1
|
Yin DP, Li MZ, Cao Y, Li H, Wu YZ, Li JY, Chen T, Jia Q, Wang D. Chloroplast-nuclear genome interaction drives asymmetric inverted repeats in chloroplast genome of Huperzia. Gene 2025; 946:149324. [PMID: 39938759 DOI: 10.1016/j.gene.2025.149324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Huperzia plants are important natural medicine species that have attracted increased amounts of attention due to the presence of huperzine A (Hup A), which efficiently, selectively, and reversibly inhibits acetylcholinesterase activity. However, due to the complexity of the genome structure and lack of genetic information, the phylogenetic and evolutionary relationships of Huperzia species are still unclear. In this study, seven chloroplast genome structures of Huperzia were verified and comparatively analyzed, and the phylogenetic relationships between Huperzia and other related ferns were evaluated. The results showed that a 58 kb insertion in the middle of the IRb region in the seven chloroplast genomes led to large differences in sequence size, GC content and tRNA number between IRa and IRb. All seven chloroplast genomes exhibited asymmetric structural conformations in the IR regions. We used sequence alignment and screening of the organelle and nuclear genomes to identify the source of the gene. The inserted sequence had no homologous region with the mitochondrial genome, and the same sequence as another segment was found in the nuclear genome. Then, the chloroplast genomes of Huperzia were comparatively analyzed. Phylogenetic tree showed that Phlegmariurus and Huperzia were closely related and belonged to the same branch. H. javanica and Huperzia serrata are closely related. From the perspective of phylogenetic tree, their phylogenetic relationship is closely related to geographical distribution. In conclusion, this study provides insights into the interaction mechanism between chloroplast genome and nuclear genome and the phylogeny of Huperzia. In addition, by comparing the chloroplast genomes of Huperzia, we analyzed its genetic diversity and provided important molecular information for the protection of these endangered species.
Collapse
Affiliation(s)
- Deng-Pan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Mu-Zi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Haibo Li
- Yuyao Seedling Management Station, Ningbo, Zhejiang 315400, China.
| | - Ya-Zhu Wu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Jun-Yi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2025; 93:111-123. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
3
|
Yu J, Li J, Zuo Y, Qin Q, Zeng S, Rennenberg H, Deng H. Plastome variations reveal the distinct evolutionary scenarios of plastomes in the subfamily Cereoideae (Cactaceae). BMC PLANT BIOLOGY 2023; 23:132. [PMID: 36882685 PMCID: PMC9993602 DOI: 10.1186/s12870-023-04148-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The cactus family (Cactaceae) has been reported to have evolved a minimal photosynthetic plastome size, with the loss of inverted-repeat (IR) regions and NDH gene suites. However, there are very limited genomic data on the family, especially Cereoideae, the largest subfamily of cacti. RESULTS In the present study, we assembled and annotated 35 plastomes, 33 of which were representatives of Cereoideae, alongside 2 previously published plastomes. We analyzed the organelle genomes of 35 genera in the subfamily. These plastomes have variations rarely observed in those of other angiosperms, including size differences (with ~ 30 kb between the shortest and longest), dramatic dynamic changes in IR boundaries, frequent plastome inversions, and rearrangements. These results suggested that cacti have the most complex plastome evolution among angiosperms. CONCLUSION These results provide unique insight into the dynamic evolutionary history of Cereoideae plastomes and refine current knowledge of the relationships within the subfamily.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| | - Jingling Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Qiulin Qin
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Siyuan Zeng
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology, College of Resources and Environment, Southwest University, Chongqing, 400715 China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| |
Collapse
|
4
|
Park JH, Lee M, Lee Y, Lee J. The complete chloroplast genome of Viola grypoceras (Violaceae). Mitochondrial DNA B Resour 2023; 8:42-44. [PMID: 36620316 PMCID: PMC9815259 DOI: 10.1080/23802359.2022.2160216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We constructed and characterized the chloroplast genome of Viola grypoceras via de novo assembly of Illumina data. The complete circular chloroplast genome is 158,357 bp long and contains four parts: a large single-copy (LSC) region of 86,764 bp, a small single-copy (SSC) region of 17,345 bp, and two inverted-repeat regions (IRa and IRb) of 27,124 bp each. Genome annotation predicted that this genome harbors 111 genes, comprising 77 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Phylogenetic analysis demonstrated that V. grypoceras shares a close systematic relationship with V. mirabilis and V. websteri by forming a basal clade in the genus Viola.
