1
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr JL, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. eLife 2025; 13:RP103064. [PMID: 40207620 PMCID: PMC11984954 DOI: 10.7554/elife.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N Gray
- Department of Microbiology, University of WashingtonSeattleUnited States
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Derek H Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jennifer L Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Terry L Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nancie M Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Edward P Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
2
|
Meng Z, Zhang C, Liu S, Li W, Wang Y, Zhang Q, Peng B, Ye W, Jiang Y, Song Y, Guo M, Chang X, Shao L. Exploring genetic loci linked to COVID-19 severity and immune response through multi-trait GWAS analyses. Front Genet 2025; 16:1502839. [PMID: 40034745 PMCID: PMC11873281 DOI: 10.3389/fgene.2025.1502839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction COVID-19 severity has been linked to immune factors, with excessive immune responses like cytokine storms contributing to mortality. However, the genetic basis of these immune responses is not well understood. This study aimed to explore the genetic connection between COVID-19 severity and blood cell traits, given their close relationship with immunity. Materials and methods GWAS summary statistics for COVID-19 and blood cell counts were analyzed using Linkage Disequilibrium Score Regression (LDSC) to estimate genetic correlations and heritabilities. For traits with significant correlations, a Multi-Trait GWAS Analysis (MTAG) was performed to identify pleiotropic loci shared between COVID-19 and blood cell counts. Results Our MTAG analysis identified four pleiotropic loci associated with COVID-19 severity, five loci linked to hospitalized cases, and one locus related to general patients. Among these, two novel loci were identified in the high-risk population, with rs55779981 located near RAVER1 and rs73009538 near CARM1. In hospitalized patients, two previously unrecognized loci were detected, namely, rs115545251 near GFI1 and rs3181049 near RAVER1, while in general patients, rs11065822 near CUX2 emerged as a newly identified locus. We also identified potential target genes, including those involved in inflammation signaling (CARM1), endothelial dysfunction (INTS12), and antiviral immune response (RAVER1), which may require further investigation. Conclusion Our study offers insights into the genetic overlap between COVID-19 and immune factors, suggesting potential directions for future research and clinical exploration.
Collapse
Affiliation(s)
- Ziang Meng
- Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chumeng Zhang
- The Second School of Clinical Medicine of Shandong First Medical University, Tai’an, Shandong, China
| | - Shuai Liu
- Agricultural Products Quality and Safety Center of Jinan, Jinan, Shandong, China
| | - Wen Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Wang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Qingyi Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Bichen Peng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Weiyi Ye
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Song
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Miao Guo
- School of Life Sciences, Shandong First Medical University, Shandong, China
| | - Xiao Chang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Lei Shao
- Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Li T, Zeng F, Li Y, Li H, Wu J. The Integrator complex: an emerging complex structure involved in the regulation of gene expression by targeting RNA polymerase II. Funct Integr Genomics 2024; 24:192. [PMID: 39424688 DOI: 10.1007/s10142-024-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The Integrator complex is a multisubunit complex that participates in the processing of small nuclear RNA molecules in eukaryotic cells by cleaving the 3' end. In protein-coding genes, Integrator is a key regulator of promoter-proximal pausing, release, and recruitment of RNA polymerase II. Research on Integrator has revealed its critical role in the regulation of gene expression and RNA processing. Dysregulation of the Integrator complex has been implicated in a variety of human diseases including cancer and developmental disorders. Therefore, understanding the structure and function of the Integrator complex is critical to uncovering the mechanisms of gene expression and developing potential therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Tingyue Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fulei Zeng
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hu Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiayuan Wu
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
4
|
Fongang B, Wadop YN, Zhu Y, Wagner EJ, Kudlicki A, Rowicka M. Coevolution combined with molecular dynamics simulations provides structural and mechanistic insights into the interactions between the integrator complex subunits. Comput Struct Biotechnol J 2023; 21:5686-5697. [PMID: 38074468 PMCID: PMC10700540 DOI: 10.1016/j.csbj.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
Finding the 3D structure of large, multi-subunit complexes is difficult, despite recent advances in cryo-EM technology, due to remaining challenges to expressing and purifying subunits. Computational approaches that predict protein-protein interactions, including Direct Coupling Analysis (DCA), represent an attractive alternative for dissecting interactions within protein complexes. However, they are readily applicable only to small proteins due to high computational complexity and a high number of false positives. To solve this problem, we proposed a modified DCA approach, a powerful tool to predict the most likely interfaces of protein complexes. Since our modified approach cannot provide structural and mechanistic details of interacting peptides, we combine it with Molecular Dynamics (MD) simulations. To illustrate this novel approach, we predict interacting domains and structural details of interactions of two Integrator complex subunits, INTS9 and INTS11. Our predictions of interacting residues of INTS9/INTS11 are highly consistent with crystallographic structure. We then expand our procedure to two complexes whose structures are not well-studied: 1) The heterodimer formed by the Cleavage and Polyadenylation Specificity Factor 100-kD (CPSF100) and 73-kD (CPSF73); 2) The heterotrimer formed by INTS4/INTS9/INTS11. Experimental data supports our predictions of interactions within these two complexes, demonstrating that combining DCA and MD simulations is a powerful approach to revealing structural insights of large protein complexes.
