1
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
2
|
Shao W, Zhang X, Zhou Z, Ma Y, Chu D, Wang L, Yang Y, Du L, Du Y, Du J, Zhao Q. Genome- and transcriptome-wide identification of trehalose-6-phosphate phosphatases (TPP) gene family and their expression patterns under abiotic stress and exogenous trehalose in soybean. BMC PLANT BIOLOGY 2023; 23:641. [PMID: 38082382 PMCID: PMC10714469 DOI: 10.1186/s12870-023-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Trehalose-6-phosphate phosphatase (TPP) is an essential enzyme catalyzing trehalose synthesis, an important regulatory factor for plant development and stress response in higher plants. However, the TPP gene family in soybean has not been reported. RESULTS A comprehensive analysis of the TPP gene family identified 18 GmTPPs classified into eight groups based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The closely linked subfamilies had similar motifs and intron/exon numbers. Segmental duplication was the main driving force of soybean GmTPPs expansion. In addition, analysis of the cis-regulatory elements and promoter regions of GmTPPs revealed that GmTPPs regulated the response to several abiotic stresses. Moreover, RNA-seq and qRT-PCR analysis of the tissue-specific GmTPPs under different abiotic stresses revealed that most GmTPPs were associated with response to different stresses, including cold, drought, saline-alkali, and exogenous trehalose. Notably, exogenous trehalose treatment up-regulated the expression of most TPP genes under saline-alkali conditions while increasing the carbohydrate and trehalose levels and reducing reactive oxygen species (ROS) accumulation in soybean sprouts, especially in the saline-alkali tolerant genotype. Furthermore, the interaction network and miRNA target prediction revealed that GmTPPs interacted with abiotic stress response-related transcription factors. CONCLUSIONS The findings in this study lay a foundation for further functional studies on TPP-based breeding to improve soybean development and stress tolerance.
Collapse
Affiliation(s)
- Wenjing Shao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinlin Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zhiheng Zhou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yue Ma
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Duo Chu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yiming Yang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lin Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yanli Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Jidao Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
3
|
Kamran HM, Fu X, Wang H, Yang N, Chen L. Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Wintersweet ( Chimonanthus praecox). Int J Mol Sci 2023; 24:13462. [PMID: 37686265 PMCID: PMC10487621 DOI: 10.3390/ijms241713462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet.
Collapse
Affiliation(s)
| | | | | | - Nan Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| |
Collapse
|
4
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
5
|
Wang J, Li Y, Yang Y, Xiao C, Ruan Q, Li P, Zhou Q, Sheng M, Hao X, Kai G. Comprehensive analysis of OpHD-ZIP transcription factors related to the regulation of camptothecin biosynthesis in Ophiorrhiza pumila. Int J Biol Macromol 2023; 242:124910. [PMID: 37217041 DOI: 10.1016/j.ijbiomac.2023.124910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Ophiorrhiza pumila, as a folk herb belonging to the Rubiaceae family, has become a potential source of camptothecin (CPT), which is a monoterpenoid indole alkaloid with good antitumor property. However, the camptothecin content in this herb is low, and is far from meeting the increasing clinical demand. Understanding the transcriptional regulation of camptothecin biosynthesis provides an effective strategy for improvement of camptothecin yield. Previous studies have demonstrated several transcription factors that are related to camptothecin biosynthesis, while the functions of HD-ZIP members in O. pumila have not been investigated yet. In this study, 32 OpHD-ZIP transcription factor members were genome-wide identified. Phylogenetic tree showed that these OpHD-ZIP proteins are divided into four subfamilies. Based on the transcriptome data, nine OpHD-ZIP genes were shown to be predominantly expressed in O. pumila roots, which were in line with the camptothecin biosynthetic genes. Co-expression analysis showed that OpHD-ZIP7 and OpHD-ZIP20 were potentially related to the modulation of camptothecin biosynthesis. Dual-luciferase reporter assays (Dual-LUC) showed that both OpHD-ZIP7 and OpHD-ZIP20 could activate the expression of camptothecin biosynthetic genes OpIO and OpTDC. In conclusion, this study offered the promising data for exploring the roles of OpHD-ZIP transcription factors in regulating camptothecin biosynthesis.
