin D, as well as to identify the environmental factors they are subject to, not only in view of osteoporosis prevention and therapy, but primarily concerning modulating the course and supplementation of IBD pharmacotherapy.
Collapse
Affiliation(s)
- Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence: (A.S.-T.); (A.E.R.); Tel.: +48-8691-343 (A.S.-T.); +48-667-385-996 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence: (A.S.-T.); (A.E.R.); Tel.: +48-8691-343 (A.S.-T.); +48-667-385-996 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
10
|
蒋 韩, 李 珮, 柳 丽, 黄 珊, 李 俊, 吴 唯. [Identification of microRNAs targeting vitamin D receptor and their effect on parathyroid hormone secretion in secondary hyperparathyroidism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:509-517. [PMID: 35527486 PMCID: PMC9085591 DOI: 10.12122/j.issn.1673-4254.2022.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To identify the miRNAs targeting vitamin D receptor (VDR) gene and their effect on parathyroid hormone (PTH) secretion in secondary hyperparathyroidism. METHODS Primary parathyroid cells with secondary hyperparathyroidism were isolated by collagenase digestion and cultured. The miRNAs targeting VDR were screened by bioinformatics methods and full transcriptome sequencing, and dual-luciferase reporter assay was used to verify the targeting relationship between VDR and the screened miRNA. The effects of overexpression or inhibition of the candidate miRNA on VDR mRNA and protein expressions and PTH secretion were evaluated using qRT-PCR and Western blotting. The expression levels of the candidate miRNAs and VDR mRNA in clinical specimens of parathyroid tissues were verified by qRT-PCR, and the expression of VDR protein was detected by immunohistochemistry. RESULTS We successfully isolated primary parathyroid cells. Dual-luciferase reporter assay verified the targeting relationship of hsa-miR-149-5p, hsa-miR-221-5p, hsa-miR-222-3p, hsa-miR-29a-5p, hsa-miR-301a-5p, hsa-miR-873-5p, hsa-miR-93-3p with VDR, and among them, the overexpression of hsa-miR-149-5p and hsa-miR-301a-5p significantly increased PTH secretion in the parathyroid cells. In patients with secondary hyperparathyroidism, hsa-miR-149-5p was highly expressed in the parathyroid tissues (P=0.046), where the expressions of VDR mRNA (P=0.0267) and protein were both decreased. CONCLUSION The two miRNAs, hsa-miR-149-5p and hsa-miR-301a-5p, may promote the secretion of PTH in patients with secondary hyperparathyroidism by down-regulating the expression of VDR gene.
Collapse
Affiliation(s)
- 韩 蒋
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 珮婷 李
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 丽丹 柳
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 珊 黄
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 俊 李
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 唯 吴
- />中南大学湘雅三医院乳甲外科,湖南 长沙 410013Department of Breast and Thyroid Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
11
|
He LP, Song YX, Zhu T, Gu W, Liu CW. Progress in the Relationship between Vitamin D Deficiency and the Incidence of Type 1 Diabetes Mellitus in Children. J Diabetes Res 2022; 2022:5953562. [PMID: 36090587 PMCID: PMC9463035 DOI: 10.1155/2022/5953562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, due to a large number of islet β cells damaged, resulting in an absolute lack of insulin, ultimately relying on insulin therapy. Vitamin D is a fat-soluble sterol derivative that not only participates in calcium and phosphorus metabolism but also acts as an immunomodulatory role by binding to nuclear vitamin D receptors to regulate the expression of transcription factors. Increasing evidence has shown that vitamin D has immunoregulation and anti-inflammatory effects, and it may play a role in T cell regulatory responses due to downregulation in the expression of cathepsin G and inhibition of CD4+ T cell activation and protection of β cells from immune attack and is beneficial in decreasing oxidative stress in T1DM patients. Epidemiologic evidence demonstrates involvement of vitamin D deficiency in T1DM pathogenesis, with the immune system improperly targeting and destroying its own islet β cells. In addition, polymorphisms in genes critical for vitamin D metabolism may increase the risk of islet autoimmunity and T1DM. In this paper, the relationship between vitamin D deficiency and the molecular mechanism of T1DM was discussed.