Collapse
Affiliation(s)
- Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| | - Yannick N. Wadop
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| | - Yingjie Zhu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
- Informatics Service Center, The University of Texas Medical Branch, Galveston, TX, United States
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Li JX, Huang XZ, Fu WP, Zhang XH, Mauki DH, Zhang J, Sun C, Dai LM, Zhong L, Yu L, Zhang YP. Remote regulation of rs80245547 and rs72673891 mediated by transcription factors C-Jun and CREB1 affect GSTCD expression. iScience 2023; 26:107383. [PMID: 37609638 PMCID: PMC10440715 DOI: 10.1016/j.isci.2023.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is influenced by genetic factors. The genetic signal rs10516526 in the glutathione S-transferase C-terminal domain containing (GSTCD) gene is a highly significant and reproducible signal associated with lung function and COPD on chromosome 4q24. In this study, comprehensive bioinformatics analyses and experimental verifications were detailly implemented to explore the regulation mechanism of rs10516526 and GSTCD in COPD. The results suggested that low expression of GSTCD was associated with COPD (p = 0.010). And C-Jun and CREB1 transcription factors were found to be essential for the regulation of GSTCD by rs80245547 and rs72673891. Moreover, rs80245547T and rs72673891G had a stronger binding ability to these transcription factors, which may promote the allele-specific long-range enhancer-promoter interactions on GSTCD, thus making COPD less susceptible. Our study provides a new insight into the relationship between rs10516526, GSTCD, and COPD.
Collapse
Affiliation(s)
- Jin-Xiu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Xue-Zhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Wei-ping Fu
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Xiao-hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - David H. Mauki
- Faculty of Pharmaceutical Sciences, Institute of Biomedicine and Biotechnology, Center for Cancer Immunology, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518000, Guangdong China
| | - Jing Zhang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Chang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
| | - Lu-Ming Dai
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
- Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi’an 710000, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Ya-ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| |
Collapse
|
6
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
7
|
Control of non-productive RNA polymerase II transcription via its early termination in metazoans. Biochem Soc Trans 2022; 50:283-295. [PMID: 35166324 DOI: 10.1042/bst20201140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Transcription establishes the universal first step of gene expression where RNA is produced by a DNA-dependent RNA polymerase. The most versatile of eukaryotic RNA polymerases, RNA polymerase II (Pol II), transcribes a broad range of DNA including protein-coding and a variety of non-coding transcription units. Although Pol II can be configured as a durable enzyme capable of transcribing hundreds of kilobases, there is reliable evidence of widespread abortive Pol II transcription termination shortly after initiation, which is often followed by rapid degradation of the associated RNA. The molecular details underlying this phenomenon are still vague but likely reflect the action of quality control mechanisms on the early Pol II complex. Here, we summarize current knowledge of how and when such promoter-proximal quality control is asserted on metazoan Pol II.
Collapse
|
8
|
Hall RJ, O'Loughlin J, Billington CK, Thakker D, Hall IP, Sayers I. Functional genomics of GPR126 in airway smooth muscle and bronchial epithelial cells. FASEB J 2021; 35:e21300. [PMID: 34165809 DOI: 10.1096/fj.202002073r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
GPR126 is an adhesion G protein-coupled receptor which lies on chromosome 6q24. Genetic variants in this region are reproducibly associated with lung function and COPD in genome wide association studies (GWAS). The aims of this study were to define the role of GPR126 in the human lung and in pulmonary disease and identify possible casual variants. Online tools (GTEx and LDlink) identified SNPs which may have effects on GPR126 function/ expression, including missense variant Ser123Gly and an intronic variant that shows eQTL effects on GPR126 expression. GPR126 signaling via cAMP-mediated pathways was identified in human structural airway cells when activated with the tethered agonist, stachel. RNA-seq was used to identify downstream genes/ pathways affected by stachel-mediated GPR126 activation in human airway smooth muscle cells. We identified ~350 differentially expressed genes at 4 and 24 hours post stimulation with ~20% overlap. We identified that genes regulated by GPR126 activation include IL33, CTGF, and SERPINE1, which already have known roles in lung biology. Pathways altered by GPR126 included those involved in cell cycle progression and cell proliferation. Here, we suggest a role for GPR126 in airway remodeling.
