1
|
Xiao P, Li Q, Wang L, Sun G, Hou H, Han X, Feng J, Min Y. The combined supplementation of quercetin and Ligilactobacillus salivarius improves production performance, lipid metabolism, and ileal health in late-phase laying hens. Poult Sci 2025; 104:105286. [PMID: 40398296 DOI: 10.1016/j.psj.2025.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
We studied the effects of a combination of quercetin and Ligilactobacillus salivarius (L. salivarius) on production performance, lipid metabolism, and ileal health in late-phase laying hens. In a 12-week feeding trial, 480 healthy 50-week-old laying hens received a basal diet supplemented with various treatments: 0 (CON), 0.2 g/kg quercetin and 0.5 × 108 CFU/kg L. salivarius (LD), double dose of group LD (MD), triple dose of group LD (HD), and 1.46 g/kg quercetin microcapsules (0.4 g/kg quercetin content matching the group MD) and 1 × 108 CFU/kg L. salivarius (group BM). Results showed that the laying rate was significantly higher, feed-to-egg ratio was significantly lower with supplementation (P < 0.05), with no changes in egg quality. Supplementation reduced serum TG, TC, HDL-C, and LDL-C levels, along with a significant reduction in the abdominal fat ratio (P < 0.05). Compared with the CON group, the HD and BM groups had lower TG and TC levels and reduced expression levels of ACC-α and SREBP1 in the liver (P < 0.05). In the ileum, the MD, HD, and BM groups also showed, reduced V/C ratios and histopathological scores (P < 0.05), increased intestinal barrier gene expression, including occludin, claudin-1, Muc2, and ZO-1 (P < 0.05), and higher expression levels of IL-10 and IL-4 (P < 0.05), alongside lower expression levels of IL-6 and IL-2 (P < 0.05). Additionally, dietary supplementation with quercetin and L. salivarius increased the abundance of Lactobacillales and Ligilactobacillus. Overall, the combination of quercetin and L. salivarius improved laying rate while reducing feed-to-egg ratio and abdominal fat ratio, likely mediated by enhanced hepatic lipid metabolism and improved gut immune status. These findings provide novel insights into the combined supplemation for enhancing poultry production efficiency.
Collapse
Affiliation(s)
- Pan Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qian Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding 071000, Hebei, PR China
| | - Leiqing Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guangpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haifeng Hou
- Baoding Vocational and Technical College, Baoding 071051, Hebei, PR China
| | - Xiaofei Han
- Huayu Agricultural Science and Technology Co., Ltd, Handan, 057300, Hebei, PR China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Bouzek H, Srinivasan S, Jones DS, McMahon EF, Strenk SM, Fiedler TL, Fredricks DN, Johnston CD. A Syntenic Pangenome for Gardnerella Reveals Taxonomic Boundaries and Stratification of Metabolic and Virulence Potential across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.636902. [PMID: 40027674 PMCID: PMC11870614 DOI: 10.1101/2025.02.19.636902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial vaginosis (BV) is a prevalent condition associated with an imbalance in the vaginal microbiota, often involving species of Gardnerella . The taxonomic complexity and inconsistent nomenclature of Gardnerella have impeded progress in understanding the role of specific species in health and disease. In this study, we conducted a comprehensive genomic and pangenomic analysis to resolve taxonomic ambiguities and elucidate metabolic and virulence potential across Gardnerella species. We obtained complete, closed genomes for 42 Gardnerella isolates from women with BV and curated publicly available genome sequences (n = 291). Average nucleotide identity (ANI) analysis, digital DNA-DNA hybridization (dDDH), and the cpn60 gene sequences identified nine species and eleven subspecies within Gardnerella , for which we refined species and subspecies boundaries and proposed updated nomenclature. Pangenome analysis revealed species-specific gene clusters linked to metabolic pathways, virulence factors, and niche adaptations, distinguishing species specialized for mucin degradation in the vaginal environment from those potentially adapted to urinary tract colonization. Notably, we identified lineage-specific evolutionary divergence in gene clusters associated with biofilm formation, carbohydrate metabolism, and antimicrobial resistance. We further discovered the first cryptic plasmids naturally present within the Gardnerella genus. Our findings provide a unified framework for Gardnerella taxonomy and nomenclature, and enhance our understanding of species-specific functional capabilities, with implications for Gardnerella research, diagnostics, and targeted therapeutics in BV.
Collapse
|
3
|
Kaktcham PM, Kujawska M, Kouam EMF, Piame LT, Tientcheu MLT, Mueller J, Felsl A, Truppel BA, Ngoufack FZ, Hall LJ. Genomic insights into the beneficial potential of Bifidobacterium and Enterococcus strains isolated from Cameroonian infants. Microb Genom 2025; 11:001354. [PMID: 39969280 PMCID: PMC11840169 DOI: 10.1099/mgen.0.001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
A healthy early-life gut microbiota plays an important role in maintaining immediate and long-term health. Perturbations, particularly in low- to middle-income communities, are associated with increased infection risk. Thus, a promising avenue for restoring a healthy infant microbiota is to select key beneficial bacterial candidates from underexplored microbiomes for developing new probiotic-based therapies. This study aimed to recover bifidobacteria and lactic acid bacteria from the faeces of healthy Cameroonian infants and unravel the genetic basis of their beneficial properties. Faecal samples were collected from 26 infants aged 0-5 months recruited in Dschang (Cameroon). Recovered bacterial isolates were subjected to whole-genome sequencing and in silico analysis to assess their potential for carbohydrate utilization, their antimicrobial capacities, host-adaptation capabilities and their safety. From the range of infant-associated Bifidobacterium and Enterococcus strains identified, Bifidobacterium species were found to harbour putative gene clusters implicated in human milk oligosaccharide metabolism. Genes linked to the production of antimicrobial peptides such as class IV lanthipeptides were found in Bifidobacterium pseudocatenulatum, while those implicated in biosynthesis of cytolysins, enterolysins, enterocins and propeptins, among others, were identified in enterococci. Bifidobacterial isolates did not contain genes associated with virulence; however, we detected the presence of putative tetracycline resistance genes in several strains belonging to Bifidobacterium animalis subsp. lactis and Bifidobacterium longum subsp. longum. Among the enterococci, Enterococcus mundtii PM10 did not carry any genes associated with antimicrobial resistance or virulence. The latter, together with all the Bifidobacterium strains, also encoded several putative adaptive and stress-response-related genes, suggesting robust gastroinstestinal tract colonization potential. This work provides the first genomic characterization of Bifidobacterium and Enterococcus isolates from Cameroonian infants. Several strains showed the genomic potential to confer beneficial properties. Further phenotypic and clinical investigations are needed to confirm their suitability as customized probiotics.
Collapse
Affiliation(s)
- Pierre Marie Kaktcham
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
| | - Edith Marius Foko Kouam
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Laverdure Tchamani Piame
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Michele Letitia Tchabou Tientcheu
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
| | - Julia Mueller
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
| | - François Zambou Ngoufack
- Research Unit of Biochemistry of Medicinal Plants, Food Science and Nutrition (URBPMAN) – Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon. P.O Box 67, Dschang, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Lindsay J. Hall
- Intestinal Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, 85354, Germany
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 42TT, UK
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
4
|
Xiao Y, Huang L, Zhao J, Chen W, Lu W. The gut core microbial species Bifidobacterium longum: Colonization, mechanisms, and health benefits. Microbiol Res 2025; 290:127966. [PMID: 39547052 DOI: 10.1016/j.micres.2024.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bifidobacterium longum (B. longum) is a species of the core microbiome in the human gut, whose abundance is closely associated with host age and health status. B. longum has been shown to modulate host gut microecology and have the potential to alleviate various diseases. Comprehensive understanding on the colonization mechanism of B. longum and mechanism of the host-B. longum interactions, can provide us possibility to prevent and treat human diseases through B. longum-directed strategies. In this review, we summarized the gut colonization characteristics of B. longum, discussed the diet factors that have ability/potential to enrich indigenous and/or ingested B. longum strains, and reviewed the intervention mechanisms of B. longum in multiple diseases. The key findings are as follows: First, B. longum has specialized colonization mechanisms, like a wide carbohydrate utilization spectrum that allows it to adapt to the host's diet, species-level conserved genes encoding bile salt hydrolase (BSHs), and appropriate bacterial surface structures. Second, dietary intervention (e.g., anthocyanins) could effectively improve the gut colonization of B. longum, demonstrating the feasibility of diet-tuned strain colonization. Finally, we analyzed the skewed abundance of B. longum in different types of diseases and summarized the main mechanisms by which B. longum alleviates digestive (repairing the intestinal mucosal barrier by stimulating Paneth cell activity), immune (up-regulating the regulatory T cell (Treg) populations and maintaining the balance of Th1/Th2), and neurological diseases (regulating the kynurenine pathway and quinolinic acid levels in the brain through the gut-brain axis).