Collapse
Affiliation(s)
- Jingyi Wang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongpeng Li
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengyu Xiao
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyan Ruan
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pengyang Li
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qin Zhou
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Miaomiao Sheng
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaolong Hao
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Wang Z, Wu X, Zhang B, Xiao Y, Guo J, Liu J, Chen Q, Peng F. Genome-wide identification, bioinformatics and expression analysis of HD-Zip gene family in peach. BMC PLANT BIOLOGY 2023; 23:122. [PMID: 36864374 PMCID: PMC9979464 DOI: 10.1186/s12870-023-04061-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND HD-Zips (Homeodomain-Leucine Zippers) are a class of plant-specific transcription factors that play multiple roles in plant growth and development. Although some functions of HD-Zip transcription factor have been reported in several plants, it has not been comprehensively studied in peach, especially during adventitious root formation of peach cuttings. RESULTS In this study, 23 HD-Zip genes distributed on 6 chromosomes were identified from the peach (Prunus persica) genome, and named PpHDZ01-23 according to their positions on the chromosomes. These 23 PpHDZ transcription factors all contained a homeomorphism box domain and a leucine zipper domain, were divided into 4 subfamilies(I-IV) according to the evolutionary analysis, and their promoters contained many different cis-acting elements. Spatio-temporal expression pattern showed that these genes were expressed in many tissues with different levels, and they had distinct expression pattern during adventitious root formation and development. CONCLUSION Our results showed the roles of PpHDZs on root formation, which is helpful to better understand the classification and function of peach HD-Zip genes.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China
| | - Binbin Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China
| | - Jian Guo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China
| | - Jin Liu
- Agricultural Technical Service Center of Yiyuan County, 256100, Zibo, China
| | - Qiuju Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China.
- Agricultural Technical Service Center of Yiyuan County, 256100, Zibo, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 271000, Tai'an, China.
| |
Collapse
|
7
|
Chen TQ, Sun Y, Yuan T. Transcriptome sequencing and gene expression analysis revealed early ovule abortion of Paeonia ludlowii. BMC Genomics 2023; 24:78. [PMID: 36803218 PMCID: PMC9936667 DOI: 10.1186/s12864-023-09171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Paeonia ludlowii (Stern & G. Taylor D.Y. Hong) belongs to the peony group of the genus Paeonia in the Paeoniaceae family and is now classified as a "critically endangered species" in China. Reproduction is important for this species, and its low fruiting rate has become a critical factor limiting both the expansion of its wild population and its domestic cultivation. RESULTS In this study, we investigated possible causes of the low fruiting rate and ovule abortion in Paeonia ludlowii. We clarified the characteristics of ovule abortion and the specific time of abortion in Paeonia ludlowii, and used transcriptome sequencing to investigate the mechanism of abortion of ovules in Paeonia ludlowii. CONCLUSIONS In this paper, the ovule abortion characteristics of Paeonia ludlowii were systematically studied for the first time and provide a theoretical basis for the optimal breeding and future cultivation of Paeonia ludlowii.
Collapse
Affiliation(s)
- Ting-qiao Chen
- grid.66741.320000 0001 1456 856XBeijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China ,grid.443395.c0000 0000 9546 5345School of Geography and Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, 550001 China
| | - Yue Sun
- grid.66741.320000 0001 1456 856XBeijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Liu G, Liu F, Jiang H, Li J, Jing J, Jin Q, Wang Y, Qian P, Xu Y. Cytological and Molecular Mechanism of Low Pollen Grain Viability in a Germplasm Line of Double Lotus. PLANTS (BASEL, SWITZERLAND) 2023; 12:387. [PMID: 36679100 PMCID: PMC9867118 DOI: 10.3390/plants12020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Self-fertilization rate is an essential index of lotus reproductive system development, and pollen activity is a key factor affecting lotus seed setting rate. Based on cytology and molecular biology, this study addresses the main reasons for the low self-set rate of double lotus. It takes two different double lotus breeds into consideration, namely 'Sijingganshan' with a low self-crossing rate and 'Jinfurong' with a high self-crossing rate. Cytological analysis results showed that the pollen abortion caused by excessive degradation of tapetum during the single phase was the root cause for the low self-mating rate of double lotus. Subsequent transcriptome analysis revealed that the gene NnPTC1 related to programmed tapetum cell death was significantly differentially expressed during the critical period of abortion, which further verified the specific expression of NnPTC1 in anthers. It was found that the expression level of NnPTC1 in 'Sijingganshan' at the mononuclear stage of its microspore development was significantly higher than that of 'Jinfurong' at the same stage. The overexpression of NnPTC1 resulted in the premature degradation of the tapetum and significantly decreased seed setting rate. These results indicated that the NnPTC1 gene regulated the pollen abortion of double lotus. The mechanism causing a low seed setting rate for double lotus was preliminarily revealed, which provided a theoretical basis for cultivating lotus varieties with both flower and seed.