Collapse
Affiliation(s)
- Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
O'Loughlin J, Hall RJ, Bhaker S, Portelli MA, Henry A, Pang V, Bates DO, Sharp TV, Sayers I. Extended lifespan of bronchial epithelial cells maintains normal cellular phenotype and transcriptome integrity. ERJ Open Res 2021; 7:00254-2020. [PMID: 33532474 PMCID: PMC7836642 DOI: 10.1183/23120541.00254-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic studies have identified several epithelial-derived genes associated with airway diseases. However, techniques used to study gene function frequently exceed the proliferative potential of primary human bronchial epithelial cells (HBECs) isolated from patients. Increased expression of the polycomb group protein BMI-1 extends the lifespan of HBECs while maintaining cell context plasticity. Herein we aimed to assess how BMI-1 expression impacted cellular functions and global mRNA expression. HBECs from six donors were transduced with lentivirus containing BMI-1 and cells were characterised, including by RNA sequencing and impedance measurement. BMI-1-expressing HBECs (B-HBECs) have a proliferative advantage and show comparable in vitro properties to low passage primary HBECs, including cell attachment/spreading and barrier formation. The B-HBEC mRNA signature was modestly different to HBECs, with only 293 genes differentially expressed (5% false discovery rate). Genes linked to epithelial mesenchymal transition and cell cycle were enriched in B-HBECs. We investigated the expression of genes implicated in asthma from genetic and expression studies and found that 97.6% of genes remained unaltered. We have shown that increased BMI-1 expression in HBECs delays lung epithelial cell senescence by promoting cell cycle progression and highlighted the flexible utility for B-HBECs as an important platform for studying airway epithelial mechanisms. A method to extend the lifespan of primary human bronchial epithelial cells that maintain a normal epithelial cell phenotype, thus providing a platform to investigate respiratory disease mechanisms over prolonged periodshttps://bit.ly/353Rklc
Collapse
Affiliation(s)
- Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| | - Sangita Bhaker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Amanda Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Vincent Pang
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK
| | - Tyson V Sharp
- Centre of Cancer Cell and Molecular Biology, Barts Cancer Institute Queen Mary University of London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,These authors contributed equally
| |
Collapse
|
10
|
Liu B, Henry AP, Azimi S, Miller S, Lee FK, Lee JC, Probert K, Kotlikoff MI, Sayers I, Hall IP. Exposure to lipopolysaccharide (LPS) reduces contractile response of small airways from GSTCD-/- mice. PLoS One 2019; 14:e0221899. [PMID: 31513609 PMCID: PMC6742219 DOI: 10.1371/journal.pone.0221899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction Genome-Wide Association Studies suggest glutathione S transferase C terminal domain (GSTCD) may play a role in development of Chronic Obstructive Pulmonary Disease. We aimed to define the potential role of GSTCD in airway inflammation and contraction using precision cut lung slice (PCLS) from wild-type (GSTCD+/+) and GSTCD knockout mice (GSTCD-/-). Methods PCLS from age and gender matched GSTCD+/+ and GSTCD-/- mice were prepared using a microtome. Contraction was studied after applying either a single dose of Methacholine (Mch) (1 μM) or different doses of Mch (0.001 to 100 μM). Each slice was then treated with lipopolysaccharide (LPS) or vehicle (PBS) for 24 hours. PCLS contraction in the same airway was repeated before and after stimulation. Levels of TNFα production was also measured. Results There were no differences in contraction of PCLS from GSTCD+/+ and GSTCD-/- mice in response to Mch (EC50 of GSTCD+/+ vs GSTCD-/- animals: 100.0±20.7 vs 107.7±24.5 nM, p = 0.855, n = 6 animals/group). However, after LPS treatment, there was a 31.6% reduction in contraction in the GSTCD-/- group (p = 0.023, n = 6 animals). There was no significant difference between PBS and LPS treatment groups in GSTCD+/+ animals. We observed a significant increase in TNFα production induced by LPS in GSTCD-/- lung slices compared to the GSTCD+/+ LPS treated slices. Conclusion GSTCD knockout mice showed an increased responsiveness to LPS (as determined by TNFα production) that was accompanied by a reduced contraction of small airways in PCLS. These data highlight an unrecognised potential function of GSTCD in mediating inflammatory signals that affect airway responses.
