1
|
Zhang J, Chen Q, Yang F, Wang Y, Xiao J, Ding H, Ma Q, Deng Q, Jiang Y. Utilization of the Dasypyrum genus for genetic improvement of wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:82. [PMID: 39687346 PMCID: PMC11646256 DOI: 10.1007/s11032-024-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024]
Abstract
The Dasypyrum genus species are found predominantly in the Mediterranean region. They possess an array of agronomically essential traits, such as resistance to biotic and abiotic stresses, high protein content, and better grain quality, and are thus a valuable genetic resources for wheat improvement. In recent decades, there has been significant progress in the development of wheat-Dasypyrum genetic stocks, leading to the successful transfer of beneficial genes from Dasypyrum into cultivated wheat. Notably, the chromosome-scale genome assembly of Dasypyrum villosum was preliminarily completed in 2023, laying the groundwork for functional genomics research and wheat-Dasypyrum introgression breeding. This article aims to provide a concise overview of the relationships between different species belonging to the Dasypyrum genus, the development of wheat-Dasypyrum genetic stocks, the desirable genes derived from Dasypyrum, and the molecular and cytogenetic markers that could be used to identify Dasypyrum chromatins. These insights can assist wheat breeders in utilizing the Dasypyrum genus in future wheat breeding endeavors.
Collapse
Affiliation(s)
- Jie Zhang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qian Chen
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Fan Yang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Ying Wang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Jun Xiao
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Hongxia Ding
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qiang Ma
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Qian Deng
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
| | - Yun Jiang
- Sichuan Academy of Agricultural Sciences CHINA, Institute of Biotechnology and Nuclear Technology Research, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China
| |
Collapse
|
2
|
Yu Z, Li G, Zheng Z, Wang H, Yang Z. Characterization of New Wheat- Thinopyrum intermedium Derivative Lines with Superior Genes for Stripe Rust and Powdery Mildew Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2333. [PMID: 39204770 PMCID: PMC11359552 DOI: 10.3390/plants13162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The wild species Thinopyrum intermedium (genome JJJSJSStSt) serves as a valuable germplasm resource providing novel diseases resistance and agronomically important genes for wheat improvement. Two wheat-Th. intermedium partial amphiploids, TAI7045 (2n = 56) and 78784 (2n = 56), exhibit high resistance to stripe rust and powdery mildew, and their chromosome constitutions have been characterized. With the aim to transfer novel resistance genes from Th. intermedium, the crosses of common wheat line MY11 with TAI7045 and 78784 were produced, and their individual F2-F5 progenies were characterized using sequential non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular markers. We identified a set of wheat-Th. intermedium addition lines, involving the chromosomes 1St-JS, 2St, 2St-JS, 3St, 4J, 4St, 5St, 5J.St, 6JS.J, and 7JS. Above all, the stable wheat-Th. intermedium small segmental translocation lines with chromosomes 4DS.4DL-4StL-4DL-4JL and 4DS.4DL-4StL-4DL were selected. Combining data from specific marker amplification and resistance evaluation, we mapped the gene(s) for resistance to powdery mildew and stripe rust in the 233.56-329.88 Mb region of the long arm of the 4St chromosome from the reference Th. intermedium genome. The new wheat-Th. intermedium introgressions will be used as novel germplasm for breeding purposes.
Collapse
Affiliation(s)
- Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Zhiqiang Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Hongjin Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277100, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| |
Collapse
|
3
|
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. MOLECULAR PLANT 2023; 16:432-451. [PMID: 36587241 DOI: 10.1016/j.molp.2022.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Tong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
4
|
Cápal P, Said M, Molnár I, Doležel J. Flow Cytometric Analysis and Sorting of Plant Chromosomes. Methods Mol Biol 2023; 2672:177-200. [PMID: 37335476 DOI: 10.1007/978-1-0716-3226-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.