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Lijuan Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
5
|
Modesto M, Scarafile D, Vásquez A, Pukall R, Neumann-Schaal M, Pascarelli S, Sgorbati B, Ancora M, Cammà C, Mattarelli P, Olofsson TC. Phylogenetic characterization of Bifidobacterium kimbladii sp. nov., a novel species from the honey stomach of the honeybee Apis mellifera. Syst Appl Microbiol 2025; 48:126579. [PMID: 39764984 DOI: 10.1016/j.syapm.2025.126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/14/2025]
Abstract
Six novel Bifidobacterium strains H1HS16NT, Bin2N, Hma3N, H6bp22N, H1HS10N, and H6bp9N, were isolated from the honey stomach of Apis mellifera. Cells are Gram-positive, non-motile, non-sporulating, facultatively anaerobic, and fructose 6-phosphate phosphoketolase-positive. Optimal growth conditions occur at 37 °C in anaerobiosis in MRS medium added with 2 % fructose and 0.1 % L-cysteine. The 16S rRNA gene sequences analysis revealed clustering with Bifidobacterium species found in honeybees. Strains Hma3N, H6bp22N, and H1HS16NT showed significant similarity to Bifidobacterium polysaccharolyticum JCM 34588T, with an average similarity of 99.63 %. In contrast, strains Bin2N, H1HS10N, and H6bp9N were closely related to Bifidobacterium apousia JCM 34587T, with an average similarity of 99.22 %. Moreover, strains Hma3N and H6bp22N exhibited ANI values of 96.65 % and 96.53 % when compared to Bifidobacterium polysaccharolyticum JCM 34588T, while strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N revealed ANI values of 94.18 %, 94.33 %, 94.22 %, and 95.50 % respectively when compared to B. apousia JCM 34587T. dDDH analysis confirmed that strains Hma3N and H6bp22N belong to B. polysaccharolyticum, whereas strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N represent a novel species. The peptidoglycan of the novel species is of the A4α type (L-Lys-D-Asp). The main cellular fatty acids of the type strain H1HS16NT are C16:0, C14:0, C19:0 cyclo ω9c, and C18:1 ω9c. The DNA G + C content of the type strain is 60.8 mol%. Genome analyses of the strains were also conducted to determine their biosynthesis-related gene clusters, probiotic features, and ecological distribution patterns. Phenotypic and genotypic characterization show that strain H1HS16NT is distinct from the type strains of other recognized Bifidobacterium species. Thus, Bifidobacterium kimbladii sp. nov. (H1HS16NT = DSM 115187T = CCUG 76695T) is proposed as a novel Bifidobacterium species.
Collapse
Affiliation(s)
- M Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - D Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - A Vásquez
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| | - R Pukall
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - M Neumann-Schaal
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - S Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - B Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - M Ancora
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - C Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - P Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - T C Olofsson
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| |
Collapse
|
6
|
Lugli GA, Argentini C, Tarracchini C, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, Turroni F, Ventura M. Characterization of a Bifidobacterium animalis subsp. lactis reference strain based on ecology and transcriptomics. Appl Environ Microbiol 2024; 90:e0108024. [PMID: 39235395 PMCID: PMC11497779 DOI: 10.1128/aem.01080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Bifidobacteria are recognized as health-promoting bacteria that reside in the human gut, helping in the digestion of fiber, preventing infections, and producing essential compounds like vitamins. To date, Bifidobacterium animalis subsp. lactis, together with Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum, represents one of the species that are used as probiotic bacteria. Despite the extensive and detailed scientific research conducted on this microbial taxon, the molecular mechanisms by which B. animalis subsp. lactis exerts health benefits to its host are still largely unknown. Thus, we dissected the genetic repertoire and phylogenetic relationship of 162 strains of B. animalis subsp. lactis to select a representative reference strain of this taxon suitable for investigating its interaction with the host. The B. animalis subsp. lactis PRL2013 strain, which was isolated by a mucosal sample of a healthy adult, was chosen as the reference of the monophyletic cluster of human origin and revealed a greater adhesion index than that observed for another B. animalis subsp. lactis strain used in the industry as a probiotic supplement. Transcriptomics analyses of PRL2013 strain, when exposed to human cell monolayers, revealed 291 significantly upregulated genes, among which were found genes predicted to encode extracellular structures that may directly interact with human cells, such as extracellular polymeric substances, wall teichoic acids, and pili. IMPORTANCE To date, many Bifidobacterium animalis subsp. lactis strains have been isolated from human fecal samples. However, their presence in these samples does not necessarily suggest an ability to colonize the human gut. Furthermore, probiotics of non-human origin may not effectively interact with the gut epithelium, resulting in transient bacteria of the gut microbiota. In vitro experiments with human cells revealed that B. animalis subsp. lactis PRL2013, an autochthonous member of the human gut, shows colonization capability, leading to future applications in functional foods.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Longhi G, Lugli GA, Tarracchini C, Fontana F, Bianchi MG, Carli E, Bussolati O, van Sinderen D, Turroni F, Ventura M. From raw milk cheese to the gut: investigating the colonization strategies of Bifidobacterium mongoliense. Appl Environ Microbiol 2024; 90:e0124424. [PMID: 39150265 PMCID: PMC11409640 DOI: 10.1128/aem.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Mudhluli TE, Kujawska M, Mueller J, Felsl A, Truppel BA, Hall LJ, Chitsike I, Gomo E, Zhou DT. Exploring the genomic traits of infant-associated microbiota members from a Zimbabwean cohort. BMC Genomics 2024; 25:718. [PMID: 39054474 PMCID: PMC11271062 DOI: 10.1186/s12864-024-10618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our understanding of particular gut microbiota members such as Bifidobacterium and Enterococcus in low-middle-income countries remains very limited, particularly early life strain-level beneficial traits. This study addresses this gap by exploring a collection of bacterial strains isolated from the gut of Zimbabwean infants; comparing their genomic characteristics with strains isolated from infants across North America, Europe, and other regions of Africa. MATERIALS AND METHOD From 110 infant stool samples collected in Harare, Zimbabwe, 20 randomly selected samples were used to isolate dominant early-life gut microbiota members Bifidobacterium and Enterococcus. Isolated strains were subjected to whole genome sequencing and bioinformatics analysis including functional annotation of carbohydrates, human milk oligosaccharide (HMO) and protein degradation genes and clusters, and the presence of antibiotic resistance genes (ARGs). RESULTS The study observed some location-based clustering within the main five identified taxonomic groups. Furthermore, there were varying and overall species-specific numbers of genes belonging to different GH families encoded within the analysed dataset. Additionally, distinct strain- and species-specific variances were identified in the potential of Bifidobacterium for metabolizing HMOs. Analysis of putative protease activity indicated a consistent presence of gamma-glutamyl hydrolases in Bifidobacterium, while Enterococcus genomes exhibited a high abundance of aspartyl peptidases. Both genera harboured resistance genes against multiple classes of antimicrobial drugs, with Enterococcus genomes containing a higher number of ARGs compared to Bifidobacterium, on average. CONCLUSION This study identified promising probiotic strains within Zimbabwean isolates, offering the potential for early-life diet and microbial therapies. However, the presence of antibiotic resistance genes in infant-associated microbes raises concerns for infection risk and next-stage probiotic development. Further investigation in larger cohorts, particularly in regions with limited existing data on antibiotic and probiotic use, is crucial to validate these initial insights. IMPACT STATEMENT This research represents the first investigation of its kind in the Zimbabwean context, focusing on potential probiotic strains within the early-life gut microbiota. By identifying local probiotic strains, this research can contribute to the development of probiotic interventions that are tailored to the Zimbabwean population, which can help address local health challenges and promote better health outcomes for infants. Another essential aspect of the study is the investigation of antimicrobial resistance genes present in Zimbabwean bacterial strains. Antimicrobial resistance is a significant global health concern, and understanding the prevalence and distribution of resistance genes in different regions can help inform public health policies and interventions.
Collapse
Affiliation(s)
- Taona Emmah Mudhluli
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe.
- Faculty of Medicine and Health Science, Department of Biochemistry, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe.
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Julia Mueller
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- BioSciences Building, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Lindsay J Hall
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 42TT, UK
| | - Inam Chitsike
- Faculty of Medicine and Health Sciences, Department of Family Health, Paediatrics Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Exnevia Gomo
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Danai Tavonga Zhou
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| |
Collapse
|
9
|
Fan X, Monson KR, Peters BA, Whittington JM, Um CY, Oberstein PE, McCullough ML, Freedman ND, Huang WY, Ahn J, Hayes RB. Altered salivary microbiota associated with high-sugar beverage consumption. Sci Rep 2024; 14:13386. [PMID: 38862651 PMCID: PMC11167035 DOI: 10.1038/s41598-024-64324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
The human oral microbiome may alter oral and systemic disease risk. Consuming high sugar content beverages (HSB) can lead to caries development by altering the microbial composition in dental plaque, but little is known regarding HSB-specific oral microbial alterations. Therefore, we conducted a large, population-based study to examine associations of HSB intake with oral microbiome diversity and composition. Using mouthwash samples of 989 individuals in two nationwide U.S. cohorts, bacterial 16S rRNA genes were amplified, sequenced, and assigned to bacterial taxa. HSB intake was quantified from food frequency questionnaires as low (< 1 serving/week), medium (1-3 servings/week), or high (> 3 servings/week). We assessed overall bacterial diversity and presence of specific taxa with respect to HSB intake in each cohort separately and combined in a meta-analysis. Consistently in the two cohorts, we found lower species richness in high HSB consumers (> 3 cans/week) (p = 0.027), and that overall bacterial community profiles differed from those of non-consumers (PERMANOVA p = 0.040). Specifically, presence of a network of commensal bacteria (Lachnospiraceae, Peptostreptococcaceae, and Alloprevotella rava) was less common in high compared to non-consumers, as were other species including Campylobacter showae, Prevotella oulorum, and Mycoplasma faucium. Presence of acidogenic bacteria Bifodobacteriaceae and Lactobacillus rhamnosus was more common in high consumers. Abundance of Fusobacteriales and its genus Leptotrichia, Lachnoanaerobaculum sp., and Campylobacter were lower with higher HSB consumption, and their abundances were correlated. No significant interaction was found for these associations with diabetic status or with microbial markers for caries (S. mutans) and periodontitis (P. gingivalis). Our results suggest that soft drink intake may alter the salivary microbiota, with consistent results across two independent cohorts. The observed perturbations of overrepresented acidogenic bacteria and underrepresented commensal bacteria in high HSB consumers may have implications for oral and systemic disease risk.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY, 10016, USA
| | - Kelsey R Monson
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Brandilyn A Peters
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY, 10016, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Paul E Oberstein
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyoung Ahn
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Carneiro dos Santos LA, Carvalho RDDO, Cruz Neto JPR, de Albuquerque Lemos DE, de Oliveira KÁR, Sampaio KB, de Luna Freire MO, Aburjaile FF, Azevedo VADC, de Souza EL, de Brito Alves JL. A Mix of Potentially Probiotic Limosilactobacillus fermentum Strains Alters the Gut Microbiota in a Dose- and Sex-Dependent Manner in Wistar Rats. Microorganisms 2024; 12:659. [PMID: 38674604 PMCID: PMC11052373 DOI: 10.3390/microorganisms12040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1β (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.