Collapse
Affiliation(s)
- Bo Liu
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Amanda P. Henry
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
- * E-mail:
| | - Sheyda Azimi
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Suzanne Miller
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Frank K. Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jane C. Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kelly Probert
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Michael I. Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ian Sayers
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
11
|
Albrecht TR, Shevtsov SP, Wu Y, Mascibroda LG, Peart NJ, Huang KL, Sawyer IA, Tong L, Dundr M, Wagner EJ. Integrator subunit 4 is a 'Symplekin-like' scaffold that associates with INTS9/11 to form the Integrator cleavage module. Nucleic Acids Res 2019; 46:4241-4255. [PMID: 29471365 PMCID: PMC5934644 DOI: 10.1093/nar/gky100] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/17/2018] [Indexed: 12/14/2022] Open
Abstract
Integrator (INT) is a transcriptional regulatory complex associated with RNA polymerase II that is required for the 3′-end processing of both UsnRNAs and enhancer RNAs. Integrator subunits 9 (INTS9) and INTS11 constitute the catalytic core of INT and are paralogues of the cleavage and polyadenylation specificity factors CPSF100 and CPSF73. While CPSF73/100 are known to associate with a third protein called Symplekin, there is no paralog of Symplekin within INT raising the question of how INTS9/11 associate with the other INT subunits. Here, we have identified that INTS4 is a specific and conserved interaction partner of INTS9/11 that does not interact with either subunit individually. Although INTS4 has no significant homology with Symplekin, it possesses N-terminal HEAT repeats similar to Symplekin but also contains a β-sheet rich C-terminal region, both of which are important to bind INTS9/11. We assess three functions of INT including UsnRNA 3′-end processing, maintenance of Cajal body structural integrity, and formation of histone locus bodies to conclude that INTS4/9/11 are the most critical of the INT subunits for UsnRNA biogenesis. Altogether, these results indicate that INTS4/9/11 compose a heterotrimeric complex that likely represents the Integrator ‘cleavage module’ responsible for its endonucleolytic activity.
Collapse
Affiliation(s)
- Todd R Albrecht
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Sergey P Shevtsov
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | - Yixuan Wu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Lauren G Mascibroda
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Natoya J Peart
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA.,Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| |
Collapse
|
12
|
Henry AP, Probert K, Stewart CE, Thakker D, Bhaker S, Azimi S, Hall IP, Sayers I. Defining a role for lung function associated gene GSTCD in cell homeostasis. Respir Res 2019; 20:172. [PMID: 31370853 PMCID: PMC6676530 DOI: 10.1186/s12931-019-1146-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Genome wide association (GWA) studies have reproducibly identified signals on chromosome 4q24 associated with lung function and COPD. GSTCD (Glutathione S-transferase C-terminal domain containing) represents a candidate causal gene in this locus, however little is currently known about the function of this protein. We set out to further our understanding of the role of GSTCD in cell functions and homeostasis using multiple molecular and cellular approaches in airway relevant cells. Recombinant expression of human GSTCD in conjunction with a GST activity assay did not identify any enzymatic activity for two GSTCD isoforms questioning the assignment of this protein to this family of enzymes. Protein structure analyses identified a potential methyltransferase domain contained within GSTCD, with these enzymes linked to cell viability and apoptosis. Targeted knockdown (siRNA) of GSTCD in bronchial epithelial cells identified a role for GSTCD in cell viability as proliferation rates were not altered. To provide greater insight we completed transcriptomic analyses on cells with GSTCD expression knocked down and identified several differentially expressed genes including those implicated in airway biology; fibrosis e.g. TGFBR1 and inflammation e.g. IL6R. Pathway based transcriptomic analyses identified an over-representation of genes related to adipogenesis which may suggest additional functions for GSTCD. These findings identify potential additional functions for GSTCD in the context of airway biology beyond the hypothesised GST activity and warrant further investigation.
Collapse
Affiliation(s)
- Amanda P Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| | - Kelly Probert
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ceri E Stewart
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sangita Bhaker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sheyda Azimi
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Liu B, Billington CK, Henry AP, Bhaker SK, Kheirallah AK, Swan C, Hall IP. Chloride intracellular channel 1 (CLIC1) contributes to modulation of cyclic AMP-activated whole-cell chloride currents in human bronchial epithelial cells. Physiol Rep 2019; 6. [PMID: 29368798 PMCID: PMC5789713 DOI: 10.14814/phy2.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Chloride channels are known to play critical physiological roles in many cell types. Here, we describe the expression of anion channels using RNA Seq in primary cultures of human bronchial epithelial cells (hBECs). Chloride intracellular channel (CLIC) family members were the most abundant chloride channel transcripts, and CLIC1 showed the highest level of expression. In addition, we characterize the chloride currents in hBECs and determine how inhibition of CLIC1 via pharmacological and molecular approaches impacts these. We demonstrate that CLIC1 is able to modulate cyclic AMP‐induced chloride currents and suggest that CLIC1 modulation could be important for chloride homeostasis in this cell type.