Collapse
Affiliation(s)
- Guangyang Liu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Huiyan Jiang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Li
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Jing Jing
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| | - Qijiang Jin
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Qian
- Hangzhou West Lake Scenic Area Management Committee, Hangzhou 310013, China
| | - Yingchun Xu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
10
|
Zhu Y, Peng S, Zhao L, Feng W, Dong C. Genome-wide identification and characterization of the HD-Zip gene family and expression analysis in response to stress in Rehmannia glutinosa Libosch. PLANT SIGNALING & BEHAVIOR 2022; 17:2096787. [PMID: 35899840 PMCID: PMC9336491 DOI: 10.1080/15592324.2022.2096787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The HD-Zip family of transcription factors is unique to the plant kingdom, and play roles in modulation of plant growth and response to environmental stresses. R. glutinosa is an important Chinese medicinal material. Its yield and quality are susceptible to various stresses. The HD-Zip transcription factors is unique to the plant, and roles in modulation of plant growth and response to environmental stresses. However, there is no relevant research on the HD-ZIP of R. glutinosa. In this study, 92 HD-Zip transcription factors were identified in R. glutinosa, and denominated as RgHDZ1-RgHDZ92. Members of RgHDZ were classified into four groups (HD-ZipI-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, and each group contains 38, 18, 17, and 19 members, respectively. Expression analyses of RgHDZ genes based on transcriptome data showed that the expression of these genes could be induced by the endophytic fungus of R. glutinosa. Additionally, we showed that RgHDZ genes were differentially expressed in response to drought, waterlogging, temperature, and salinity treatments. This study provides important information for different expression patterns of stress-responsive HD-Zip and may contribute to the better understanding of the different responses of plants to biotic and abiotic stresses, and provide a molecular basis for the cultivation of resistant varieties of R. glutinosa.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Shuping Peng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Le Zhao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Wang Y, Fan J, Wu X, Guan L, Li C, Gu T, Li Y, Ding J. Genome-Wide Characterization and Expression Profiling of HD-Zip Genes in ABA-Mediated Processes in Fragaria vesca. PLANTS (BASEL, SWITZERLAND) 2022; 11:3367. [PMID: 36501406 PMCID: PMC9737017 DOI: 10.3390/plants11233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Members of homeodomain-leucine zipper (HD-Zip) transcription factors can play their roles by modulating abscisic acid (ABA) signaling in Arabidopsis. So far, our knowledge of the functions of HD-Zips in woodland strawberries (Fragaria vesca), a model plant for studying ABA-mediated fruit ripening, is limited. Here, we identified a total of 31 HD-Zip genes (FveHDZ1-31) in F. vesca, and classified them into four subfamilies (I to IV). Promoter analyses show that the ABA-responsive element, ABRE, is prevalent in the promoters of subfamily I and II FveHDZs. RT-qPCR results demonstrate that 10 of the 14 investigated FveHDZs were consistently >1.5-fold up-regulated or down-regulated in expression in response to exogenous ABA, dehydration, and ABA-induced senescence in leaves. Five of the six consistently up-regulated genes are from subfamily I and II. Thereinto, FveHDZ4, and 20 also exhibited significantly enhanced expression along with increased ABA content during fruit ripening. In yeast one-hybrid assays, FveHDZ4 proteins could bind the promoter of an ABA signaling gene FvePP2C6. Collectively, our results strongly support that the FveHDZs, particularly those from subfamilies I and II, are involved in the ABA-mediated processes in F. vesca, providing a basis for further functional characterization of the HD-Zips in strawberry and other plants.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Xinjie Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210023, China
| |
Collapse
|
12
|
Lu S, He H, Wang P, Gou H, Cao X, Ma Z, Chen B, Mao J. Evolutionary relationship analysis of STARD gene family and VvSTARD5 improves tolerance of salt stress in transgenic tomatoes. PHYSIOLOGIA PLANTARUM 2022; 174:e13772. [PMID: 36054928 DOI: 10.1111/ppl.