Collapse
Affiliation(s)
- Lucas Alves Carneiro dos Santos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | | | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Vasco Ariston de Carvalho Azevedo
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| |
Collapse
|
11
|
Sun M, Ji W, Ye H, Cai Y, Yun Y, Wei X, Wang C, Mao H. Sodium butyrate administration improves intestinal development of suckling lambs. J Anim Sci 2024; 102:skae028. [PMID: 38285605 PMCID: PMC10889743 DOI: 10.1093/jas/skae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
This study was conducted to investigate the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. Forty lambs of 7 d old, with an average body weight (BW) of 4.46 ± 0.45 kg, were allocated into the control (CON) or SB group, with each group having five replicate pens (n = 5). Lambs were orally administered SB at 1.8 mL/kg BW in the SB group or the same volume of saline in the CON group. Treatments were administered from 7 to 35 d of age, when one lamb from each replicate was slaughtered to obtain intestinal tissues and contents. The results showed that supplementation with SB tended to increase the BW (P = 0.079) and the starter intake (P = 0.089) of lambs at 35 d of age. The average daily gain of lambs in the SB group was significantly greater than that in the CON group (P < 0.05). The villus height of jejunum in the SB group was markedly higher (P < 0.05) than that in the CON group. In ileum, lambs in the SB group had lower (P < 0.05) crypt depth and greater (P < 0.05) villus-to-crypt ratio than those in the CON group. Compared with the CON group, the mRNA and protein expressions of Claudin-1 and Occludin were increased (P < 0.05) in the SB group. Supplementation with SB decreased the relative abundances of pathogenic bacteria, including Clostridia_UCG-014 (P = 0.094) and Romboutsia (P < 0.05), which were negatively associated with the intestinal barrier function genes (P < 0.05). The relative abundance of Succiniclasticum (P < 0.05) was higher in the SB group, and it was positively correlated with the ratio of villi height to crypt depth in the jejunum (P < 0.05). Compared with the CON group, the function "Metabolism of Cofactors and Vitamins" was increased in the SB group lambs (P < 0.05). In conclusion, SB orally administration during suckling period could improve the small intestine development and growth performance of lambs by inhibiting the harmful bacteria (Clostridia_UCG-014, Romboutsia) colonization, and enhancing intestinal barrier functions.
Collapse
Affiliation(s)
- Mengzhen Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Hongwei Ye
- Hangzhou Lin ‘an District Agroforestry Technology Extension Center, Lin’an 311300, China
| | - Yitao Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Xiaoshi Wei
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| |
Collapse
|
12
|
Li D, Yang H, Li Q, Ma K, Wang H, Wang C, Li T, Ma Y. Prickly Ash Seeds improve immunity of Hu sheep by changing the diversity and structure of gut microbiota. Front Microbiol 2023; 14:1273714. [PMID: 38029081 PMCID: PMC10644117 DOI: 10.3389/fmicb.2023.1273714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
13
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Feehily C, O'Neill IJ, Walsh CJ, Moore RL, Killeen SL, Geraghty AA, Lawton EM, Byrne D, Sanchez-Gallardo R, Nori SRC, Nielsen IB, Wortmann E, Matthews E, O'Flaherty R, Rudd PM, Groeger D, Shanahan F, Saldova R, McAuliffe FM, Van Sinderen D, Cotter PD. Detailed mapping of Bifidobacterium strain transmission from mother to infant via a dual culture-based and metagenomic approach. Nat Commun 2023; 14:3015. [PMID: 37230981 DOI: 10.1038/s41467-023-38694-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
A significant proportion of the infant gut microbiome is considered to be acquired from the mother during and after birth. Thus begins a lifelong and dynamic relationship with microbes that has an enduring impact on host health. Based on a cohort of 135 mother-infant (F = 72, M = 63) dyads (MicrobeMom: ISRCTN53023014), we investigated the phenomenon of microbial strain transfer, with a particular emphasis on the use of a combined metagenomic-culture-based approach to determine the frequency of strain transfer involving members of the genus Bifidobacterium, including species/strains present at low relative abundance. From the isolation and genome sequencing of over 449 bifidobacterial strains, we validate and augment metagenomics-based evidence to reveal strain transfer in almost 50% of dyads. Factors important in strain transfer include vaginal birth, spontaneous rupture of amniotic membranes, and avoidance of intrapartum antibiotics. Importantly, we reveal that several transfer events are uniquely detected employing either cultivation or metagenomic sequencing, highlighting the requirement for a dual approach to obtain an in-depth insight into this transfer process.
Collapse
Affiliation(s)
- Conor Feehily
- Teagasc Food Research Centre, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Ian J O'Neill
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Calum J Walsh
- Teagasc Food Research Centre, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Rebecca L Moore
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sarah Louise Killeen
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Aisling A Geraghty
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Elaine M Lawton
- Teagasc Food Research Centre, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - David Byrne
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Rocio Sanchez-Gallardo
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Sai Ravi Chandra Nori
- Teagasc Food Research Centre, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics & Applied Mathematics, University of Galway, Galway, Ireland
| | - Ida Busch Nielsen
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Esther Wortmann
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Elizabeth Matthews
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Co, Dublin, Ireland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Co, Dublin, Ireland
- Department of Chemistry, Maynooth University, Maynooth, Co, Kildare, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Co, Dublin, Ireland
- Bioprocessing Technology Institute, AStar, Singapore, Singapore
| | - David Groeger
- PrecisionBiotics Group Ltd. (Novozymes Cork), Cork Airport Business Park, Kinsale Road, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Co, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Douwe Van Sinderen
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| |
Collapse
|
15
|
Handy MY, Sbardellati DL, Yu M, Saleh NW, Ostwald MM, Vannette RL. Incipiently social carpenter bees (Xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full-length PacBio 16S rRNA sequencing. Mol Ecol 2023; 32:1530-1543. [PMID: 36239475 DOI: 10.1111/mec.16736] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota of bees affects nutrition, immunity and host fitness, yet the roles of diet, sociality and geographical variation in determining microbiome structure, including variant-level diversity and relatedness, remain poorly understood. Here, we use full-length 16S rRNA amplicon sequencing to compare the crop and gut microbiomes of two incipiently social carpenter bee species, Xylocopa sonorina and Xylocopa tabaniformis, from multiple geographical sites within each species' range. We found that Xylocopa species share a set of core taxa consisting of Bombilactobacillus, Bombiscardovia and Lactobacillus, found in >95% of all individual bees sampled, and Gilliamella and Apibacter were also detected in the gut of both species with high frequency. The crop bacterial community of X. sonorina comprised nearly entirely Apilactobacillus with occasionally abundant nectar bacteria. Despite sharing core taxa, Xylocopa species' microbiomes were distinguished by multiple bacterial lineages, including species-specific variants of core taxa. The use of long-read amplicons revealed otherwise cryptic species and population-level differentiation in core microbiome members, which was masked when a shorter fragment of the 16S rRNA (V4) was considered. Of the core taxa, Bombilactobacillus and Bombiscardovia exhibited differentiation in amplicon sequence variants among bee populations, but this was lacking in Lactobacillus, suggesting that some bacterial genera in the gut may be structured by different processes. We conclude that these Xylocopa species host a distinctive microbiome, similar to that of previously characterized social corbiculate apids, which suggests that further investigation to understand the evolution of the bee microbiome and its drivers is warranted.
Collapse
Affiliation(s)
- Madeline Y Handy
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Dino L Sbardellati
- Microbiology Graduate Group, University of California Davis, Davis, California, USA
| | - Michael Yu
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nicholas W Saleh
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | | | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| |
Collapse
|
16
|
Sadeghpour Heravi F, Hu H. Bifidobacterium: Host-Microbiome Interaction and Mechanism of Action in Preventing Common Gut-Microbiota-Associated Complications in Preterm Infants: A Narrative Review. Nutrients 2023; 15:709. [PMID: 36771414 PMCID: PMC9919561 DOI: 10.3390/nu15030709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The development and health of infants are intertwined with the protective and regulatory functions of different microorganisms in the gut known as the gut microbiota. Preterm infants born with an imbalanced gut microbiota are at substantial risk of several diseases including inflammatory intestinal diseases, necrotizing enterocolitis, late-onset sepsis, neurodevelopmental disorders, and allergies which can potentially persist throughout adulthood. In this review, we have evaluated the role of Bifidobacterium as commonly used probiotics in the development of gut microbiota and prevention of common diseases in preterm infants which is not fully understood yet. The application of Bifidobacterium as a therapeutical approach in the re-programming of the gut microbiota in preterm infants, the mechanisms of host-microbiome interaction, and the mechanism of action of this bacterium have also been investigated, aiming to provide new insights and opportunities in microbiome-targeted interventions in personalized medicine.