Collapse
Affiliation(s)
- Jin Hee Park
- Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea,CONTACT Jin Hee Park Nakdonggang National Institute of Biological Resources, Sangju37242, Republic of Korea
| | - Minjee Lee
- Green Plant Institute, Yongin, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jungho Lee
- Green Plant Institute, Yongin, Republic of Korea,Jungho Lee Green Plant Institute, Yongin16954, Republic of Korea
| |
Collapse
|
5
|
Yin X, Huang F, Liu X, Guo J, Cui N, Liang C, Lian Y, Deng J, Wu H, Yin H, Jiang G. Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis. Sci Rep 2022; 12:14241. [PMID: 35987818 PMCID: PMC9392791 DOI: 10.1038/s41598-022-17721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Corydalis is one of the few lineages that have been reported to have extensive large-scale chloroplast genome (cp-genome) rearrangements. In this study, novel cp-genome rearrangements of Corydalis pinnata, C. mucronate, and C. sheareri are described. C. pinnata is a narrow endemic species only distributed at Qingcheng Mountain in southwest China. Two independent relocations of the same four genes (trnM-CAU-rbcL) were found relocated from the typically posterior part of the large single-copy region to the front of it. A uniform inversion of an 11-14-kb segment (ndhB-trnR-ACG) was found in the inverted repeat region; and extensive losses of accD, clpP, and trnV-UAC genes were detected in all cp-genomes of all three species of Corydalis. In addition, a phylogenetic tree was reconstructed based on 31 single-copy orthologous proteins in 27 cp-genomes. This study provides insights into the evolution of cp-genomes throughout the genus Corydalis and also provides a reference for further studies on the taxonomy, identification, phylogeny, and genetic transformation of other lineages with extensive rearrangements in cp-genomes.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Feng Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Xiaofen Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jiachen Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Lian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jingjing Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Hao Wu
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Hongxiang Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| | - Guihua Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| |
Collapse
|
6
|
Hsieh CL, Yu CC, Huang YL, Chung KF. Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 12:720171. [PMID: 35069611 PMCID: PMC8770955 DOI: 10.3389/fpls.2021.720171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.
Collapse
Affiliation(s)
- Chia-Lun Hsieh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chieh Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yu-Lan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Chung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
8
|
Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, Bergès H, van den Berg C, Vieira MLC. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biol Evol 2021; 12:1841-1857. [PMID: 32722748 PMCID: PMC7586853 DOI: 10.1093/gbe/evaa155] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.
Collapse
Affiliation(s)
- Luiz Augusto Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Zirlane Portugal da Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Maria Imaculada Zucchi
- Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, SP, Brazil
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Cássio van den Berg
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Ren F, Wang L, Li Y, Zhuo W, Xu Z, Guo H, Liu Y, Gao R, Song J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol Evol 2021; 11:4158-4171. [PMID: 33976800 PMCID: PMC8093665 DOI: 10.1002/ece3.7312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029-190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955-42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.
Collapse
Affiliation(s)
- Fengming Ren
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | | | - Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | - Wei Zhuo
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Zhichao Xu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | | | - Yan Liu
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Ranran Gao
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
| | - Jingyuan Song
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| |
Collapse
|
10
|
Complete chloroplast genome sequence of Adenophora racemosa (Campanulaceae): Comparative analysis with congeneric species. PLoS One 2021; 16:e0248788. [PMID: 33735287 PMCID: PMC7971521 DOI: 10.1371/journal.pone.0248788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Adenophora racemosa, belonging to the Campanulaceae, is an important species because it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast genome of A. racemosa and compare it with published chloroplast genomes of congeneric species. The chloroplast genome was reconstructed using de novo assembly of paired-end reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. racemosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and 4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding genes divided the five Adenophora species into two clades, showing that A. racemosa is more closely related to Adenophora stricta than to Adenophora divaricata. The gene order and contents of the LSC region of A. racemosa were identical to those of A. divaricata and A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not included in sect. Remotiflorae and in six regions between two species (A. racemosa and A. stricta).