Collapse
Affiliation(s)
- Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Molecular Cytogenetic Identification of the Wheat–Dasypyrum villosum T3DL·3V#3S Translocation Line with Resistance against Stripe Rust. PLANTS 2022; 11:plants11101329. [PMID: 35631754 PMCID: PMC9145344 DOI: 10.3390/plants11101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
The annual species Dasypyrum villosum possesses several potentially valuable genes for the improvement of common wheat. Previously, we identified a new stripe rust-resistant line, the Chinese Spring (CS)–D. villosum 3V#3 (3D) substitution line (named CD-3), and mapped its potential rust resistance gene (designated as YrCD-3) on the 3V#3 chromosome originating from D. villosum. The objective of the present study was to further narrow down the YrCD-3 locus to a physical region and develop wheat-3V#3 introgression lines with strong stripe rust resistance. By treating CD-3 seeds with 60Co γ-irradiation, two CS-3V#3 translocation lines, T3V#3S.3DL and T3DS.3V#3L (termed 22-12 and 24-20, respectively), were identified from the M4 generation through a combination of non-denaturing fluorescence in situ hybridization (ND-FISH) and functional molecular markers. Stripe rust resistance tests showed that the line 22-12 exhibited strong stripe rust resistance similarly to CD-3, whereas 24-20 was susceptible to stripe rust similarly to CS, indicating that YrCD-3 is located on the short arm of 3V#3. The line 22-12 can potentially be used for further wheat improvement. Additionally, to trace 3V#3 in the wheat genetic background, we produced 30 3V#3-specific sequence tag (EST) markers, among which, 11 markers could identify 3V#3S. These markers could be valuable in fine-mapping YrCD-3.
Collapse
|
6
|
Yang G, Zheng Q, Hu P, Li H, Luo Q, Li B, Li Z. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat- Thinopyrum intermedium translocation line WTT11. ABIOTECH 2021; 2:343-356. [PMID: 36304423 PMCID: PMC9590478 DOI: 10.1007/s42994-021-00060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Xiaoyan 78829, a partial amphidiploid developed by crossing common wheat with Thinopyrum intermedium, is immune to wheat stripe rust. To transfer the resistance gene of this excellent germplasm resource to wheat, the translocation line WTT11 was produced by pollen irradiation and assessed for immunity to stripe rust races CYR32, CYR33 and CYR34. A novel stripe rust-resistance locus derived from Th. intermedium was confirmed by linkage and diagnostic marker analyses. Molecular cytogenetic analyses revealed that WTT11 carries a TTh·2DL translocation. The breakpoint of 1B was located at 95.5 MB, and the alien segments were found to be homoeologous to wheat-group chromosomes 6 and 7 according to a wheat660K single-nucleotide polymorphism (SNP) array analysis. Ten previously developed PCR-based markers were confirmed to rapidly trace the alien segments of WTT11, and 20 kompetitive allele-specific PCR (KASP) markers were developed to enable genotyping of Th. intermedium and common wheat. Evaluation of agronomic traits in two consecutive crop seasons uncovered some favorable agronomic traits in WTT11, such as lower plant height and longer main panicles, that may be applicable to wheat improvement. As a novel genetic resource, the new resistance locus may be useful for wheat disease-resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00060-3.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
Xing L, Yuan L, Lv Z, Wang Q, Yin C, Huang Z, Liu J, Cao S, Zhang R, Chen P, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao A. Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat-Haynaldia villosa translocated chromosome 6VS.6AL. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1567-1578. [PMID: 33606347 PMCID: PMC8384597 DOI: 10.1111/pbi.13570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/06/2021] [Indexed: 05/07/2023]
Abstract
Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.
Collapse
Affiliation(s)
- Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zengshuai Lv
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Qiang Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Chunhong Yin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Jiaqian Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Shuqi Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Ruiqi Zhang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Peidu Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| |
Collapse
|
8
|
Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D. Chromosome analysis and sorting. Cytometry A 2021; 99:328-342. [PMID: 33615737 PMCID: PMC8048479 DOI: 10.1002/cyto.a.24324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Sergio Lucretti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Debora Giorgi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| |
Collapse
|
9
|
Yu Z, Wang H, Jiang W, Jiang C, Yuan W, Li G, Yang Z. Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome 2021; 64:789-800. [PMID: 33513072 DOI: 10.1139/gen-2020-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The perennial species Dasypyrum breviaristatum (genome Vb) contains many potentially valuable genes for the improvement of common wheat. Construction of a detailed karyotype of D. breviaristatum chromosomes will be useful for the detection of Dasypyrum chromatin in wheat background. We established the standard karyotype of 1Vb-7Vb chromosomes through nondenaturing fluorescence in situ hybridization (ND-FISH) technique using 28 oligonucleotide probes from the wheat - D. breviaristatum partial amphiploid TDH-2 (AABBVbVb) and newly identified wheat - D. breviaristatum disomic translocation and addition lines D2138 (6VbS.2VbL), D2547 (4Vb), and D2532 (3VbS.6VbL) by comparative molecular marker analysis. The ND-FISH with multiple oligo probes was conducted on the durum wheat - D. villosum amphiploid TDV-1 and large karyotype differences between D. breviaristatum and D. villosum was revealed. These ND-FISH probes will be valuable for screening the wheat - Dasypyrum derivative lines for chromosome identification, and the newly developed wheat - D. breviaristatum addition lines may broaden the gene pool of wheat breeding. The differences between D. villosum and D. breviaristatum chromosomes revealed by ND-FISH will help us understand evolutionary divergence of repetitive sequences within the genus Dasypyrum.