Collapse
Affiliation(s)
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
17
|
Xiao Y, Huang S, Yu W, Ni Y, Lu D, Wu Q, Leng Q, Yang T, Ni M, Xie J, Zhang X. Effects of emergency/nonemergency cervical cerclage on the vaginal microbiome of pregnant women with cervical incompetence. Front Cell Infect Microbiol 2023; 13:1072960. [PMID: 36968117 PMCID: PMC10034410 DOI: 10.3389/fcimb.2023.1072960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background Evaluation of the therapeutic effects of cerclage on preterm birth (PTB) caused by cervical incompetence remains challenging. The vaginal microbiome is associated with preterm births. Thus, this study aimed to analyse the vaginal microbiota of patients with cervical incompetence, explore the relationship between the composition of the vaginal microbiota before cervical cerclage and at term delivery, and assess the effect of cervical cerclage on the vaginal microbiota. Methods Patients (n = 30) underwent cerclage performed by the same surgical team. Vaginal swabs were obtained pre-surgery and seven days post-surgery. A gestational age-matched cohort of healthy pregnant women (n = 20) (no particular abnormality during pregnancy, delivery at term) was used as the control group and sampled during a comparable pregnancy. All collected vaginal swabs were analysed by 16S rRNA gene sequencing. Results When comparing the healthy control and cervical cerclage groups, the enriched microorganism in the healthy controls was G. Scardovia, and the enriched microorganism of the cerclage was G. Streptococcus. α diversity was significantly increased in patients who received cerclage with preterm delivery compared with those with full-term delivery, and the enriched microorganism was F. Enterococcus. A comparison before and after nonemergency cerclage suggested that the enriched microorganisms were G. Lactobacillus and F. Lactobacillaceae before surgery. After nonemergency cerclage, the enriched microorganisms were F. Enterobacteriaceae and C. Gammaproteobacteria. Vaginal microbiota diversity significantly increased, and the proportion of women with Lactobacillus spp.-depleted microbiomes increased after emergency cerclage. Significant differences in β diversity were found between the groups. Before the emergency cerclage, the enriched microorganisms were G. Lactobacillus, O. Alteromonadales, and P. Firmicutes. After emergency cerclage, the enriched microorganisms were P. Actinobacteria, C. Actinobacteria, P. Proteobacteria, F. Bifidobacteriaceae, O. Bifidobacteriales, G. Gardnerella, and G. Veillonella. Conclusion Cerclage (particularly emergency cerclage) may alter the vaginal microbiota by increasing microbiota diversity, decreasing vaginal Lactobacillus abundance, and increasing the abundance of pathogenic bacteria that are not conducive to pregnancy maintenance, thereby affecting surgical efficacy. Therefore, the role of the vaginal microbiome should be considered when developing treatment strategies for pregnant women with cervical incompetence. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR2100046305.
Collapse
Affiliation(s)
- Yunshan Xiao
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
| | - Shiting Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Weiwei Yu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Yan Ni
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Danni Lu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Qin Leng
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Ting Yang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Meilan Ni
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Jingxian Xie
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, China
- *Correspondence: Xueqin Zhang,
| |
Collapse
|
18
|
Deng Y, Liu X, Yao Y, Xiao B, He C, Guo S, Tang S, Qu X. The potential role of palygorskite and probiotics complex on the laying performance and faecal microbial community in Xuefeng black-bone chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuying Deng
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xu Liu
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
| | - Yaling Yao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Songchang Guo
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shengguo Tang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Jiang C, Cui Z, Fan P, Du G. Effects of dog ownership on the gut microbiota of elderly owners. PLoS One 2022; 17:e0278105. [PMID: 36477426 PMCID: PMC9728917 DOI: 10.1371/journal.pone.0278105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Dog owners are usually in close contact with dogs. Whether dogs can affect the gut microbiota of elderly dog owners is worth studying. Data from 54 elderly (over 65 years of age) dog owners were screened from the American Gut Project. Owning a dog did not affect the α-diversity of the gut microbiota of the dog owner. Dog ownership significantly modulated the composition of the gut microbiota of the dog owner. The abundance of Actinobacteria was significantly increased. The abundances of Bifidobacteriaceae and Ruminococcaceae were significantly increased, while the abundance of Moracellaceae was significantly suppressed. In general, dog ownership can regulate the composition of gut microbiota and has a more significant effect on elderly males.
Collapse
Affiliation(s)
- Chaona Jiang
- Morphology laboratory, Hainan Medical College, Haikou, China
- Department of Breast-Throcic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zeying Cui
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Pingming Fan
- Department of Breast-Throcic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- * E-mail: (PF); (GD)
| | - Guankui Du
- Department of Breast-Throcic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, People’s Republic of China
- * E-mail: (PF); (GD)
| |
Collapse
|
20
|
Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Milani C, Turroni F, Ventura M. Exploring the biodiversity of Bifidobacterium asteroides among honey bee microbiomes. Environ Microbiol 2022; 24:5666-5679. [PMID: 36161453 PMCID: PMC10092428 DOI: 10.1111/1462-2920.16223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Bifidobacterium asteroides is considered the ancestor of the genus Bifidobacterium, which has evolved in close touch with the hindgut of social insects. However, recent studies revealed high intraspecies biodiversity within this taxon, uncovering the putative existence of multiple bifidobacterial species, thus, suggesting its reclassification. Here, a genomic investigation of 98 B. asteroides-related genomes retrieved from public repositories and reconstructed from metagenomes of the hindgut of Apis mellifera and Apis cerana was performed to shed light on the genetic variability of this taxon. Phylogenetic and genomic analyses revealed the existence of eight clusters, of which five have been recently characterized with a representative type strain of the genus and three were represented by putative novel bifidobacterial species inhabiting the honeybee gut. Then, the dissection of 366 shotgun metagenomes of honeybee guts revealed a pattern of seven B. asteroides-related taxa within A. mellifera that co-exist with the host, while A. cerana microbiome was characterized by the predominance of one of the novel species erroneously classified as B. asteroides. A further glycobiome analysis unveiled a conserved repertoire of glycosyl hydrolases (GHs) reflecting degradative abilities towards a broad range of simple carbohydrates together with genes encoding specific GHs of each B. asteroides-related taxa.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression. Sci Rep 2022; 12:9576. [PMID: 35688912 PMCID: PMC9187656 DOI: 10.1038/s41598-022-13668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, is thought to sustain and enhance human health. Several surface-exposed structures, including so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in various members of the Bifidobacterium genus. The nature and extent of this slippage is modulated by the host environment. Involvement of such sortase-dependent pilus clusters in microbe-host interactions, including bacterial attachment to the gut epithelial cells, has been shown previously and is corroborated here for one case. Using a Maximum Depth Sequencing strategy aimed at excluding PCR and sequencing errors introduced by DNA polymerase reagents, specific G-tract sequences in B. breve UCC2003 reveal a range of G-tract lengths whose plasticity within the population is functionally utilized. Interestingly, replication slippage is shown to be modulated under in vivo conditions in a murine model. This in vivo modulation causes an enrichment of a G-tract length which appears to allow biosynthesis of these sortase-dependent pili. This work provides the first example of productive replication slippage influenced by in vivo conditions. It highlights the potential for microdiversity generation in “beneficial” gut commensals.
Collapse
|
22
|
The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight Bifidobacterium pseudocatenulatum Isolates from Different Niches of China. Nutrients 2022; 14:nu14112347. [PMID: 35684146 PMCID: PMC9183100 DOI: 10.3390/nu14112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Eighty-eight Bifidobacterium pseudocatenulatum strains, which were isolated from human, chicken and cow fecal samples from different niches of China, were compared genomically in this study to evaluate their diversity. It was found that B. pseudocatenulatum displayed a closed pan-genome, including abundant glycoside hydrolase families of the carbohydrate active enzyme (CAZy). A total of 30 kinds of glycoside hydrolases (GHs), 14 kinds of glycosyl transferases (GTs), 13 kinds of carbohydrate-binding modules (CBMs), 6 kinds of carbohydrate-esterases (CEs), and 2 kinds of auxiliary activities (AAs) gene families were identified across the genomes of the 88 B. pseudocatenulatum strains. Specifically, this showed that significant differences were also present in the number of 10 carbohydrate-active enzyme gene families (GT51, GH13_32, GH26, GH42, GH121, GH3, AA3, CBM46, CE2, and CE6) among the strains derived from the hosts of different age groups, particularly between strains from infants and those from other human age groups. Twelve different individuals of B. pseudocatenulatum from four main clusters were selected for further study to reveal the genetic diversity of carbohydrate metabolism-related genes within the same phylogenetics. The animal experiment showed that 3 weeks of oral administration and 1 week after cessation of administration of these strains did not markedly alter the serum routine inflammatory indicators in mice. Furthermore, the administration of these strains did not significantly cause adverse changes in the gut microbiota, as indicated by the α- and β-diversity indexes, relative to the control group (normal diet). Beyond that, FAHBZ9L5 significantly increased the abundance of B. pseudocatenulatum after 3 weeks and significantly increased the abundance of acetic acid and butyric acid in the host’s intestinal tract 3 and 4 weeks after the first administration, respectively, compared with the control group. Corresponding to this, comparative genomic analyses of 12 B. pseudocatenulatum suggest that FAHBZ9L5-specific genes were rich in ABC transporters and carbohydrate esterase. Combining the results of comparative genomics analyses and animal experiment, it is suggested that the strains containing certain gene clusters contribute to another competitive growth advantage of B. pseudocatenulatum, which facilitates its intestinal carbohydrate metabolism in a host.