Collapse
Affiliation(s)
- Lian-Ping He
- School of Medicine, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yu-Xin Song
- School of Medicine, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Ting Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| | - Wei Gu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| | - Chang-Wei Liu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| |
Collapse
|
12
|
Pivtorak V, Monastyrskiy V, Pivtorak K, Bulko M. RISK OF OCCURRENCE AND WAYS TO IMPROVE THE TREATMENT OF UROLITHIASIS IN PATIENTS WITH A SINGLE KIDNEY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2141-2145. [PMID: 36256943 DOI: 10.36740/wlek202209117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim: To summarize the state of the problem of urolithiasis in patients with a single kidney and consider current views on improving its treatment based on the analysis of world literature. PATIENTS AND METHODS Materials and methods: The study conducted a thorough analysis of modern scientific literature sources in the international scientometric database, which highlighted the development of urolithiasis in patients with a single kidney and the peculiarities of its treatment. The main ways to improve treatment are identified. A critical assessment of the achievements and shortcomings of various surgical treatments. The authors' own developments are presented in the article. CONCLUSION Conclusions: The topographic position of the kidney in the retroperitoneal space affects not only the occurrence of pathological processes in the kidney, but also the surgical strategy in the treatment of nephrolithiasis. Percutaneous nephrolithotomy is the main treatment for large (> 2 cm) or complex kidney stones. Patients with a single kidney are more prone to bleeding with PCNL treatment than patients with bilateral kidneys because they have an increased thickness of the renal parenchyma as a result of compensatory hypertrophy. RIRS is a reliable choice for patients with a single kidney who is contraindicated in PCNL.
Collapse
Affiliation(s)
| | | | | | - Mykola Bulko
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| |
Collapse
|
13
|
King HW, Wells KL, Shipony Z, Kathiria AS, Wagar LE, Lareau C, Orban N, Capasso R, Davis MM, Steinmetz LM, James LK, Greenleaf WJ. Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci Immunol 2021; 6:eabh3768. [PMID: 34623901 PMCID: PMC8859880 DOI: 10.1126/sciimmunol.abh3768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The germinal center (GC) response is critical for both effective adaptive immunity and establishing peripheral tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective immune responses to infection or contribute to autoimmune disease. To understand the gene regulatory principles underlying the GC response, we generated a single-cell transcriptomic and epigenomic atlas of the human tonsil, a widely studied and representative lymphoid tissue. We characterize diverse immune cell subsets and build a trajectory of dynamic gene expression and transcription factor activity during B cell activation, GC formation, and plasma cell differentiation. We subsequently leverage cell type–specific transcriptomic and epigenomic maps to interpret potential regulatory impact of genetic variants implicated in autoimmunity, revealing that many exhibit their greatest regulatory potential in GC-associated cellular populations. These included gene loci linked with known roles in GC biology (IL21, IL21R, IL4R, and BCL6) and transcription factors regulating B cell differentiation (POU2AF1 and HHEX). Together, these analyses provide a powerful new cell type–resolved resource for the interpretation of cellular and genetic causes underpinning autoimmune disease.
Collapse
Affiliation(s)
- Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Kristen L Wells
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Arwa S Kathiria
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Caleb Lareau
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nara Orban
- Barts Health Ear, Nose and Throat Service, The Royal London Hospital, London, UK
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan–Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
14
|
Biswas B, Goswami R. Differential gene expression analysis in 1,25(OH)2D3 treated human monocytes establishes link between AIDS progression, neurodegenerative disorders, and aging. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Kellermann L, Jensen KB, Bergenheim F, Gubatan J, Chou ND, Moss A, Nielsen OH. Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmun Rev 2020; 19:102672. [PMID: 32942038 DOI: 10.1016/j.autrev.2020.102672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have identified vitamin D (25(OH)D) deficiency to be highly prevalent among patients with inflammatory bowel disease (IBD), and low serum levels correlate with a higher disease activity and a more complicated disease course. The link to IBD pathogenesis has been subject of investigations, primarily due to the distinct immunological functions of vitamin D signaling, including anti-inflammatory and anti-fibrotic actions. Vitamin D is a pleiotropic hormone that executes its actions on cells through the vitamin D receptor (VDR). A leaky gut, i.e. an insufficient intestinal epithelial barrier, is thought to be central for the pathogenesis of IBD, and emerging data support the concept that vitamin D/VDR signaling in intestinal epithelial cells (IECs) has an important role in controlling barrier integrity. Here we review the latest evidence on how vitamin D promotes the interplay between IECs, the gut microbiome, and immune cells and thereby regulate the intestinal immune response. On the cellular level, vitamin D signaling regulates tight junctional complexes, apoptosis, and autophagy, leading to increased epithelial barrier integrity, and promotes expression of antimicrobial peptides as part of its immunomodulating functions. Further, intestinal VDR expression is inversely correlated with the severity of inflammation in patients with IBD, which might compromise the positive effects of vitamin D signaling in patients with flaring disease. Efforts to reveal the role of vitamin D in the pathophysiology of IBD will pave the road for the invention of more rational treatment strategies of this debilitating disease in the future.
Collapse
Affiliation(s)
- Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark.