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The steroidogenic acute regulatory protein-related lipid transfer domain (STARD) forms a protein that can bind membrane-derived phospholipid second messengers and plasma membranes. Although it has been reported in many plants, the evolutionary relationship of the STARD gene family has not been systematically analyzed, and functions of the HD-START and HD-START-MEKHLA domain subgroup genes under hormone and abiotic stress are also unclear in grapes. This study identified and analyzed 23 VvSTARD genes, which were distinctly divided into five subgroups according to five conserved domain types. The analyses of codon preference, selective pressure, and synteny relationship revealed that grape had higher homology with Arabidopsis compared with rice. Interestingly, the expression levels of VvSTARD genes in subgroups 1, 2, and 3 exhibited significant upregulation under NaCl treatment at 24 h, but VvSTARD genes in subgroups 4 and 5 were upregulated under methyl jasmonate (MeJA) treatment at 24 h. The subcellular localization showed that VvSTARD5 was localized in the nucleus. Additionally, under NaCl treatment at 24 h, there were an obvious decrease in the relative electrical leakages and the content of malondialdehyde (MDA), while the relative expression level of VvSTARD5 and content of proline were obviously enhanced in three transgenic lines. Therefore, the overexpression of VvSTARD5 greatly increased the salt tolerance of transgenic tomatoes. Collectively, this study preliminarily explores the comprehensive function of the STARD gene family in grapes and verifies the function of VvSTARD5 in response to salt.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huiming Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
13
|
Ahmad S, Chen Y, Shah AZ, Wang H, Xi C, Zhu H, Ge L. The Homeodomain-Leucine Zipper Genes Family Regulates the Jinggangmycin Mediated Immune Response of Oryza sativa to Nilaparvata lugens, and Laodelphax striatellus. Bioengineering (Basel) 2022; 9:bioengineering9080398. [PMID: 36004924 PMCID: PMC9405480 DOI: 10.3390/bioengineering9080398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022] Open
Abstract
The homeodomain-leucine zipper (HDZIP) is an important transcription factor family, instrumental not only in growth but in finetuning plant responses to environmental adversaries. Despite the plethora of literature available, the role of HDZIP genes under chewing and sucking insects remains elusive. Herein, we identified 40 OsHDZIP genes from the rice genome database. The evolutionary relationship, gene structure, conserved motifs, and chemical properties highlight the key aspects of OsHDZIP genes in rice. The OsHDZIP family is divided into a further four subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III, and HDZIP IV). Moreover, the protein–protein interaction and Gene Ontology (GO) analysis showed that OsHDZIP genes regulate plant growth and response to various environmental stimuli. Various microRNA (miRNA) families targeted HDZIP III subfamily genes. The microarray data analysis showed that OsHDZIP was expressed in almost all tested tissues. Additionally, the differential expression patterns of the OsHDZIP genes were found under salinity stress and hormonal treatments, whereas under brown planthopper (BPH), striped stem borer (SSB), and rice leaf folder (RLF), only OsHDZIP3, OsHDZIP4, OsHDZIP40, OsHDZIP10, and OsHDZIP20 displayed expression. The qRT-PCR analysis further validated the expression of OsHDZIP20, OsHDZIP40, and OsHDZIP10 under BPH, small brown planthopper (SBPH) infestations, and jinggangmycin (JGM) spraying applications. Our results provide detailed knowledge of the OsHDZIP gene family resistance in rice plants and will facilitate the development of stress-resilient cultivars, particularly against chewing and sucking insect pests.
Collapse
|
14
|
Tu Z, Yu L, Wen S, Zhai X, Li W, Li H. Identification and analysis of HD-Zip genes involved in the leaf development of Liriodendron chinense using multidimensional analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:874-886. [PMID: 35491433 DOI: 10.1111/plb.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) proteins are plant-specific transcription factors that play important roles in different biological processes, especially leaf development. However, no studies to date have identified the HD-Zip genes in Liriodendron chinense nor characterized their functions. We identified the HD-Zip genes in L. chinense by analysing the phylogeny, chromosome location, structure, conserved motif, cis-regulatory elements, synteny, post-transcriptional regulation and expression patterns of these genes during leaf development. A total of 36 LcHD-Zip genes were identified and divided into four subfamilies (HD-Zip I to IV). Synteny analysis revealed that segmental duplication was the main force driving the expansion of LcHD-Zip genes. These 36 LcHD-Zip genes exhibited 11 different expression patterns. Pattern 1, 2, 3, 4, 6, 7, 8 and 9 genes may play important roles in leaf development, such as leaf initiation, leaf polarity establishment, leaf shape development, phytohormone-mediated leaf growth and leaf epidermal structure formation. Four HD-Zip III genes were targeted by microRNAs (miRNAs), and the miR165/166a-HD-Zip regulatory module formed regulated leaf initiation and leaf polarity establishment. Overall, LcHD-Zip genes play key roles in leaf development of L. chinense. This work provides a foundation for the functional verification of HD-Zip genes identified in this study.