Collapse
|
23
|
Argentini C, Fontana F, Alessandri G, Lugli GA, Mancabelli L, Ossiprandi MC, van Sinderen D, Ventura M, Milani C, Turroni F. Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota. Microbiol Spectr 2022; 10:e0273321. [PMID: 35266820 PMCID: PMC9045136 DOI: 10.1128/spectrum.02733-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
It has been widely reported that members of the genus Lactobacillus dominate the vaginal microbiota, which is represented by the most prevalent species Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus gasseri, and Lactobacillus iners. L. crispatus is furthermore considered an important microbial biomarker due to its professed beneficial implications on vaginal health. In order to identify molecular mechanisms responsible for health-promoting activities that are believed to be elicited by L. crispatus, we performed in silico investigations of the intraspecies biodiversity of vaginal microbiomes followed by in vitro experiments involving various L. crispatus strains along with other vaginal Lactobacillus species mentioned above. Specifically, we assessed their antibacterial activities against a variety of pathogenic microorganisms that are associated with vaginal infections. Moreover, coculture experiments of L. crispatus strains showing the most antibacterial activity against different pathogens revealed distinct ecological fitness and competitive properties with regard to other microbial colonizers. Interestingly, we observed that even phylogenetically closely related L. crispatus strains possess unique features in terms of their antimicrobial activities and associated competitive abilities, which suggests that they exert marked competition and evolutionary pressure within their specific environmental niche. IMPORTANCE The human vaginal microbiota includes all microorganisms that colonize the vaginal tract. In this context, a vaginal microbiota dominated by Lactobacillus and specifically by Lactobacillus crispatus is considered a hallmark of health. The role of L. crispatus in maintaining host health is linked to its modulatory activity toward other members of the vaginal ecosystem and toward the host. In this study, in vitro experiments followed by genetic analyses of the mechanisms used by L. crispatus in colonizing the vaginal ecological niche, particularly in the production of different antimicrobial compounds, were evaluated, highlighting some intriguing novel aspects concerning the genetic variability of this species. Our results indicate that this species has adapted to its niche and may still undergo adaptation to enhance its competitiveness for niche colonization.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Cristina Ossiprandi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
24
|
Disclosing the Genomic Diversity among Members of the Bifidobacterium Genus of Canine and Feline Origin with Respect to Those from Human. Appl Environ Microbiol 2022; 88:e0203821. [PMID: 35285708 DOI: 10.1128/aem.02038-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent decades, much scientific attention has been paid to characterizing members of the genus Bifidobacterium due to their well-accepted ability to exert various beneficial effects upon their host. However, despite the well-accepted status of dogs and cats as principal companion animals of humans, the bifidobacterial communities that colonize their gut still represents a rather unexplored research area. To expand and further investigate the bifidobacterial ecosystem inhabiting the canine and feline intestine, strains belonging to this genus were isolated from fecal samples of dogs and cats and subjected to de novo sequencing. The obtained sequencing data, together with publicly available genomes of strains belonging to the same bifidobacterial species of our isolates, and of both human and animal origin, were employed for in-depth comparative genome analyses. These phylogenomic investigations highlighted a different degree of genetic variability between human- or pet-derived bifidobacteria depending on the considered species, with B. pseudocatenulatum strains of pet origin showing higher genetic variability than human-derived strains of the same bifidobacterial species. Furthermore, in silico evaluation of metabolic activities coupled with in vitro growth assays revealed the crucial role of diet in driving the genetic assembly of bifidobacteria as a result of their adaptation to the specific ecological niche they colonize. IMPORTANCE Despite cats and dogs being well recognized as the most intimate companion animals to humans, current knowledge on canine and feline gut microbial consortia is still far from being fully dissected compared to the significant advances achieved for other microbial ecosystems, such as the human gut microbiota. In this context, a combination of in silico genome-based analysis and in vitro carbohydrate growth assay allowed us to further explore the canine and feline bifidobacterial community with respect to that inhabiting the human intestine. Specifically, these data revealed how strains of different bifidobacterial species seem to have evolved a different degree of host-specific adaptation. In detail, genotypic and phenotypic evidence of how diet can be considered the main factor of this host-specific adaptation is provided.
Collapse
|
25
|
Guo C, Liu X, Xu Y, Han X, Xie R, Meng X, Li Y, Chen T, Cheng Z, Fu X. Exploring the Mechanism of Action of Canmei Formula Against Colorectal Adenoma Through Multi-Omics Technique. Front Cell Dev Biol 2021; 9:778826. [PMID: 34926462 PMCID: PMC8672438 DOI: 10.3389/fcell.2021.778826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Canmei formula (CMF) is a traditional Chinese medicine compound with definite effect on the prevention and treatment of colorectal adenoma (CRA). CMF can prevent the transformation of intestinal inflammation to cancer. This study explored the mechanism of action of CMF in anti-CRA using multi-omics techniques. Method: The mice were randomly divided into four groups: blank group (Control), high-fat diet (HFD) + AOM/DSS colorectal adenoma model (ADH) groups, Canmei formula treatment group (ADH-CMF) and sulfasalazine treatment group (Sul). Except for the blank group, ADH model was established in the other three groups by intraperitoneal injection with AOM reagent, and then mice were given 2.5% DSS in free drinking water and high-fat diet. The mice in the blank group and ADH groups were intragastrically perfused with normal saline, and the mice in the other two groups were treated with corresponding drugs for 20 weeks. During this period, the changes of physical signs of mice in each group were observed. The differentially expressed genes and proteins in the Control group, ADH group and ADH-CMF group were detected by RNA-seq transcriptome sequencing and Tandem Mass Tags (TMT) quantitative proteomics. After the combined analysis and verification, the key targets were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, the changes of intestinal flora in mice of the three groups were examined. Results: A total of 2,548 differential genes were obtained by transcriptomics analysis, and 45 differential proteins were obtained by proteomics analysis. The results of proteomics data and experimental verification showed that CMF mainly affected the Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) target. GO analysis showed that the targets of CMF were involved in the biological processes such as cellular process, metabolic process and biological regulation. KEGG analysis showed that those genes were involved in oxidative phosphorylation, cell senescence, and metabolic pathways. Studies have shown that LHPP overexpression impeded colorectal cancer cell growth and proliferation in vitro, and was associated with a change in PI3K/AKT activity. The results of 16S DNA high-throughput sequencing showed that CMF could effectively regulate the abundance of Bifidobacterium, Candidatus_Saccharimonas and Erysipelatoclostridium in the intestinal flora at the genus level. Conclusion: CMF regulates LHPP via the PI3K/AKT signaling pathway. CMF affects the abundance of specific intestinal flora and can regulate the disorder of intestinal flora to achieve the role of prevention and treatment of CRA.
Collapse
Affiliation(s)
- Cui Guo
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Xiaoqiang Liu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pain, Shibei Hospital, Shanghai, China
| | - Yimin Xu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyue Han
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runnan Xie
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Miaohang Town Community Health Service Center, Shanghai, China
| | - Xiangxue Meng
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Yuan Li
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tongyu Chen
- Cardiothoracic Surgery Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Cheng
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering Research Center, Shanghai, China
| | - Xiaoling Fu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Phylogenetic classification of ten novel species belonging to the genus Bifidobacterium comprising B. phasiani sp. nov., B. pongonis sp. nov., B. saguinibicoloris sp. nov., B. colobi sp. nov., B. simiiventris sp. nov., B. santillanense sp. nov., B. miconis sp. nov., B. amazonense sp. nov., B. pluvialisilvae sp. nov., and B. miconisargentati sp. nov. Syst Appl Microbiol 2021; 44:126273. [PMID: 34715437 DOI: 10.1016/j.syapm.2021.126273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.
Collapse
|
27
|
Colonized Niche, Evolution and Function Signatures of Bifidobacterium pseudolongum within Bifidobacterial Genus. Foods 2021; 10:foods10102284. [PMID: 34681333 PMCID: PMC8535030 DOI: 10.3390/foods10102284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Although genomic features of various bifidobacterial species have received much attention in the past decade, information on Bifidobacterium pseudolongum was limited. In this study, we retrieved 887 publicly available genomes of bifidobacterial species, and tried to elucidate phylogenetic and potential functional roles of B. pseudolongum within the Bifidobacterium genus. Results: The results indicated that B. pseudolongum formed a population structure with multiple monophyletic clades, and had established associations with different types of mammals. The abundance of B. pseudolongum was inversely correlated with that of the harmful gut bacterial taxa. We also found that B. pseudolongum showed a strictly host-adapted lifestyle with a relatively smaller genome size, and higher intra-species genetic diversity in comparison with the other tested bifidobacterial species. For functional aspects, B. pseudolongum showed paucity of specific metabolic functions, and enrichment of specific enzymes degrading complex plant carbohydrates and host glycans. In addition, B. pseudolongum possessed a unique signature of probiotic effector molecules compared with the other tested bifidobacterial species. The investigation on intra-species evolution of B. pseudolongum indicated a clear evolution trajectory in which considerable clade-specific genes, and variation on genomic diversity by clade were observed. Conclusions: These findings provide valuable information for explaining the host adaptability of B. pseudolongum, its evolutionary role, as well as its potential probiotic effects.
Collapse
|
28
|
Dietary Valine Ameliorated Gut Health and Accelerated the Development of Nonalcoholic Fatty Liver Disease of Laying Hens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4704771. [PMID: 34484560 PMCID: PMC8410442 DOI: 10.1155/2021/4704771] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Valine is an important essential amino acid of laying hens. Dietary supplemented with BCAAs ameliorated gut microbiota, whereas elevated blood levels of BCAAs are positively associated with obesity, insulin resistance, and diabetes in both humans and rodents. General controlled nonrepressed (GCN2) kinase plays a crucial role in regulating intestinal inflammation and hepatic fatty acid homeostasis during amino acids deficiency, while GCN2 deficient results in enhanced intestinal inflammation and developed hepatic steatosis. However, how long-term dietary valine impacts gut health and the development of nonalcoholic fatty liver disease (NAFLD) remains unknown. Hence, in the present study, we elucidated the effects of dietary valine on intestinal barrier function, microbial homeostasis, and the development of NAFLD. A total of 960 healthy 33-weeks-old laying hens were randomly divided into five experimental groups and fed with valine at the following different levels in a feeding trial that lasted 8 weeks: 0.59, 0.64, 0.69, 0.74, and 0.79%, respectively. After 8 weeks of treatment, related tissues and cecal contents were obtained for further analysis. The results showed that diet supplemented with valine ameliorated gut health by improving intestinal villus morphology, enhancing intestinal barrier, decreasing cecum pathogenic bacteria abundances such as Fusobacteriota and Deferribacterota, and inhibiting inflammatory response mediated by GCN2. However, long-term intake of high levels of dietary valine (0.74 and 0.79%) accelerated the development of NAFLD of laying hens by promoting lipogenesis and inhibiting fatty acid oxidation mediated by GCN2-eIF2α-ATF4. Furthermore, NAFLD induced by high levels of dietary valine (0.74 and 0.79%) resulted in strengthening oxidative stress, ER stress, and inflammatory response. Our results revealed that high levels of valine are a key regulator of gut health and the adverse metabolic response to NAFLD and suggested reducing dietary valine as a new approach to preventing NAFLD of laying hens.