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Fredrik Bergenheim
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Dept. of Medicine, Stanford University School of Medicine, Redwood City, CA, USA
| | - Naomi D Chou
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan Moss
- Boston Medical Center & Boston University, Boston, MA, USA
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
16
|
Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 2020; 29:876-884. [PMID: 32654294 DOI: 10.1111/exd.14147] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The genomic actions of the vitamin D are mediated via its biologically most potent metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) and the transcription factor vitamin D receptor (VDR). Activation of VDR by 1,25(OH)2 D3 leads to change in the expression of more 1000 genes in various human tissues. Based on (epi)genome, transcriptome and crystal structure data the molecular details of this nuclear vitamin D signalling pathway are well understood. Vitamin D is known for its role on calcium homeostasis and bone formation, but it also modulates energy metabolism, innate and adaptive immunity as well as cellular growth, differentiation and apoptosis. The observation of rapid, non-genomic effects of 1,25(OH)2 D3 at cellular membranes and in the cytosol initiated the question, whether there are alternative vitamin D-binding proteins in these cellular compartments. So far, the best candidate is the enzyme PDIA3 (protein disulphide isomerase family A member 3), which is found at various subcellular locations. Furthermore, also VDR seems to play a role in membrane-based responses to vitamin D. In this viewpoint, we will dispute whether these rapid, non-genomic pathways are a meaningful addition to the genome-wide effects of vitamin D.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Association of vitamin D receptor TaqI and ApaI genetic polymorphisms with nephrolithiasis and end stage renal disease: a meta-analysis. BMC MEDICAL GENETICS 2019; 20:193. [PMID: 31822280 PMCID: PMC6902508 DOI: 10.1186/s12881-019-0932-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/28/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The deficiency of vitamin D receptor (VDR) or its ligand, vitamin D3, is linked to the development of renal diseases. The TaqI (rs731236) and ApaI (rs7975232) polymorphisms of VDR gene are widely studied for their association with renal disease risk. However, studies have largely been ambiguous. METHODS Meta-analysis was carried out to clarify the association of TaqI (2777 cases and 3522 controls) and ApaI (2440 cases and 3279 controls) polymorphisms with nephrolithiasis (NL), diabetic nephropathy (DN) and end stage renal disease (ESRD). RESULTS The VDR TaqI C-allele under allele contrast was significantly associated with ESRD in both fixed effect and random effect models, and ApaI C-allele with ESRD only under fixed effect model. Cochrane Q-test showed no evidence of heterogeneity for TaqI polymorphism and a significant heterogeneity for Apa I polymorphism. No publication bias was observed for both the polymorphisms. CONCLUSIONS The present meta-analysis identifies TaqI and ApaI polymorphisms of VDR gene as risk factors for renal diseases.
Collapse
|
18
|
Infante M, Ricordi C, Sanchez J, Clare-Salzler MJ, Padilla N, Fuenmayor V, Chavez C, Alvarez A, Baidal D, Alejandro R, Caprio M, Fabbri A. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019; 11:E2185. [PMID: 31514368 PMCID: PMC6769474 DOI: 10.3390/nu11092185] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease leading to immune-mediated destruction of pancreatic beta cells, resulting in the need for insulin therapy. The incidence of T1D is increasing worldwide, thus prompting researchers to investigate novel immunomodulatory strategies to halt autoimmunity and modify disease progression. T1D is considered as a multifactorial disease, in which genetic predisposition and environmental factors interact to promote the triggering of autoimmune responses against beta cells. Over the last decades, it has become clear that vitamin D exerts anti-inflammatory and immunomodulatory effects, apart from its well-established role in the regulation of calcium homeostasis and bone metabolism. Importantly, the global incidence of vitamin D deficiency is also dramatically increasing and epidemiologic evidence suggests an involvement of vitamin D deficiency in T1D pathogenesis. Polymorphisms in genes critical for vitamin D metabolism have also been shown to modulate the risk of T1D. Moreover, several studies have investigated the role of vitamin D (in different doses and formulations) as a potential adjuvant immunomodulatory therapy in patients with new-onset and established T1D. This review aims to present the current knowledge on the immunomodulatory effects of vitamin D and summarize the clinical interventional studies investigating its use for prevention or treatment of T1D.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Janine Sanchez
- Pediatric Endocrinology, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, Miami, FL 33136, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA.
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Carmen Chavez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00133 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
19
|
Xu B, Ding MY, Weng Z, Li ZQ, Li F, Sun X, Chen QL, Wang YT, Wang Y, Zhou GC. Discovery of fused bicyclic derivatives of 1H-pyrrolo[1,2-c]imidazol-1-one as VDR signaling regulators. Bioorg Med Chem 2019; 27:3879-3888. [DOI: 10.1016/j.bmc.2019.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
20
|
Sicinska W, Gront D, Sicinski K. Mutation goals in the vitamin D receptor predicted by computational methods. J Steroid Biochem Mol Biol 2018; 183:210-220. [PMID: 29966696 DOI: 10.1016/j.jsbmb.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/21/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
The mechanism through which nuclear receptors respond differentially to structurally distinct agonists is a poorly understood process. We present a computational method that identifies nuclear receptor amino acids that are likely involved in biological responses triggered by ligand binding. The method involves tracing how structural changes spread from the ligand binding pocket to the sites on the receptor surface, which makes it a good tool for studying allosteric effects. We employ the method to the vitamin D receptor and verify that the identified amino acids are biologically relevant using a broad range of experimental data and a genome browser. We infer that surface vitamin D receptor residues K141, R252, I260, T280, T287 and L417 are likely involved in cell differentiation and antiproliferation, whereas P122, D149, K321, E353 and Q385 are linked to carcinogenesis.