Collapse
Affiliation(s)
- Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
He H, Ji J, Li H, Tong J, Feng Y, Wang X, Han R, Bie T, Liu C, Zhu S. Genetic Diversity and Evolutionary Analyses Reveal the Powdery Mildew Resistance Gene Pm21 Undergoing Diversifying Selection. Front Genet 2020; 11:489. [PMID: 32477413 PMCID: PMC7241504 DOI: 10.3389/fgene.2020.00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a devastating disease that threatens wheat production and yield worldwide. The powdery mildew resistance gene Pm21, originating from wheat wild relative Dasypyrum villosum, encodes a coiled-coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) protein and confers broad-spectrum resistance to wheat powdery mildew. In the present study, we isolated 73 Pm21 alleles from different powdery mildew-resistant D. villosum accessions, among which, 38 alleles were non-redundant. Sequence analysis identified seven minor insertion-deletion (InDel) polymorphisms and 400 single nucleotide polymorphisms (SNPs) among the 38 non-redundant Pm21 alleles. The nucleotide diversity of the LRR domain was significantly higher than those of the CC and NB-ARC domains. Further evolutionary analysis indicated that the solvent-exposed LRR residues of Pm21 alleles had undergone diversifying selection (dN/dS = 3.19734). In addition, eight LRR motifs and four amino acid sites in the LRR domain were also experienced positive selection, indicating that these motifs and sites play critical roles in resistance specificity. The phylogenetic tree showed that 38 Pm21 alleles were divided into seven classes. Classes A (including original Pm21), B and C were the major classes, including 26 alleles (68.4%). We also identified three non-functional Pm21 alleles from four susceptible homozygous D. villosum lines (DvSus-1 to DvSus-4) and two susceptible wheat-D. villosum chromosome addition lines (DA6V#1 and DA6V#3). The genetic variations of non-functional Pm21 alleles involved point mutation, deletion and insertion, respectively. The results also showed that the non-functional Pm21 alleles in the two chromosome addition lines both came from the susceptible donors of D. villosum. This study gives a new insight into the evolutionary characteristics of Pm21 alleles and discusses how to sustainably utilize Pm21 in wheat production. This study also reveals the sequence variants and origins of non-functional Pm21 alleles in D. villosum populations.
Collapse
Affiliation(s)
- Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Ji
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Tong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongqiang Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaolu Wang
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Tongde Bie
- Yangzhou Academy of Agricultural Sciences, Yangzhou, China
| | - Cheng Liu
- Crop Research Institution, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shanying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,School of Environment, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Wan W, Xiao J, Li M, Tang X, Wen M, Cheruiyot AK, Li Y, Wang H, Wang X. Fine mapping of wheat powdery mildew resistance gene Pm6 using 2B/2G homoeologous recombinants induced by the ph1b mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1265-1275. [PMID: 31974668 DOI: 10.1007/s00122-020-03546-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 05/07/2023]
Abstract
Using the ph1b mutant, the recombination frequency between the homoeologous region of 2B and 2G was significantly increased. By this, we narrowed Pm6 to a 0.9 Mb physical region. The powdery mildew (Pm) resistance gene Pm6 from Triticum timopheevii (2n = 48, AAGG) was mapped to the long arm of chromosome 2G and introduced into common wheat in the form of 2B-2G introgressions. The introgression line IGV1-465 has the shortest 2G segment, which is estimated 37 Mb in size when referring to 2BL genome reference of Chinese Spring (CS). The further fine mapping of Pm6 was impeded by the inhibition of allogeneic chromosome recombination between 2B and 2G in the Pm6 region. In the present study, to overcome 2B/2G recombination suppression, a ph1b-based strategy was employed to produce introgressions with reduced 2G fragments for the fine mapping of Pm6. IGV1-465 was crossed and backcrossed to the CSph1b mutant to produce plants with increased 2B/2G chromosome pairing frequency at the Pm6 region. A total of 182 allogeneic recombinants were obtained through two-round screening, i.e., first round of screening of 820 BC1F2:3 progenies using the flanking markers CIT02g-14/CIT02g-19 and second round of screening of 642 BC1F2:4 progenies using the flanking markers CIT02g-13/CIT02g-18, respectively. Through marker analysis using 30 chromosome 2G-specific markers located in the Pm6 region, the identified recombinants were divided into 14 haplotypes. Pm resistance evaluation of these haplotypes enabled us to narrow Pm6 to a 0.9 Mb physical region of 2BL, flanked by markers CIT02g-20 and CIT02g-18. Six wheat varieties containing Pm6 were identified from a natural population, and they showed increased Pm resistance. This implied Pm6 is still effective, especially when used in combination with other Pm resistance genes.