Collapse
|
29
|
Captive Common Marmosets (Callithrix jacchus) Are Colonized throughout Their Lives by a Community of Bifidobacterium Species with Species-Specific Genomic Content That Can Support Adaptation to Distinct Metabolic Niches. mBio 2021; 12:e0115321. [PMID: 34340536 PMCID: PMC8406136 DOI: 10.1128/mbio.01153-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific.
Collapse
|
30
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Fontana F, Alessandri G, Longhi G, Anzalone R, Viappiani A, Turroni F, van Sinderen D, Ventura M. Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microb Genom 2021; 7. [PMID: 34319225 PMCID: PMC8477406 DOI: 10.1099/mgen.0.000609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the Bifidobacterium longum species have been shown to possess adaptive abilities to allow colonization of different mammalian hosts, including humans, primates and domesticated mammalian species, such as dogs, horses, cattle and pigs. To date, three subspecies have formally been recognized to belong to this bifidobacterial taxon, i.e. B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. Although B. longum subsp. longum is widely distributed in the human gut irrespective of host age, B. longum subsp. infantis appears to play a significant role as a prominent member of the gut microbiota of breast-fed infants. Nevertheless, despite the considerable scientific relevance of these taxa and the vast body of genomic data now available, an accurate dissection of the genetic features that comprehensively characterize the B. longum species and its subspecies is still missing. In the current study, we employed 261 publicly available B. longum genome sequences, combined with those of 11 new isolates, to investigate genomic diversity of this taxon through comparative genomic and phylogenomic approaches. These analyses allowed us to highlight a remarkable intra-species genetic and physiological diversity. Notably, characterization of the genome content of members of B. longum subsp. infantis subspecies suggested that this taxon may have acquired genetic features for increased competitiveness in the gut environment of suckling hosts. Furthermore, specific B. longum subsp. infantis genomic features appear to be responsible for enhanced horizontal gene transfer (HGT) occurrences, underpinning an intriguing dedication toward acquisition of foreign DNA by HGT events.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,GenProbio Srl, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
31
|
The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep 2021; 11:15273. [PMID: 34315970 PMCID: PMC8316555 DOI: 10.1038/s41598-021-94824-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Bifidobacteria, which commonly inhabit the primate gut, are beneficial contributors to host wellbeing. Anatomical differences and natural habitat allow an arrangement of primates into two main parvorders; New World monkeys (NWM) and Old World monkeys (OWM). The number of newly described bifidobacterial species is clearly elevated in NWM. This corresponds to our finding that bifidobacteria were the dominant group of cultivated gut anaerobes in NWM, while their numbers halved in OWM and were often replaced by Clostridiaceae with sarcina morphology. We examined an extended MALDI-TOF MS database as a potential identification tool for rapid screening of bifidobacterial distribution in captive primates. Bifidobacterial isolates of NWM were assigned mainly to species of primate origin, while OWM possessed typically multi-host bifidobacteria. Moreover, bifidobacterial counts reflected the feed specialization of captive primates decreasing from frugivore-insectivores, gummivore-insectivores, frugivore-folivores to frugivore-omnivores. Amplicon sequencing analysis supported this trend with regards to the inverse ratio of Actinobacteria and Firmicutes. In addition, a significantly higher diversity of the bacterial population in OWM was found. The evolution specialization of primates seems to be responsible for Bifidobacterium abundance and species occurrence. Balanced microbiota of captive primates could be supported by optimized prebiotic and probiotic stimulation based on the primate host.
Collapse
|
32
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
33
|
Lugli GA, Alessandri G, Milani C, Viappiani A, Fontana F, Tarracchini C, Mancabelli L, Argentini C, Ruiz L, Margolles A, van Sinderen D, Turroni F, Ventura M. Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction. Environ Microbiol 2021; 23:3294-3305. [PMID: 33973321 PMCID: PMC8359967 DOI: 10.1111/1462-2920.15559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 01/26/2023]
Abstract
Whole metagenomic shotgun (WMS) sequencing has dramatically enhanced our ability to study microbial genomics. The possibility to unveil the genetic makeup of bacteria that cannot be easily isolated has significantly expanded our microbiological horizon. Here, we report an approach aimed at uncovering novel bacterial species by the use of targeted WMS sequencing. Employing in silico data retrieved from metabolic modelling to formulate a chemically defined medium (CDM), we were able to isolate and subsequently sequence the genomes of six putative novel species of bacteria from the gut of non‐human primates.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | | | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, T12YT20, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| |
Collapse
|
34
|
Gene-Phenotype Associations Involving Human-Residential Bifidobacteria (HRB) Reveal Significant Species- and Strain-Specificity in Carbohydrate Catabolism. Microorganisms 2021; 9:microorganisms9050883. [PMID: 33919102 PMCID: PMC8143103 DOI: 10.3390/microorganisms9050883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bifidobacteria are among the first colonizers of the human gastrointestinal tract. Different bacterial species use different mechanisms for utilization of various carbon sources in order to establish themselves in the complex microbial ecosystem of the gut. However, these mechanisms still need to be explored. Here, a large gene–phenotype correlation analysis was carried out to explore the metabolic and genetic diversity of bifidobacterial carbohydrate utilization abilities. In this study, we used 21 different carbohydrates to determine the growth phenotypes, the distribution of glycoside hydrolases (GHs), and gene clusters related to the utilization of multiple carbon sources in six human-residential Bifidobacterium species. Five carbohydrates significantly stimulated growth of almost all strains, while the remaining sugars exhibited species- and strain-specificity. Correspondingly, different Bifidobacterium species also had specific GHs involved in fermentation of plant or host glycans. Moreover, we analyzed several carbohydrate utilization gene clusters, such as 2-fucosyllactose (2′FL), sialic acid (SA), and fructooligosaccharide (FOS). In summary, by using 217 bifidobacterial strains and a wide range of growth substrates, our research revealed inter- and intra-species differences in bifidobacterial in terms of carbohydrate utilization. The findings of this study are useful for the process of developing prebiotics for optimum growth of probiotics, especially Bifidobacterium species.
Collapse
|
35
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
36
|
Modesto M, Satti M, Watanabe K, Huang CH, Liou JS, Tamura T, Saito S, Mori K, Huang L, Sandri C, Spiezio C, Sgorbati B, Scarafile D, Cammà C, Ancora M, Patavino C, Arita M, Mattarelli P. Bifidobacteria in two-toed sloths ( Choloepus didactylus): phylogenetic characterization of the novel taxon Bifidobacterium choloepi sp. nov. Int J Syst Evol Microbiol 2021; 70:6115-6125. [PMID: 33052806 DOI: 10.1099/ijsem.0.004506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seven bifidobacterial strains were isolated from the faeces of two adult males of the two-toed sloth (Choloepus didactylus) housed in Parco Natura Viva, in Italy. Comparative sequence analysis of 16S rRNA and of five housekeeping (hsp60, rpoB, clpC, dnaJ, dnaG) genes revealed that these strains were classified into two clusters. On the basis of 16S rRNA gene sequence similarity, the type strain of Bifidobacterium catenulatum subsp. kashiwanohense DSM 21854T (95.4 %) was the closest neighbour to strain in Cluster I (BRDM 6T), whereas the type strain of Bifidobacterium dentium DSM 20436T (values were in the range of 98‒99.8 %) was the closest neighbour to the other six strains in Cluster II. The average nucleotide identity (ANI) values of BRDM 6T and of strains in Cluster II with the closely related type strains were 76.0 and 98.9 % (mean value) respectively. Therefore, genotyping based on the genome sequence of the strain BRDM 6T combined with phenotypic analyses clearly revealed that the strain BRDM 6T represents a novel species for which the names Bifidobacterium choloepi sp. nov. (BRDM 6T=NBRC 114053T=BCRC 81222T) is proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Maria Satti
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Tomohiko Tamura
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satomi Saito
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koji Mori
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Barbara Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Claudio Patavino
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
37
|
Lugli GA. Assembly, Annotation, and Comparative Analysis of Bifidobacterial Genomes. Methods Mol Biol 2021; 2278:31-44. [PMID: 33649946 DOI: 10.1007/978-1-0716-1274-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genome assembly and annotation are two of the key actions that must be undertaken in order to explore the genomic repertoire of (bifido)bacteria. The gathered information can be employed to genomically characterize a given microorganism, and can also be used to perform comparative genome analysis by including other sequenced (bifido)bacterial strains. Here, we highlight various bioinformatic programs able to manage next generation sequencing data starting from the assembly of a genome to the comparative analyses between strains.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
38
|
Assessing the Genomic Variability of Gardnerella vaginalis through Comparative Genomic Analyses: Evolutionary and Ecological Implications. Appl Environ Microbiol 2020; 87:AEM.02188-20. [PMID: 33097505 DOI: 10.1128/aem.02188-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023] Open
Abstract
Gardnerella vaginalis is described as a common anaerobic vaginal bacterium whose presence may correlate with vaginal dysbiotic conditions. In the current study, we performed phylogenomic analyses of 72 G. vaginalis genome sequences, revealing noteworthy genome differences underlying a polyphyletic organization of this taxon. Particularly, the genomic survey revealed that this species may actually include nine distinct genotypes (GGtype1 to GGtype9). Furthermore, the observed link between sialidase and phylogenomic grouping provided clues of a connection between virulence potential and the evolutionary history of this microbial taxon. Specifically, based on the outcomes of these in silico analyses, GGtype3, GGtype7, GGtype8, and GGtype9 appear to have virulence potential since they exhibited the sialidase gene in their genomes. Notably, the analysis of 34 publicly available vaginal metagenomic samples allowed us to trace the distribution of the nine G. vaginalis genotypes identified in this study among the human population, highlighting how differences in genetic makeup could be related to specific ecological properties. Furthermore, comparative genomic analyses provided details about the G. vaginalis pan- and core genome contents, including putative genetic elements involved in the adaptation to the ecological niche as well as many putative virulence factors. Among these putative virulence factors, particularly noteworthy genes identified were the gene encoding cholesterol-dependent cytolysin (CDC) toxin vaginolysin and genes related to microbial biofilm formation, iron uptake, adhesion to the vaginal epithelium, as well as macrolide antibiotic resistance.IMPORTANCE The identification of nine different genotypes among members of G. vaginalis allowed us to distinguish an uneven distribution of virulence-associated genetic traits within this taxon and thus suggest the potential occurrence of putative pathogen and commensal G. vaginalis strains. These findings, coupled with metagenomics microbial profiling of human vaginal microbiota, permitted us to get insights into the distribution of the genotypes among the human population, highlighting the presence of different structural communities in terms of G. vaginalis genotypes.