Collapse
Affiliation(s)
- Wanda Sicinska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dominik Gront
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI 53706, United States
| |
Collapse
|
21
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|
22
|
Gisbert-Ferrándiz L, Salvador P, Ortiz-Masiá D, Macías-Ceja DC, Orden S, Esplugues JV, Calatayud S, Hinojosa J, Barrachina MD, Hernández C. A Single Nucleotide Polymorphism in the Vitamin D Receptor Gene Is Associated With Decreased Levels of the Protein and a Penetrating Pattern in Crohn's Disease. Inflamm Bowel Dis 2018; 24:1462-1470. [PMID: 29788141 DOI: 10.1093/ibd/izy094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin D signaling modulates inflammation through the vitamin D receptor (VDR). The synonymous single nucleotide polymorphism (SNP) rs731236, located in the VDR gene, has been associated with a higher risk of Crohn's disease (CD). We analyzed differences in VDR expression levels among CD patients who were homozygous for allelic variants in this SNP and their relevance for disease course. METHODS DNA was extracted from blood samples of CD patients, and SNP genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. Fresh blood from patients was used to isolate peripheral blood mononuclear cells (PBMCs) or to determine the expression of adhesion molecules by flow cytometry. We analyzed the gene expression of VDR and several cytokines in PBMCs using real-time polymerase chain reaction and the protein levels of VDR, NFκB, and IκBα by immunoblot. In addition, we collected complete clinical data for a group of 103 patients, including age at diagnosis, disease location, and disease behavior to compare patient characteristics with respect to genotype. RESULTS We found that CD patients who were homozygous for the risk allele presented lower levels of VDR protein in PBMCs, and that this was associated with an upregulation of IL1β mRNA and activation of lymphocytic adhesion molecules. These patients had a higher risk of developing a B3-penetrating phenotype and of needing to undergo surgery. CONCLUSION Our data highlight the relevance of vitamin D/VDR signaling in modulating the subjacent inflammation that leads to CD-related complications.
Collapse
Affiliation(s)
| | - Pedro Salvador
- Departamento de Farmacología and CIBERehd, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Medicina and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología and CIBERehd, Valencia, Spain.,FISABIO, Hospital Dr. Peset, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and CIBERehd, Valencia, Spain
| | - Joaquín Hinojosa
- Servicio de Gastroenterología, Hospital de Manises, Valencia, Spain
| | | | - Carlos Hernández
- Departamento de Farmacología and CIBERehd, Valencia, Spain.,FISABIO, Hospital Dr. Peset, Valencia, Spain
| |
Collapse
|
23
|
Abstract
The biological functions of 1α,25-dihydroxyvitamin D3 are regulated by nuclear receptor vitamin D receptor (VDR). The expression level of VDR is high in intestine. VDR is an essential regulator of intestinal cell proliferation, barrier function, and immunity. Vitamin D/VDR plays a protective role in inflammatory bowel diseases (IBDs), both ulcerative colitis and Crohn's disease. Emerging evidence demonstrates low VDR expression and dysfunction of vitamin D/VDR signaling in patients with IBD. Here, we summarize the progress made in vitamin D/VDR signaling in genetic regulation, immunity, and the microbiome in IBD. We cover the mechanisms of intestinal VDR in regulating inflammation through inhibiting the NF-ĸB pathway and activating autophagy. Recent studies suggest that the association of VDR single nucleotide polymorphisms with immune and intestinal pathology may be sex dependent. We emphasize the tissue specificity of VDR and its sex- and time-dependent effects. Furthermore, we discuss potential clinical application and future direction of vitamin D/VDR in preventing and treating IBD.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois,Address correspondence to: Jun Sun, PhD, Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Room 704 CSB, MC716, Chicago, IL 60612 ()
| |
Collapse
|
24
|
Lu M, Taylor BV, Körner H. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Front Immunol 2018; 9:477. [PMID: 29593729 PMCID: PMC5857605 DOI: 10.3389/fimmu.2018.00477] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin D has a plethora of functions that are important for the maintenance of general health and in particular, the functional integrity of the immune system, such as promoting an anti-inflammatory cytokine profile and reducing the Treg/Th17 ratio. Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative central nervous system (CNS) disorder of probable autoimmune origin. MS is characterized by recurring or progressive demyelination and degeneration of the CNS due in part to a misguided immune response to as yet undefined (CNS) antigens, potentially including myelin basic protein and proteolipid protein. MS has also been shown to be associated significantly with environmental factors such as the lack of vitamin D. The role of vitamin D in the pathogenesis and progression of MS is complex. Recent genetic studies have shown that various common MS-associated risk-single-nucleotide polymorphisms (SNPs) are located within or in the vicinity of genes associated with the complex metabolism of vitamin D. The functional aspects of these genetic associations may be explained either by a direct SNP-associated loss- or gain-of-function in a vitamin D-associated gene or due to a change in the regulation of gene expression in certain immune cell types. The development of new genetic tools using next-generation sequencing: e.g., chromatin immunoprecipitation sequencing (ChIP-seq) and the accompanying rapid progress of epigenomics has made it possible to recognize that the association between vitamin D and MS could be based on the extensive and characteristic genomic binding of the vitamin D receptor (VDR). Therefore, it is important to analyze comprehensively the spatiotemporal VDR binding patterns that have been identified using ChIP-seq in multiple immune cell types to reveal an integral profile of genomic VDR interaction. In summary, the aim of this review is to connect genomic effects vitamin D has on immune cells with MS and thus, to contribute to a better understanding of the influence of vitamin D on the etiology and the pathogenesis of this complex autoimmune disease.