Collapse
Affiliation(s)
- Wentao Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Xiong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Mingxing Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
- Zhenjiang Institute of Agricultural Sciences, Jurong, 212400, Jiangsu, China
| | - Antony Kibet Cheruiyot
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
12
|
Han G, Liu S, Jin Y, Jia M, Ma P, Liu H, Wang J, An D. Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.). BMC Genomics 2020; 21:206. [PMID: 32131733 PMCID: PMC7057559 DOI: 10.1186/s12864-020-6624-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 02/01/2023] Open
Abstract
Background Rye (Secale cereale L., 2n = 2x = 14, RR), a relative of common wheat, is a large gene resource pool for wheat improvement. Accurate and convenient identification of the rye chromatin in wheat background will facilitate the transfer and utilization of elite genes derived from rye in wheat breeding. Results In the present study, five rye cultivars including Imperial, German White, Jingzhouheimai, Baili and Guyuan were sequenced by specific-locus amplified fragment sequencing (SLAF-seq) to develop large-scale rye-specific markers. Based on SLAF-seq and bioinformatics analyses, a total of 404 universal PCR-based and a whole set of Kompetitive allele-specific PCR (KASP) markers specific for the 14 individual rye chromosome arms were developed and validated. Additionally, two KASP markers specific for 1RS and 2RL were successfully applied in the detection of 1RS translocations in a natural population and 2RL chromosome arms in wheat-rye derived progenies that conferred adult resistance to powdery mildew. Conclusion The 404 PCR-based markers and 14 KASP markers specific for the 14 individual rye chromosome arms developed in this study can enrich the marker densities for gene mapping and accelerate the utilization of rye-derived genes in wheat improvement. Especially, the KASP markers achieved high-throughput and accurate detection of rye chromatin in wheat background, thus can be efficiently used in marker-assisted selection (MAS). Besides, the strategy of rye-specific PCR-based markers converting into KASP markers was high-efficient and low-cost, which will facilitate the tracing of alien genes, and can also be referred for other wheat relatives.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Dai K, Zhao R, Shi M, Xiao J, Yu Z, Jia Q, Wang Z, Yuan C, Sun H, Cao A, Zhang R, Chen P, Li Y, Wang H, Wang X. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:217-226. [PMID: 31587088 DOI: 10.1007/s00122-019-03452-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 05/19/2023]
Abstract
A cytological map of Haynaldia villosa chromosome arm 4VS was constructed to facilitate the identification and utilization of beneficial genes on 4VS. Induction of wheat-alien chromosomal structure aberrations not only provides new germplasm for wheat improvement, but also allows assignment of favorable genes to define physical regions. Especially, the translocation or introgression lines carrying alien chromosomal fragments with different sizes are useful for breeding and alien gene mapping. Chromosome arm 4VS of Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum (L.) P. Candargy) confers resistances to eyespot and wheat yellow mosaic virus (WYMV). In this research, we used both irradiation and the pairing homoeologous gene (Ph) mutant to induce chromosomal aberrations or translocations. By using the two approaches, a structural aberration library of chromosome arm 4VS was constructed. In this library, there are 57 homozygous structural aberrations, in which, 39 were induced by the Triticum aestivum cv. Chinese Spring (CS) ph1b mutant (CS ph1b) and 18 were induced by irradiation. The aberrations included four types, i.e., terminal translocation, interstitial translocation, deletion and complex structural aberration. The 4VS cytological map was constructed by amplification in the developed homozygous aberrations using 199 4VS-specific markers, which could be allocated into 39 bins on 4VS. These bins were further assigned to their corresponding physical regions of chromosome arm 4DS based on BLASTn search of the marker sequences against the reference sequence of Aegilops tauschii Cosson. The developed genetic stocks and cytological map provide genetic stocks for wheat breeding as well as alien gene tagging.