Collapse
Affiliation(s)
- Bo Liu
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Amanda P Henry
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sangita K Bhaker
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Alexander K Kheirallah
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Caroline Swan
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Ian P Hall
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Biallelic sequence variants in INTS1 in patients with developmental delays, cataracts, and craniofacial anomalies. Eur J Hum Genet 2019; 27:582-593. [PMID: 30622326 DOI: 10.1038/s41431-018-0298-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.
Collapse
|
15
|
What do polymorphisms tell us about the mechanisms of COPD? Clin Sci (Lond) 2017; 131:2847-2863. [PMID: 29203722 DOI: 10.1042/cs20160718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is characterized by irreversible lung airflow obstruction. Cigarette smoke is the major risk factor for COPD development. However, only a minority number of smokers develop COPD, and there are substantial variations in lung function among smokers, suggesting that genetic determinants in COPD susceptibility. During the past decade, genome-wide association studies and exome sequencing have been instrumental to identify the genetic determinants of complex traits, including COPD. Focused studies have revealed mechanisms by which genetic variants contribute to COPD and have led to novel insights in COPD pathogenesis. Through functional investigations of causal variants in COPD, from the proteinase-antiproteinase theory to emerging roles of developmental pathways (such as Hedgehog and Wnt pathways) in COPD, we have greatly expanded our understanding on this complex pulmonary disease. In this review, we critically review functional investigations on roles of genetic polymorphisms in COPD, and discuss future challenges and opportunities in discovering novel mechanisms of functional variants.
Collapse
|
16
|
Sporadic PCDH18 somatic mutations in EpCAM-positive hepatocellular carcinoma. Cancer Cell Int 2017; 17:94. [PMID: 29075151 PMCID: PMC5654054 DOI: 10.1186/s12935-017-0467-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Background The relationship between specific genome alterations and hepatocellular carcinoma (HCC) cancer stem cells (CSCs) remains unclear. In this study, we evaluated the relationship between somatic mutations and epithelial cell adhesion molecule positive (EpCAM+) CSCs. Methods Two patient-derived HCC samples (HCC1 and HCC2) were sorted by EpCAM expression and analyzed by whole exome sequence. We measured PCDH18 expression level in eight HCC cell lines as well as HCC1 and HCC2 by real-time quantitative RT-PCR. We validated the identified gene mutations in 57 paired of HCC and matched non-cancerous liver tissues by Sanger sequence. Results Whole exome sequencing on the sorted EpCAM+ and EpCAM− HCC1 and HCC2 cells revealed 19,263 nonsynonymous mutations in the cording region. We selected mutations that potentially impair the function of the encoded protein. Ultimately, 60 mutations including 13 novel nonsense and frameshift mutations were identified. Among them, PCDH18 mutation was more frequently detected in sorted EpCAM+ cells than in EpCAM− cells in HCC1 by whole exome sequences. However, we could not confirm the difference of PCDH18 mutation frequency between sorted EpCAM+ and EpCAM− cells by Sanger sequencing, indicating that PCDH18 mutation could not explain intracellular heterogeneity. In contrast, we found novel PCDH18 mutations, including c.2556_2557delTG, c.1474C>G, c.2337A>G, and c.2976G>T, were detected in HCC1 and 3/57 (5.3%) additional HCC surgical specimens. All four HCCs with PCDH18 mutations were EpCAM-positive, suggesting that PCDH18 somatic mutations might explain the intertumor heterogeneity of HCCs in terms of the expression status of EpCAM. Furthermore, EpCAM-positive cell lines (Huh1, Huh7, HepG2, and Hep3B) had lower PCDH18 expression than EpCAM-negative cell lines (PLC/PRL/5, HLE, HLF, and SK-Hep-1), and PCDH18 knockdown in HCC2 cells slightly enhanced cell proliferation. Conclusions Our data suggest that PCDH18 is functionally suppressed in a subset of EpCAM-positive HCCs through somatic mutations, and may play a role in the development of EpCAM-positive HCCs. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0467-x) contains supplementary material, which is available to authorized users.
Collapse
|