Collapse
Affiliation(s)
- Ming Lu
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Menzies Institute for Medical Research Tasmania, Hobart, TAS, Australia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, China
| |
Collapse
|
25
|
Kraus AU, Penna-Martinez M, Meyer G, Badenhoop K. Vitamin D effects on monocytes' CCL-2, IL6 and CD14 transcription in Addison's disease and HLA susceptibility. J Steroid Biochem Mol Biol 2018; 177:53-58. [PMID: 28765037 DOI: 10.1016/j.jsbmb.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Addison's disease is a rare autoimmune disorder leading to adrenal insufficiency and life-long glucocorticoid dependency. Vitamin D receptor (VDR) polymorphisms and vitamin D deficiency predispose to Addison's disease. Aim of the current study was, to investigate potential anti-inflammatory vitamin D effects on monocytes in Addison's disease, focusing on inflammatory CCL-2 and IL6, as well on monocyte CD14 markers. Addison's disease is genetically linked to distinct HLA susceptibility alleles. Therefore we analyzed, whether HLA genotypes differed for vitamin D effects on monocyte markers. CD14+ monocytes were isolated from Addison's disease patients (AD, n=13) and healthy controls (HC, n=15) and stimulated with 1,25-dihydroxyvitamin D3 and IL1β as an inflammatory stimulant. Cells were processed for mRNA expression of CCL-2, IL6 and CD14 and DNA samples were genotyped for major histocompatibility class (MHC) class II-encoded HLA- DQA1-DQB1 haplotypes. We found a downregulation of CCL-2 after vitamin D treatment in IL1β-stimulated monocytes both from AD patients and HC (AD p<0.001; HC p<0.0001). CD14 expression however, was upregulated in both HC and AD patients after vitamin D treatment (p<0.001, respectively). HC showed higher CD14 transcription level than AD patients after vitamin D treatment (p=0.04). Compared to IL1β-induced inflammation, HC have increased CD14 levels after vitamin D treatment (p<0.001), whereas the IL1β-induced CD14 expression of AD patients' monocytes did not change after vitamin D treatment (p=0.8). AD patients carrying HLA high-risk haplotypes showed an increased CCL-2 expression after IL1β-induced inflammation compared to intermediate-risk HLA carriers (p=0.05). Also HC monocytes' CD14 transcription after IL1β and vitamin D co-stimulation differed according to HLA risk profile. We show that vitamin D can exert anti-inflammatory effects on AD patients' monocytes which may be modulated by HLA risk genotypes.
Collapse
Affiliation(s)
- A U Kraus
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Germany.