Collapse
|
11
|
Xu X, Wang D. Comparative Chloroplast Genomics of Corydalis Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. FRONTIERS IN PLANT SCIENCE 2021; 11:600354. [PMID: 33584746 PMCID: PMC7873532 DOI: 10.3389/fpls.2020.600354] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 05/08/2023]
Abstract
The chloroplast genome (plastome) of angiosperms (particularly photosynthetic members) is generally highly conserved, although structural rearrangements have been reported in a few lineages. In this study, we revealed Corydalis to be another unusual lineage with extensive large-scale plastome rearrangements. In the four newly sequenced Corydalis plastomes that represent all the three subgenera of Corydalis, we detected (1) two independent relocations of the same five genes (trnV-UAC-rbcL) from the typically posterior part of the large single-copy (LSC) region to the front, downstream of either the atpH gene in Corydalis saxicola or the trnK-UUU gene in both Corydalis davidii and Corydalis hsiaowutaishanensis; (2) relocation of the rps16 gene from the LSC region to the inverted repeat (IR) region in Corydalis adunca; (3) uniform inversion of an 11-14 kb segment (ndhB-trnR-ACG) in the IR region of all the four Corydalis species (the same below); (4) expansions (>10 kb) of IR into the small single-copy (SSC) region and corresponding contractions of SSC region; and (5) extensive pseudogenizations or losses of 13 genes (accD, clpP, and 11 ndh genes). In addition, we also found that the four Corydalis plastomes exhibited elevated GC content in both gene and intergenic regions and high number of dispersed repeats. Phylogenomic analyses generated a well-supported topology that was consistent with the result of previous studies based on a few DNA markers but contradicted with the morphological character-based taxonomy to some extent. This study provided insights into the evolution of plastomes throughout the three Corydalis subgenera and will be of value for further study on taxonomy, phylogeny, and evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
- Bio-Resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
12
|
Jia H, Zhang Z, Sadeghnezhad E, Pang Q, Li S, Pervaiz T, Su Z, Dong T, Fang J, Jia H. Demethylation alters transcriptome profiling of buds and leaves in 'Kyoho' grape. BMC PLANT BIOLOGY 2020; 20:544. [PMID: 33276735 PMCID: PMC7716455 DOI: 10.1186/s12870-020-02754-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grape buds and leaves are directly associated with the physiology and metabolic activities of the plant, which is monitored by epigenetic modifications induced by environment and endogenous factors. Methylation is one of the epigenetic regulators that could be involved in DNA levels and affect gene expression in response to stimuli. Therefore, changes of gene expression profile in leaves and bud through inhibitors of DNA methylation provide a deep understanding of epigenetic effects in regulatory networks. RESULTS In this study, we carried out a transcriptome analysis of 'Kyoho' buds and leaves under 5-azacytidine (5-azaC) exposure and screened a large number of differentially expressed genes (DEGs). GO and KEGG annotations showed that they are mainly involved in photosynthesis, flavonoid synthesis, glutathione metabolism, and other metabolic processes. Functional enrichment analysis also provided a holistic perspective on the transcriptome profile when 5-azaC bound to methyltransferase and induced demethylation. Enrichment analysis of transcription factors (TFs) also showed that the MYB, C2H2, and bHLH families are involved in the regulation of responsive genes under epigenetic changes. Furthermore, hormone-related genes have also undergone significant changes, especially gibberellin (GA) and abscisic acid (ABA)-related genes that responded to bud germination. We also used protein-protein interaction network to determine hub proteins in response to demethylation. CONCLUSIONS These findings provide new insights into the establishment of molecular regulatory networks according to how methylation as an epigenetic modification alters transcriptome patterns in bud and leaves of grape.