Collapse
|
39
|
Neuzil-Bunesova V, Lugli GA, Modrackova N, Vlkova E, Bolechova P, Burtscher J, Longhi G, Mancabelli L, Killer J, Domig K, Ventura M. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int J Syst Evol Microbiol 2020; 71. [PMID: 33226935 DOI: 10.1099/ijsem.0.004573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five Bifidobacterium strains, VB23T, VB24T, VB25T, VB26T and VB31T, were isolated from chimpanzee (Pan troglodytes), cotton-top tamarin (Saguinus oedipus), Goeldi's marmoset (Callimico goeldii), moustached tamarin (Saguinus mystax) and patas monkey (Erythrocebus patas), respectively, which were kept in two Czech zoos. These strains were isolated from faecal samples and were Gram-positive, non-motile, non-sporulating, anaerobic and fructose-6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA revealed close relatedness between VB23T and Bifidobacterium angulatum LMG 11039T (96.0 %), VB24T and Bifidobacterium pullorum subsp. pullorum DSM 20433T (96.1 %), VB25T and Bifidobacterium goeldii LMG 30939T (96.5 %), VB26T and Bifidobacterium imperatoris LMG 30297T (98.1 %), and VB31T and B. angulatum LMG 11039T (99.40 %). Internal transcribed spacer profiling revealed that VB23T, VB24T, VB25T, VB26T and VB31T had highest similarity to Bifidobacterium breve LMG 13208T (77.2 %), Bifidobacterium longum subsp. infantis ATCC 15697T (85.8 %), Bifidobacterium biavatii DSM 23969T (76.9 %), B. breve LMG 13208T (81.2 %) and B. angulatum LMG 11039T (88.2 %), respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with their closest neighbours supported the independent phylogenetic positions of the strains with values between 86.3 and 94.3 % for ANI and 25.8 and 54.9 % for dDDH. These genomic and phylogenetic analyses suggested that the evaluated strains were novel Bifidobacterium species named Bifidobacterium erythrocebi sp. nov. (VB31T=DSM 109960T=CCUG 73843T), Bifidobacterium moraviense sp. nov. (VB25T=DSM 109958T=CCUG 73842T), Bifidobacterium oedipodis sp. nov. (VB24T=DSM 109957T=CCUG 73932T), Bifidobacterium olomucense sp. nov. (VB26T=DSM 109959T=CCUG 73845T) and Bifidobacterium panos sp. nov. (VB23T=DSM 109963T=CCUG 73840T).
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Petra Bolechova
- Department of Ethology and Companion Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jiri Killer
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia.,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Konrad Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna, A-1190, Austria
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
40
|
Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L, Turroni F, Neuzil-Bunesova V, Ruiz L, Margolles A, Ventura M. Decoding the Genomic Variability among Members of the Bifidobacterium dentium Species. Microorganisms 2020; 8:E1720. [PMID: 33152994 PMCID: PMC7693768 DOI: 10.3390/microorganisms8111720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Members of the Bifidobacterium dentium species are usually identified in the oral cavity of humans and associated with the development of plaque and dental caries. Nevertheless, they have also been detected from fecal samples, highlighting a widespread distribution among mammals. To explore the genetic variability of this species, we isolated and sequenced the genomes of 18 different B. dentium strains collected from fecal samples of several primate species and an Ursus arctos. Thus, we investigated the genomic variability and metabolic abilities of the new B. dentium isolates together with 20 public genome sequences. Comparative genomic analyses provided insights into the vast metabolic repertoire of the species, highlighting 19 glycosyl hydrolases families shared between each analyzed strain. Phylogenetic analysis of the B. dentium taxon, involving 1140 conserved genes, revealed a very close phylogenetic relatedness among members of this species. Furthermore, low genomic variability between strains was also confirmed by an average nucleotide identity analysis showing values higher than 98.2%. Investigating the genetic features of each strain, few putative functional mobile elements were identified. Besides, a consistent occurrence of defense mechanisms such as CRISPR-Cas and restriction-modification systems may be responsible for the high genome synteny identified among members of this taxon.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, 43126 Parma, Italy;
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic;
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| |
Collapse
|
41
|
Neuzil-Bunesova V, Lugli GA, Modrackova N, Makovska M, Mrazek J, Mekadim C, Musilova S, Svobodova I, Spanek R, Ventura M, Killer J. Bifidobacterium canis sp. nov., a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog ( Canis lupus f. familiaris). Int J Syst Evol Microbiol 2020; 70:5040-5047. [PMID: 32804603 DOI: 10.1099/ijsem.0.004378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A fructose-6-phosphate phosphoketolase-positive strain (GSD1FST) was isolated from a faecal sample of a 3 weeks old German Shepherd dog. The closest related taxa to isolate GSD1FST based on results from the EZBioCloud database were Bifidobacterium animalis subsp. animalis ATCC 25527T, Bifidobacterium animalis subsp. lactis DSM 10140T and Bifidobacterium anseris LMG 30189T, belonging to the Bifidobacterium pseudolongum phylogenetic group. The resulting 16S rRNA gene identities (compared length of 1454 nucleotides) towards these taxa were 97.30, 97.23 and 97.09 %, respectively. The pairwise similarities of strain GSD1FST using argS, atpA, fusA, hsp60, pyrG, rpsC, thrS and xfp gene fragments to all valid representatives of the B. pseudolongum phylogenetic group were in the concatenated range of 83.08-88.34 %. Phylogenomic analysis based on whole-genome methods such as average nucleotide identity revealed that bifidobacterial strain GSD1FST exhibits close phylogenetic relatedness (88.17 %) to Bifidobacetrium cuniculi LMG 10738T. Genotypic characteristics and phylogenetic analyses based on nine molecular markers, as well as genomic and comparative phenotypic analyses, clearly proved that the evaluated strain should be considered as representing a novel species within the B. pseudolongum phylogenetic group named as Bifidobacterium canis sp. nov. (GSD1FST=DSM 105923T=LMG 30345T=CCM 8806T).
Collapse
Affiliation(s)
- Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Marie Makovska
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia.,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Sarka Musilova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Ivona Svobodova
- Department of Husbandry and Ethology of Animals, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| | - Roman Spanek
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1, 461 17, Czechia
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Jiri Killer
- Institute of Animal Physiology and Genetics v.v.i., Czech Academy of Sciences, Vídeňská 1083, Prague 4 - Krč, 142 20, Czechia.,Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 - Suchdol, 165 00, Czechia
| |
Collapse
|
42
|
Kim HB, Kim E, Yang SM, Lee S, Kim MJ, Kim HY. Development of Real-Time PCR Assay to Specifically Detect 22 Bifidobacterium Species and Subspecies Using Comparative Genomics. Front Microbiol 2020; 11:2087. [PMID: 33013760 PMCID: PMC7493681 DOI: 10.3389/fmicb.2020.02087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023] Open
Abstract
Bifidobacterium species are used as probiotics to provide beneficial effects to humans. These effects are specific to some species or subspecies of Bifidobacterium. However, some Bifidobacterium species or subspecies are not distinguished because similarity of 16S rRNA and housekeeping gene sequences within Bifidobacterium species is very high. In this study, we developed a real-time polymerase chain reaction (PCR) assay to rapidly and accurately detect 22 Bifidobacterium species by selecting genetic markers using comparative genomic analysis. A total of 210 Bifidobacterium genome sequences were compared to select species- or subspecies-specific genetic markers. A phylogenetic tree based on pan-genomes generated clusters according to Bifidobacterium species or subspecies except that two strains were not grouped with their subspecies. Based on pan-genomes constructed, species- or subspecies-specific genetic markers were selected. The specificity of these markers was confirmed by aligning these genes against 210 genome sequences. Real-time PCR could detect 22 Bifidobacterium specifically. We constructed the criterion for quantification by standard curves. To further test the developed assay for commercial food products, we monitored 26 probiotic products and 7 dairy products. Real-time PCR results and labeling data were then compared. Most of these products (21/33, 63.6%) were consistent with their label claims. Some products labeled at species level only can be detected up to subspecies level through our developed assay.