| | - M Penna-Martinez
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Germany
| | - G Meyer
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Germany
| | - K Badenhoop
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Hospital Frankfurt, Germany
| |
Collapse
|
26
|
Muñoz Garcia A, Kutmon M, Eijssen L, Hewison M, Evelo CT, Coort SL. Pathway analysis of transcriptomic data shows immunometabolic effects of vitamin D. J Mol Endocrinol 2018; 60:95-108. [PMID: 29233860 PMCID: PMC5850959 DOI: 10.1530/jme-17-0186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Unbiased genomic screening analyses have highlighted novel immunomodulatory properties of the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). However, clearer interpretation of the resulting gene expression data is limited by cell model specificity. The aim of the current study was to provide a broader perspective on common gene regulatory pathways associated with innate immune responses to 1,25(OH)2D, through systematic re-interrogation of existing gene expression databases from multiple related monocyte models (the THP-1 monocytic cell line (THP-1), monocyte-derived dendritic cells (DCs) and monocytes). Vitamin D receptor (VDR) expression is common to multiple immune cell types, and thus, pathway analysis of gene expression using data from multiple related models provides an inclusive perspective on the immunomodulatory impact of vitamin D. A bioinformatic workflow incorporating pathway analysis using PathVisio and WikiPathways was utilized to compare each set of gene expression data based on pathway-level context. Using this strategy, pathways related to the TCA cycle, oxidative phosphorylation and ATP synthesis and metabolism were shown to be significantly regulated by 1,25(OH)2D in each of the repository models (Z-scores 3.52-8.22). Common regulation by 1,25(OH)2D was also observed for pathways associated with apoptosis and the regulation of apoptosis (Z-scores 2.49-3.81). In contrast to the primary culture DC and monocyte models, the THP-1 myelomonocytic cell line showed strong regulation of pathways associated with cell proliferation and DNA replication (Z-scores 6.1-12.6). In short, data presented here support a fundamental role for active 1,25(OH)2D as a pivotal regulator of immunometabolism.
Collapse
Affiliation(s)
- Amadeo Muñoz Garcia
- Department of Bioinformatics - BiGCaTNUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, The Netherlands
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaTNUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for System Biology (MaCSBio)Maastricht University, Maastricht, The Netherlands
| | - Lars Eijssen
- Department of Bioinformatics - BiGCaTNUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Martin Hewison
- Institute of Metabolism and Systems ResearchThe University of Birmingham, Birmingham, UK
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaTNUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for System Biology (MaCSBio)Maastricht University, Maastricht, The Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaTNUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
27
|
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 2017; 19:160-174. [DOI: 10.1038/nrg.2017.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Abstract
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH)2D3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA.
| | - Donald L Trump
- Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA
| |
Collapse
|
29
|
High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis. Int J Mol Sci 2017; 18:ijms18102073. [PMID: 28961166 PMCID: PMC5666755 DOI: 10.3390/ijms18102073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Both vitamin D and collagen have roles in osteocartilaginous homeostasis. We evaluated the association between the circulating 25-hydroxyvitamin D (25(OH)D) type I and II collagen degradation products (CTx-I, and CTx-II), and four vitamin D receptor gene (VDR) polymorphisms, in Italian males affected by low back pain (LBP) due to herniation/discopathy and/or vertebral osteochondrosis. FokI, BsmI, ApaI, and TaqI VDR-polymorphisms were detected through PCR-restriction fragment length polymorphism (RFLP), and circulating 25(OH)D, CTx-I and CTx-II were measured by immunoassays in 79 patients (of which 26 had osteochondrosis) and 79 age-, sex- and body mass index (BMI)-matched healthy controls. Among all 158 subjects, carriers of FF and Ff genotypes showed lower 25(OH)D than ff, which suggested a higher depletion of vitamin D in F allele carriers. Higher CTx-I concentrations were observed in TT versus Tt among controls, and Tt versus tt among LBP cases, which suggested a higher bone-cartilaginous catabolism in subjects bearing the T allele. Higher CTx-II concentrations were observed in patients with osteochondrosis bearing FF, bb, TT, or Aa genotypes in comparison with hernia/discopathy patients and healthy controls. Vertebral osteochondrosis shows peculiar genotypic and biochemical features related to vitamin D and the osteocartilaginous metabolism. Vitamin D has roles in the pathophysiology of osteochondrosis.
Collapse
|
30
|
Vanherwegen AS, Gysemans C, Mathieu C. Vitamin D endocrinology on the cross-road between immunity and metabolism. Mol Cell Endocrinol 2017; 453:52-67. [PMID: 28461074 DOI: 10.1016/j.mce.2017.04.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
The effects of vitamin D on the immune function have been recognized for more than a quarter of a century. However, our understanding of the multifactorial nature of the effects of vitamin D at the cellular, molecular and metabolic level in different immune cells of the innate and adaptive immune system has dramatically progressed during the last decades. In this review, we summarize the main metabolic pathways preferentially used in different subsets of macrophages, dendritic cells, T and B cells as well as the immunomodulatory effects of vitamin D on these cells. We will highlight the metabolic reprogramming happening in vitamin D-conditioned tolerogenic dendritic cells. A better knowledge of the dynamics of metabolic states in immune subsets and their possible roles in inflammation and autoimmunity may advance the development of novel immunotherapies. Likewise, the implications of effects of vitamin D on immunometabolism may progress our insights in the nature of immune responses in health and disease.