Collapse
Affiliation(s)
- Haoran Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Shangyun Li
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ziwen Su
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| |
Collapse
|
13
|
Kim J, Kang SH, Park SG, Yang TJ, Lee Y, Kim OT, Chung O, Lee J, Choi JP, Kwon SJ, Lee K, Ahn BO, Lee DJ, Yoo SI, Shin IG, Um Y, Lee DY, Kim GS, Hong CP, Bhak J, Kim CK. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. HORTICULTURE RESEARCH 2020; 7:112. [PMID: 32637140 PMCID: PMC7327020 DOI: 10.1038/s41438-020-0329-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 05/19/2023]
Abstract
Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of β-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Sin-Gi Park
- Theragen Etex Bio Institute, Suwon, 16229 Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644 Korea
| | - Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jungho Lee
- Green Plant Institute, Yongin, 16954 Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | | | | | | | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
- Clinomics Inc, Ulsan, 44919 Korea
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| |
Collapse
|
14
|
Li CJ, Wang RN, Li DZ. Comparative analysis of plastid genomes within the Campanulaceae and phylogenetic implications. PLoS One 2020; 15:e0233167. [PMID: 32407424 PMCID: PMC7224561 DOI: 10.1371/journal.pone.0233167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
The conflicts exist between the phylogeny of Campanulaceae based on nuclear ITS sequence and plastid markers, particularly in the subdivision of Cyanantheae (Campanulaceae). Besides, various and complicated plastid genome structures can be found in species of the Campanulaceae. However, limited availability of genomic information largely hinders the studies of molecular evolution and phylogeny of Campanulaceae. We reported the complete plastid genomes of three Cyanantheae species, compared them to eight published Campanulaceae plastomes, and shed light on a deeper understanding of the applicability of plastomes. We found that there were obvious differences among gene order, GC content, gene compositions and IR junctions of LSC/IRa. Almost all protein-coding genes and amino acid sequences showed obvious codon preferences. We identified 14 genes with highly positively selected sites and branch-site model displayed 96 sites under potentially positive selection on the three lineages of phylogenetic tree. Phylogenetic analyses showed that Cyananthus was more closely related to Codonopsis compared with Cyclocodon and also clearly illustrated the relationship among the Cyanantheae species. We also found six coding regions having high nucleotide divergence value. Hotpot regions were considered to be useful molecular markers for resolving phylogenetic relationships and species authentication of Campanulaceae.
Collapse
Affiliation(s)
- Chun-Jiao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruo-Nan Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
15
|
Liu ML, Fan WB, Wang N, Dong PB, Zhang TT, Yue M, Li ZH. Evolutionary Analysis of Plastid Genomes of Seven Lonicera L. Species: Implications for Sequence Divergence and Phylogenetic Relationships. Int J Mol Sci 2018; 19:E4039. [PMID: 30558106 PMCID: PMC6321470 DOI: 10.3390/ijms19124039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Plant plastomes play crucial roles in species evolution and phylogenetic reconstruction studies due to being maternally inherited and due to the moderate evolutionary rate of genomes. However, patterns of sequence divergence and molecular evolution of the plastid genomes in the horticulturally- and economically-important Lonicera L. species are poorly understood. In this study, we collected the complete plastomes of seven Lonicera species and determined the various repeat sequence variations and protein sequence evolution by comparative genomic analysis. A total of 498 repeats were identified in plastid genomes, which included tandem (130), dispersed (277), and palindromic (91) types of repeat variations. Simple sequence repeat (SSR) elements analysis indicated the enriched SSRs in seven genomes to be mononucleotides, followed by tetra-nucleotides, dinucleotides, tri-nucleotides, hex-nucleotides, and penta-nucleotides. We identified 18 divergence hotspot regions (rps15, rps16, rps18, rpl23, psaJ, infA, ycf1, trnN-GUU-ndhF, rpoC2-rpoC1, rbcL-psaI, trnI-CAU-ycf2, psbZ-trnG-UCC, trnK-UUU-rps16, infA-rps8, rpl14-rpl16, trnV-GAC-rrn16, trnL-UAA intron, and rps12-clpP) that could be used as the potential molecular genetic markers for the further study of population genetics and phylogenetic evolution of Lonicera species. We found that a large number of repeat sequences were distributed in the divergence hotspots of plastid genomes. Interestingly, 16 genes were determined under positive selection, which included four genes for the subunits of ribosome proteins (rps7, rpl2, rpl16, and rpl22), three genes for the subunits of photosystem proteins (psaJ, psbC, and ycf4), three NADH oxidoreductase genes (ndhB, ndhH, and ndhK), two subunits of ATP genes (atpA and atpB), and four other genes (infA, rbcL, ycf1, and ycf2). Phylogenetic analysis based on the whole plastome demonstrated that the seven Lonicera species form a highly-supported monophyletic clade. The availability of these plastid genomes provides important genetic information for further species identification and biological research on Lonicera.