Collapse
Affiliation(s)
- Z Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - L Yu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - S Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - X Zhai
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - W Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - H Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Genetic Analysis of the Grapevine GATA Gene Family and Their Expression Profiles in Response to Hormone and Downy Mildew Infection. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grapevine (Vitis. vinifera L.) is one of the most economically important fruit crops throughout the world. However, grape production is increasingly impacted by numerous diseases, including downy mildew, caused by the oomycete Plasmopara viticola. In grapevine and other plants, members of the GATA family of transcription factors play key roles in light and phytohormone signaling. However, little is known about their potential roles in biotic defense responses. As a first step, we identified 27 GATA transcription factors in grapevine and defined their transcriptional responses to three biotic stress-related phytohormones (SA, MeJA, and BR) in callus cells, and challenge with P. viticola in a downy mildew-sensitive cultivar, V. vinifera ‘Pinot noir’, and a resistant cultivar, V. piasezkii ‘Liuba-8′. Many of the VvGATA genes had higher expression at 0.5 h after hormones treatments. Moreover, a group of VvGATAs was dramatically induced in ‘Liuba-8′ at 24 post infection by P. viticola. However, the same genes were significantly repressed and showed low expression levels in ‘Pinot noir’. Additionally, VvGATA27 was located in the nucleus and had transcriptional activity. Taken together, the study identified the GATA full gene families in grapes on phylogenetic analysis and protein structure. Moreover, this study provided a basis for discussing the roles of VvGATAs in response to hormones and P. viticola infection. Our results provided evidence for the selection of candidate genes against downy mildew and lay the foundation for further investigation of VvGATA transcription factors.
Collapse
|
16
|
Du L, Li S, Ding L, Cheng X, Kang Z, Mao H. Genome-wide analysis of trehalose-6-phosphate phosphatases (TPP) gene family in wheat indicates their roles in plant development and stress response. BMC PLANT BIOLOGY 2022; 22:120. [PMID: 35296251 PMCID: PMC8925099 DOI: 10.1186/s12870-022-03504-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/02/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Trehalose-6-phosphate phosphatases genes (TPPs) are involved in the development and stress response of plants by regulating the biosynthesis of trehalose, though little is currently known about TPPs in common wheat (Triticum aestivum L.). RESULTS In this study, we performed a genome-wide identification of the TPP gene family in common wheat, and identified a total of 31 TaTPP genes. These were subdivided into six subfamilies based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The majority of TPP genes were represented by 2-3 wheat homoalleles (named TaTPPX_ZA, TaTPPX_ZB, or TaTPPX_ZD), where Z is the location on the wheat chromosome of the gene number (X). We also analyzed the chromosomal location, exon-intron structure, orthologous genes, and protein motifs of the TaTPPs. The RNA-seq data was used to perform an expression analysis, which found 26 TaTPP genes to be differentially expressed based on spatial and temporal characteristics, indicating they have varied functions in the growth and development of wheat. Additionally, we assessed how the promoter regulatory elements were organized and used qRT-PCR in the leaves to observe how they were expressed following ABA, salt, low tempreture, and drought stress treatments. All of these genes exhibited differential expression against one or more stress treatments. Furthermore, ectopic expression of TaTPP11 in Arabidopsis exhibited a phenotype that delayed plant development but did not affect seed morphology. CONCLUSIONS TaTPPs could serve important roles in the development and stress response in wheat. These results provide a basis for subsequent research into the function of TaTPPs.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxiu Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Guo Q, Jiang J, Yao W, Li L, Zhao K, Cheng Z, Han L, Wei R, Zhou B, Jiang T. Genome-wide analysis of poplar HD-Zip family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii × P.nigra. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111021. [PMID: 34482922 DOI: 10.1016/j.plantsci.2021.111021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