Collapse
Affiliation(s)
- An-Sofie Vanherwegen
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Campbell MJ. Bioinformatic approaches to interrogating vitamin D receptor signaling. Mol Cell Endocrinol 2017; 453:3-13. [PMID: 28288905 DOI: 10.1016/j.mce.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Bioinformatics applies unbiased approaches to develop statistically-robust insight into health and disease. At the global, or "20,000 foot" view bioinformatic analyses of vitamin D receptor (NR1I1/VDR) signaling can measure where the VDR gene or protein exerts a genome-wide significant impact on biology; VDR is significantly implicated in bone biology and immune systems, but not in cancer. With a more VDR-centric, or "2000 foot" view, bioinformatic approaches can interrogate events downstream of VDR activity. Integrative approaches can combine VDR ChIP-Seq in cell systems where significant volumes of publically available data are available. For example, VDR ChIP-Seq studies can be combined with genome-wide association studies to reveal significant associations to immune phenotypes. Similarly, VDR ChIP-Seq can be combined with data from Cancer Genome Atlas (TCGA) to infer the impact of VDR target genes in cancer progression. Therefore, bioinformatic approaches can reveal what aspects of VDR downstream networks are significantly related to disease or phenotype.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 536 Parks Hall, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Abstract
Triple negative breast cancer (TNBC) has been associated with the lack of three hormone receptors; estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). However, a host of other steroid hormone receptors such as vitamin D receptor (VDR) is present in TNBC, and the role of these hormone receptors in breast tumorigenesis is unclear. The levels of microRNAs (miRNAs) are also expressed differently than in normal mammary epithelial cells. miRNAs are regulatory RNAs involved in various cellular functions, mainly gene silencing. Here, we reviewed the literature surrounding miRNAs in breast cancer, and performed in silico analysis to determine whether there was a correlation between levels of VDR in relation to miRNAs important in breast cancer development and tumorigenesis. We identified three miRNAs of interest, specifically, miR-23, miR-124, and miR-125. Through this research we determined the possibility that these miRNAs play an important role in controlling VDR activity and by virtue the development of breast cancer.
Collapse
Affiliation(s)
- Tatyana Singh
- a State University of New York - University at Albany , Albany , NY , USA
| | - Brian D Adams
- a State University of New York - University at Albany , Albany , NY , USA.,b Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA.,c The RNA Institute , State University of New York - University at Albany , Albany , NY , USA
| |
Collapse
|
33
|
Penna-Martinez M, Badenhoop K. Inherited Variation in Vitamin D Genes and Type 1 Diabetes Predisposition. Genes (Basel) 2017; 8:genes8040125. [PMID: 28425954 PMCID: PMC5406872 DOI: 10.3390/genes8040125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
The etiology and pathophysiology of type 1 diabetes remain largely elusive with no established concepts for a causal therapy. Efforts to clarify genetic susceptibility and screening for environmental factors have identified the vitamin D system as a contributory pathway that is potentially correctable. This review aims at compiling all genetic studies addressing the vitamin D system in type 1 diabetes. Herein, association studies with case control cohorts are presented as well as family investigations with transmission tests, meta-analyses and intervention trials. Additionally, rare examples of inborn errors of vitamin D metabolism manifesting with type 1 diabetes and their immune status are discussed. We find a majority of association studies confirming a predisposing role for vitamin D receptor (VDR) polymorphisms and those of the vitamin D metabolism, particularly the CYP27B1 gene encoding the main enzyme for vitamin D activation. Associations, however, are tenuous in relation to the ethnic background of the studied populations. Intervention trials identify the specific requirements of adequate vitamin D doses to achieve vitamin D sufficiency. Preliminary evidence suggests that doses may need to be individualized in order to achieve target effects due to pharmacogenomic variation.
Collapse
Affiliation(s)
- Marissa Penna-Martinez
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Klaus Badenhoop
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
La Marra F, Stinco G, Buligan C, Chiriacò G, Serraino D, Di Loreto C, Cauci S. Immunohistochemical evaluation of vitamin D receptor (VDR) expression in cutaneous melanoma tissues and four VDR gene polymorphisms. Cancer Biol Med 2017; 14:162-175. [PMID: 28607807 PMCID: PMC5444928 DOI: 10.20892/j.issn.2095-3941.2017.0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective : Vitamin D receptor (VDR) mediates vitamin D activity. We examined whether VDR expression in excised melanoma tissues is associated with VDR gene (VDR) polymorphisms.
Methods : We evaluated VDR protein expression (by monoclonal antibody immunostaining), melanoma characteristics, and carriage of VDR-FokI-rs2228570 (C>T),VDR-BsmI-rs1544410 (G>A),VDR-ApaI-rs7975232 (T>G), andVDR-TaqI-rs731236 (T>C) polymorphisms (by restriction fragment length polymorphism). Absence or presence of restriction site was denoted by a capital or lower letter, respectively: " F” and " f” for FokI, " B” and " b” for BsmI, " A” and " a” for ApaI, and " T” and " t” for TaqI endonuclease. Seventy-four Italian cutaneous primary melanomas (52.1±12.7 years old) were studied; 51.4% were stage I, 21.6% stage II, 13.5% stage III, and 13.5% stage IV melanomas. VDR expression was categorized as follows: 100% positivevs. <100%; over the median 20% (high VDR expression) vs. ≤20% (low VDR expression); absence vs. presence of VDR-expressing cells.