Collapse
Affiliation(s)
- Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Wei-Bing Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ning Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Peng-Bin Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Lee HO, Choi JW, Baek JH, Oh JH, Lee SC, Kim CK. Assembly of the Mitochondrial Genome in the Campanulaceae Family Using Illumina Low-Coverage Sequencing. Genes (Basel) 2018; 9:E383. [PMID: 30061537 PMCID: PMC6116063 DOI: 10.3390/genes9080383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
Platycodongrandiflorus (balloon flower) and Codonopsislanceolata (bonnet bellflower) are important herbs used in Asian traditional medicine, and both belong to the botanical family Campanulaceae. In this study, we designed and implemented a de novo DNA sequencing and assembly strategy to map the complete mitochondrial genomes of the first two members of the Campanulaceae using low-coverage Illumina DNA sequencing data. We produced a total of 28.9 Gb of paired-end sequencing data from the genomic DNA of P.grandiflorus (20.9 Gb) and C.lanceolata (8.0 Gb). The assembled mitochondrial genome of P.grandiflorus was found to consist of two circular chromosomes; the master circle contains 56 genes, and the minor circle contains 42 genes. The C.lanceolata mitochondrial genome consists of a single circle harboring 54 genes. Using a comparative genome structure and a pattern of repeated sequences, we show that the P.grandiflorus minor circle resulted from a recombination event involving the direct repeats of the master circle. Our dataset will be useful for comparative genomics and for evolutionary studies, and will facilitate further biological and phylogenetic characterization of species in the Campanulaceae.
Collapse
Affiliation(s)
- Hyun-Oh Lee
- Phyzen Genomics Institute, Seongnam 13558, Korea.
- Department of Plant Science, Seoul National University, Seoul 08826, Korea.
| | - Ji-Weon Choi
- Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Korea.
| | - Jeong-Ho Baek
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea.
| | - Jae-Hyeon Oh
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea.
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea.
| |
Collapse
|
17
|
Li B, Zheng Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Sci Rep 2018; 8:9285. [PMID: 29915292 PMCID: PMC6006245 DOI: 10.1038/s41598-018-27453-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Chloroplast genomes of plants are highly conserved in both gene order and gene content, are maternally inherited, and have a lower rate of evolution. Chloroplast genomes are considered to be good models for testing lineage-specific molecular evolution. In this study, we use Schisandraceae as an example to generate insights into the overall evolutionary dynamics in chloroplast genomes and to establish the phylogenetic relationship of Schisandraceae based on chloroplast genome data using phylogenomic analysis. By comparing three Schisandraceae chloroplast genomes, we demonstrate that the gene order, gene content, and length of chloroplast genomes in Schisandraceae are highly conserved but experience dynamic evolution among species. The number of repeat variations were detected, and the Schisandraceae chloroplast genome was revealed as unusual in having a 10 kb contraction of the IR due to the genome size variations compared with other angiosperms. Phylogenomic analysis based on 82 protein-coding genes from 66 plant taxa clearly elucidated that Schisandraceae is a sister to a clade that includes magnoliids, monocots, and eudicots within angiosperms. As to genus relationships within Schisandraceae, Kadsura and Schisandra formed a monophyletic clade which was sister to Illicium.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|