Collapse
Affiliation(s)
- Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Renhui Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Miaomiao Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Qi Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Aizhong Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Ruiqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Peidu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Yingbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
14
|
Ma X, Xu Z, Wang J, Chen H, Ye X, Lin Z. Pairing and Exchanging between Daypyrum villosum Chromosomes 6V#2 and 6V#4 in the Hybrids of Two Different Wheat Alien Substitution Lines. Int J Mol Sci 2019; 20:ijms20236063. [PMID: 31805728 PMCID: PMC6929145 DOI: 10.3390/ijms20236063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Normal pairing and exchanging is an important basis to evaluate the genetic relationship between homologous chromosomes in a wheat background. The pairing behavior between 6V#2 and 6V#4, two chromosomes from different Dasypyrum villosum accessions, is still not clear. In this study, two wheat alien substitution lines, 6V#2 (6A) and 6V#4 (6D), were crossed to obtain the F1 hybrids and F2 segregating populations, and the testcross populations were obtained by using the F1 as a parent crossed with wheat variety Wan7107. The chromosomal behavior at meiosis in pollen mother cells (PMCs) of the F1 hybrids was observed using a genomic in situ hybridization (GISH) technique. Exchange events of two alien chromosomes were investigated in the F2 populations using nine polymerase chain reaction (PCR) markers located on the 6V short arm. The results showed that the two alien chromosomes could pair with each other to form ring- or rod-shaped bivalent chromosomes in 79.76% of the total PMCs, and most were pulled to two poles evenly at anaphase I. Investigation of the F2 populations showed that the segregation ratios of seven markers were consistent with the theoretical values 3:1 or 1:2:1, and recombinants among markers were detected. A genetic linkage map of nine PCR markers for 6VS was accordingly constructed based on the exchange frequencies and compared with the physical maps of wheat and barley based on homologous sequences of the markers, which showed that conservation of sequence order compared to 6V was 6H and 6B > 6A > 6D. In the testcross populations with 482 plants, seven showed susceptibility to powdery mildew (PM) and lacked amplification of alien chromosomal bands. Six other plants had amplification of specific bands of both the alien chromosomes at multiple sites, which suggested that the alien chromosomes had abnormal separation behavior in about 1.5% of the PMCs in F1, which resulted in some gametes containing two alien chromosomes. In addition, three new types of chromosome substitution were developed. This study lays a foundation for alien allelism tests and further assessment of the genetic relationship among 6V#2, 6V#4, and their wheat homoeologous chromosomes.
Collapse
Affiliation(s)
- Xiaolan Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
| | - Zhiying Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
| | - Haiqiang Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (Z.X.); (J.W.); (H.C.); (X.Y.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
15
|
Characterization of Chromosomal Rearrangement in New Wheat—Thinopyrum intermedium Addition Lines Carrying Thinopyrum—Specific Grain Hardness Genes. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9010018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The wild species, Thinopyrum intermedium. (Genome StStJSJSJJ), serves as a valuable germplasm resource providing novel genes for wheat improvement. In the current study, non-denaturing fluorescence in situ hybridization (ND-FISH) with multiple probes and comparative molecular markers were applied to characterize two wheat-Th. intermedium chromosome additions. Sequential ND-FISH with new labeled Th. intermedium specific oligo-probes were used to precisely determine the chromosomal constitution of Th. intermedium, wheat—Th. intermedium partial amphiploids and addition lines Hy36 and Hy37. The ND-FISH results showed that the added JS-St translocated chromosomes in Hy36 had minor Oligo-5S ribosomal DNA (rDNA) signals at the short arm, while a pair of J-St chromosomes in Hy37 had major Oligo-pTa71 and minor Oligo-5S rDNA signals. The 90K SNP array and PCR-based molecular markers that mapped on wheat linkage group 5 and 3 facilitated the identification of Thinopyrum chromosome introgressions in the addition lines, and confirmed that added chromosomes in Hy36 and Hy37 were 5JSS.3StS and 5JS.3StS, respectively. Complete coding sequences at the paralogous puroindoline-a (Pina) loci from Th. intermedium were cloned and localized on the short arm of chromosome 5JS of Hy36. Line Hy36 showed a reduction in the hardness index, which suggested that Th. intermedium-specific Pina gene sequences may be associated with the softness trait in wheat background. The molecular cytogenetic identification of novel wheat—Th. intermedium derivatives indicated that the frequent chromosome rearrangement occurred in the progenies of wheat-Thinopyrum hybridization. The new wheat-Thinopyrum derived lines may increase the genetic diversity for wheat breeding.
Collapse
|
16
|
Xiao J, Dai K, Fu L, Vrána J, Kubaláková M, Wan W, Sun H, Zhao J, Yu C, Wu Y, Abrouk M, Wang H, Doležel J, Wang X. Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order. BMC Genomics 2017; 18:791. [PMID: 29037165 PMCID: PMC5644170 DOI: 10.1186/s12864-017-4211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
Collapse
Affiliation(s)
- Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Lian Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Wentao Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jing Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Chunyan Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| |
Collapse
|