Results : Stage I melanomas, Breslow thickness of <1.00 mm, level II Clark invasion, Aa heterozygous genotype, and AaTT combined genotype were more frequent in melanomas with high vs. low VDR expression. Combined genotypes BbAA, bbAa, AATt, BbAATt, and bbAaTT were more frequent in 100% vs. <100% VDR-expressing cells. Combined genotype AATT was more frequent in melanomas lacking VDR expression (odds ratio=14.5; P=0.025). VDR expression was not associated with metastasis, ulceration, mitosis >1, regression, tumor-infiltrating lymphocytes, tumoral infiltration of vascular tissues, additional skin and non-skin cancers, and melanoma familiarity.
Conclusions : We highlighted that VDR polymorphisms can affect VDR expression in excised melanoma cells. Low VDR expression in AATT carriers is a new finding that merits further study. VDR expression possibly poses implications for vitamin D supplementation against melanoma. VDR expression and VDR genotype may become precise medicinal tools for melanoma in the future.
Collapse
Affiliation(s)
- Francesco La Marra
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Giuseppe Stinco
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic, Udine University-Hospital, University of Udine, Udine 33100, Italy
| | - Cinzia Buligan
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic, Udine University-Hospital, University of Udine, Udine 33100, Italy
| | - Giovanni Chiriacò
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Diego Serraino
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Carla Di Loreto
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| | - Sabina Cauci
- Department of Medical Area, School of Medicine, University of Udine, Udine 33100, Italy
| |
Collapse
|
35
|
Cauci S, Maione V, Buligan C, Linussio M, Serraino D, Stinco G. BsmI (rs1544410) and FokI (rs2228570) vitamin D receptor polymorphisms, smoking, and body mass index as risk factors of cutaneous malignant melanoma in northeast Italy. Cancer Biol Med 2017; 14:302-318. [PMID: 28884047 PMCID: PMC5570607 DOI: 10.20892/j.issn.2095-3941.2017.0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective : To investigate whether vitamin D receptor gene (VDR) BsmI-rs1544410 and FokI-rs2228570 polymorphisms, smoking duration, and body mass index (BMI) are risk factors for cutaneous melanoma, especially metastatic melanoma.
Methods : We studied 120 cutaneous melanoma cases [68 stage I and II non-metastatic melanoma (NMetM) patients, plus 52 Stage III and IV metastatic melanoma (MetM) patients], and 120 matching healthy controls from northeast Italy. VDR polymorphisms were measured by restriction fragment length polymorphism analysis. Absence or presence of BsmI and FokI restriction sites was denoted by " B” and " F” or by " b” and " f,” respectively.
Results : VDR-BsmI bb genotype was more frequent among MetM (32.7%) than among NMetM cases (13.2%), with odds ratio (OR)=3.18. Comparison of all melanoma patients vs healthy controls showed that the following biomarkers were at risk: ≥20 years of smoking (OR=2.43); ≥20 years of smoking combined with bb (OR=4.78), Bb+bb (OR=2.30), Ff (OR=3.04), and Ff+ff (OR=3.08); obesity (BMI>30 kg/m2) alone (OR=3.54); and obesity combined with Bb+bb (OR=3.52), Ff (OR=4.78), and Ff+ff (OR=6.56). Comparison of MetM vs NMetM patients revealed that the following biomarkers were at risk: ≥20 years of smoking (OR=2.39), ≥20 years of smoking combined with bb (OR=5.13), Bb+bb (OR=3.07), and Ff+ff (OR=2.66); and obesity combined with Bb+bb (OR=5.27), Ff (OR=6.28), and Ff+ff (OR=9.18). Triple combination of ≥20 years of smoking, obesity, and Bb+bb yielded OR=9.65 for melanoma patients vs healthy controls and OR=12.2 for MetM vs. NMetM patients.
Conclusions : Risk factors for cutaneous MetM include two VDR polymorphisms combined with smoking duration and obesity. Results suggest gene-environment implications in melanoma susceptibility and severity. Future studies in larger cohorts and in subjects with different genetic background are warranted to extend our findings.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Medicine, University of Udine, Udine 33100, Italy
| | - Vincenzo Maione
- Department of Medicine, University of Udine, Udine 33100, Italy
| | - Cinzia Buligan
- Department of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic University Hospital of Brescia, Brescia 25123, Italy
| | | | - Diego Serraino
- Department of Medicine, University of Udine, Udine 33100, Italy
| | - Giuseppe Stinco
- Department of Medicine, University of Udine, Udine 33100, Italy.,Dermatology Clinic University Hospital of Brescia, Brescia 25123, Italy
| |
Collapse
|