Collapse
Affiliation(s)
- Hyeon-Be Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Eiseul Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Seung-Min Yang
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Shinyoung Lee
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Mi-Ju Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
43
|
Liu J, Luo M, Zhang Y, Cao G, Wang S. Association of high-risk human papillomavirus infection duration and cervical lesions with vaginal microbiota composition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1161. [PMID: 33241010 PMCID: PMC7576078 DOI: 10.21037/atm-20-5832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Cervical cancer is reportedly caused by the synergistic effects of persistent high-risk human papillomavirus (HPV) infection. Cervical microbiota represent a unique and dynamically changing microecological system that is directly exposed to the vagina. The relationship between HPV and the composition of the cervical microbiome has long been a primary focus of research. Methods To determine the specific differential florae throughout the process of cervical cancer development, in the present study, 16S rRNA sequencing was combined with KEGG pathway enrichment analysis to analyse five groups of cervical scraping samples with increasing durations of HPV infection and cervical intraepithelial neoplasia pathological classification. Results The findings revealed that decreasing levels of probiotics, including Shuttleworthia, Prevotella, Lactobacillus, and Sneathia, and increasing levels of pathogenic bacteria, including Dispar, Streptococcus, and Faecalibacterium prausnitzii, could be the direct result of early HPV infection. Other pathogenic bacteria, such as Bifidobacteriaceae, might represent key factors in cancer progression. Additionally, KEGG pathway enrichment analysis indicated that HPV infection directly inhibits multiple pathways, including those of sporulation, porphyrin and chlorophyll metabolism, arginine and proline metabolism, isoquinoline alkaloid biosynthesis, and ansamycin biosynthesis, which may lead to the development of early symptoms of cervical cancer. Biomarkers were predicted based on operational taxonomic unit (OTU) abundance data, and OTU851726 and OTU715913 were undoubtedly the best potential indicators of cervical cancer. Conclusions The findings of the present study could assist with the development of a guideline for screening new clinical drugs for cervical cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mei Luo
- Department of Obstetrics and Gynecology, Lu-He Teaching Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Huang D, Yang B, Chen Y, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Comparative genomic analyses of Lactobacillus rhamnosus isolated from Chinese subjects. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, Borragán S, González A, Turroni F, Ossiprandi MC, Margolles A, van Sinderen D, Ventura M. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol 2020; 22:3375-3393. [PMID: 32515117 DOI: 10.1111/1462-2920.15108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
In recent years, bifidobacterial populations in the gut of various monkey species have been assessed in several ecological surveys, unveiling a diverse, yet unexplored ecosystem harbouring novel species. In the current study, we investigated the species distribution of bifidobacteria present in 23 different species of primates, including human samples, by means of 16S rRNA microbial profiling and internal transcribed spacer bifidobacterial profiling. Based on the observed bifidobacterial-host co-phylogeny, we found a statistically significant correlation between the Hominidae family and particular bifidobacterial species isolated from humans, indicating phylosymbiosis between these lineages. Furthermore, phylogenetic and glycobiome analyses, based on 40 bifidobacterial species isolated from primates, revealed that members of the Bifidobacterium tissieri phylogenetic group, which are typical gut inhabitants of members of the Cebidae family, descend from an ancient ancestor with respect to other bifidobacterial taxa isolated from primates.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, Parma, 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | | | - Andrea González
- Zoo de Santillana, Avda. del Zoo 2, Santillana del Mar, Cantabria, 39330, Spain
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | | | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12 YT20, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| |
Collapse
|
46
|
Fang J, Yang R, Cao Q, Dong J, Li C, Quan Q, Huang M, Liu J. Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19661-19677. [PMID: 32221828 DOI: 10.1007/s11356-020-08446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
In freshwater ecosystems, wetlands are generally distinguished from deep-water ecosystems by 2-m water level as boundary. However, the difference of sediment microbial communities between wetlands and deep-water ecosystems is still unclear. We combined 16S rRNA gene sequencing and community metabolic prediction to compare sediment microbial communities and predicted metabolic genes of wetlands (natural and constructed wetlands) and deep-water ecosystems (river and lake) along with environmental factors in summer and autumn in Dongping Lake Basin. Results showed that the deep-water ecosystems had significantly higher community richness than the wetlands in autumn in the freshwater basin, which was mostly related to the pH of sediments. However, no significant difference in community richness was found in summer. Besides, the composition of both predicted metabolic genes and microbial communities was significantly affected by dissolved organic carbon (DOC) and dissolved oxygen (DO). The wetlands exhibited high predicted gene abundances related to xenobiotic biodegradation possibly due to the high DOC or DO level. Compared with the wetlands, most of the deep-water ecosystems exhibited high predicted gene abundances related to element (carbon, nitrogen, and sulfur) metabolism possibly due to the low DOC and DO levels in the freshwater basin. This study can expand the knowledge of ecological function distribution and detoxification mechanism of microbial communities in freshwater ecosystems.
Collapse
Affiliation(s)
- Jiaohui Fang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Ruirui Yang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, 250101, China
| | - Junyu Dong
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Changchao Li
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Quan Quan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Miansong Huang
- Ningxia Capital Sponge City Construction & Development Co., Ltd, Guyuan, 756000, China
| | - Jian Liu
- Environmental Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
47
|
Cruz R, Palmeira JD, Martins ZE, Faria MA, Ferreira H, Marques A, Casal S, Cunha SC. Multidisciplinary approach to determine the effect of polybrominated diphenyl ethers on gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113920. [PMID: 31991346 DOI: 10.1016/j.envpol.2020.113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Environmental health is increasingly compromised by persistent toxic substances, which may have serious implications in food safety and, thus, in human health. Polybrominated diphenyl ethers (PBDEs) are anthropogenic contaminants with endocrine disruption abilities and are commonly found in seafood, the main route of human exposure. Growing evidence points out that the human gut microbiota interacts with xenobiotics, which may lead to impairment of host homeostasis if functions of microbiota become compromised. The aim of this study was to ascertain if the physiological balance of human gut microbiome is affected by the presence and degree of exposure to PBDEs. Fermentation was performed in a batch closed-system using an inoculum made from fresh human stool. The volatolomic profile was analysed by solid-phase microextraction coupled to gas chromatography-mass spectrometry. Mesophilic, Gram-negative bacteria and coliforms were quantified by classic plating methods. Changes in the gut microbiome were evaluated after DNA extraction followed by deep sequencing of the 16S rDNA region. The exposure to PBDEs resulted in an imbalance in sulfur, short-chain fatty acids and aromatic organic compounds, changing the microbial volatolome in a dose- and time-dependent manner. Slight deviations in the microbial structure of human gut occurred in the presence of PBDEs, especially for high doses of exposure. For the first time, the impact of PBDEs on the microbial homeostasis of human gut microbiota was taken into consideration, revealing noteworthy modifications with serious health implications even at oral exposure doses considered as safe by worldwide regulatory entities.
Collapse
Affiliation(s)
- Rebeca Cruz
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo, Ferreira 228, 4050-313, Porto, Portugal
| | - Josman D Palmeira
- UCIBIO, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Zita E Martins
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo, Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo, Ferreira 228, 4050-313, Porto, Portugal
| | - Helena Ferreira
- UCIBIO, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - António Marques
- IPMA, Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, I.P., Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Susana Casal
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo, Ferreira 228, 4050-313, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Sara C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo, Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
48
|
Ay H, Saygin H, Sahin N. Phylogenomic revision of the family Streptosporangiaceae, reclassification of Desertactinospora gelatinilytica as Spongiactinospora gelatinilytica comb. nov. and a taxonomic home for the genus Sinosporangium in the family Streptosporangiaceae. Int J Syst Evol Microbiol 2020; 70:2569-2579. [PMID: 32129735 DOI: 10.1099/ijsem.0.004073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the results of genome-based phylogenetic analyses have contributed to microbial systematics by increasing the availability of sequenced microbial genomes. Therefore, phylogenomic analysis within large taxa in the phylum Actinobacteria has appeared as a useful tool to clarify the taxonomic positions of ambiguous groups. In this study, we provide a revision of the actinobacterial family Streptosporangiaceae using a large collection of genome data and phylogenomics approaches. The phylogenomic analyses included the publicly available genome data of the members of the family Streptosporangiaceae and the state-of-the-art tools are used to infer the taxonomic affiliation of these species within the family. By comparing genome-based and 16S rRNA gene-based trees, as well as pairwise genome comparisons, the recently described genera Spongiactinospora and Desertactinospora are combined in the genus Spongiactinospora. In conclusion, a comprehensive phylogenomic revision of the family Streptosporangiaceae is proposed.
Collapse
Affiliation(s)
- Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| |
Collapse
|
49
|
Duranti S, Lugli GA, Viappiani A, Mancabelli L, Alessandri G, Anzalone R, Longhi G, Milani C, Ossiprandi MC, Turroni F, Ventura M. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov. Int J Syst Evol Microbiol 2020; 70:2288-2297. [PMID: 32065574 DOI: 10.1099/ijsem.0.004032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two Bifidobacterium strains, i.e., 2176BT and 2177BT, were isolated from Golden-Headed Lion Tamarin (Leontopithecus chrysomelas) and Goeldi's monkey (Callimico goeldii). Isolates were shown to be Gram-positive, non-motile, non-sporulating, facultative anaerobic and d-fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2176BT and 2177BT exhibit close phylogenetic relatedness to Bifidobacterium felsineum DSM 103139T and Bifidobacterium bifidum LMG 11041T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium cebidarum sp. nov. (2176BT=LMG 31469T=CCUG 73785T) and Bifidobacterium leontopitheci sp. nov. (2177BT=LMG 31471T=CCUG 73786T are proposed as novel Bifidobacterium species.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | | | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Microbiome Research Hub, University of Parma, Parma, Italy.,Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Lawson MAE, O'Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, Chalklen L, Hall LJ. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. THE ISME JOURNAL 2020; 14:635-648. [PMID: 31740752 PMCID: PMC6976680 DOI: 10.1038/s41396-019-0553-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Diet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there were differences in the ability to utilise 2'FL and LNnT HMOs between strains. Cross-feeding experiments were performed with HMO degraders and non-HMO users (using spent or 'conditioned' media and direct co-culture). Further 1H-NMR analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as 'foundation' species in the infant ecosystem. The intra- and inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.
Collapse
Affiliation(s)
- Melissa A E Lawson
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Lydia Becker Institute for Immunology and Inflammation & Wellcome Trust Centre for Cell Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ian J O'Neill
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- APC Microbiome Ireland, University College Cork, Biosciences Building, Cork, Ireland
| | - Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Anisha Wijeyesekera
- Department of Food & Nutritional Sciences, University of Reading, Reading, UK
| | - Zak Flegg
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lisa Chalklen
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|