HD-Zip is a plant-specific HB transcription factor, which participates in plant development and stress response. In this study, we identified 63 poplar HD-Zip transcription factors, which were randomly distributed on 19 chromosomes of poplar. Based on the gene structure and phylogenetic relationship, these members are divided into four groups, which have a variety of collinear evolutionary relationships. They also have rich segmental replication events and experienced strong purification selection. Based on RNA-seq analysis, we profiled the expression pattern of the 63 HD-Zip members under salt stress. Subsequently, we carried out in-depth study on the significantly up-regulated PsnHDZ63 in the stems and leaves. The transgenic Populus simonii × P.nigra plants over-expressing PsnHDZ63 displayed better morphological and physiological indexes than WT under salt stress. In addition, PsnHDZ63 enhanced salt stress tolerance of transgenic lines by combining effective stress-resistant elements to improve reactive oxygen species scavenging ability. These studies laid a foundation for a comprehensive understanding of poplar HD-Zip family members, and revealed the important role of PsnHDZ63 in plant salt tolerance.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Li Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Lianbin Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Ran Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
18
|
Li Z, Jiao Y, Zhang C, Dou M, Weng K, Wang Y, Xu Y. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1824-1838. [PMID: 33835678 PMCID: PMC8428834 DOI: 10.1111/pbi.13596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/28/2021] [Indexed: 06/10/2023]
Abstract
Seedlessness in grapes is one of the features most appreciated by consumers. However, the mechanisms underlying seedlessness in grapes remain obscure. Here, we observe small globular embryos and globular embryos in Pinot Noir and Thompson Seedless from 20 to 30 days after flowering (DAF). From 40 to 50 DAF, we observe torpedo embryos and cotyledon embryos in Pinot Noir but aborted embryos and endosperm in Thompson Seedless. Thus, RNA-Seq analyses of seeds at these stages from Thompson Seedless and Pinot Noir were performed. A total of 6442 differentially expressed genes were identified. Among these, genes involved in SA biosynthesis, VvEDS1 and VvSARD1, were more highly expressed in Thompson Seedless than in Pinot Noir. Moreover, the content of endogenous SA is at least five times higher in Thompson Seedless than in Pinot Noir. Increased trimethylation of H3K27 of VvEDS1 and VvSARD1 may be correlated with lower SA content in Pinot Noir. We also demonstrate that VvHDZ28 positively regulates the expression of VvEDS1. Moreover, over-expression of VvHDZ28 results in seedless fruit and increased SA contents in Solanum lycopersicum. Our results reveal the potential role of SA and feedback regulation of VvHDZ28 in seedless grapes.
Collapse
Affiliation(s)
- Zhiqian Li
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Yuntong Jiao
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Chen Zhang
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Mengru Dou
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Kai Weng
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- College of life scienceNorthwest A&F UniversityYanglingChina
| | - Yuejin Wang
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Yan Xu
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| |
Collapse
|
19
|
Theine J, Holtgräwe D, Herzog K, Schwander F, Kicherer A, Hausmann L, Viehöver P, Töpfer R, Weisshaar B. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. BMC PLANT BIOLOGY 2021; 21:327. [PMID: 34233614 PMCID: PMC8265085 DOI: 10.1186/s12870-021-03110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grapevine cultivars of the Pinot family represent clonally propagated mutants with major phenotypic and physiological differences, such as different colour or shifted ripening time, as well as changes in important viticultural traits. Specifically, the cultivars 'Pinot Noir' (PN) and 'Pinot Noir Precoce' (PNP, early ripening) flower at the same time, but vary in the beginning of berry ripening (veraison) and, consequently, harvest time. In addition to genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible regulatory genes that affect the timing of veraison onset, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and over two separate years. RESULTS The difference in the duration of berry formation between PN and PNP was quantified to be approximately two weeks under the growth conditions applied, using plant material with a proven PN and PNP clonal relationship. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the timing of veraison onset. Functional annotation of these DEGs fit to observed phenotypic and physiological changes during berry development. In total, we observed 3,342 DEGs in 2014 and 2,745 DEGs in 2017 between PN and PNP, with 1,923 DEGs across both years. Among these, 388 DEGs were identified as veraison-specific and 12 were considered as berry ripening time regulatory candidates. The expression profiles revealed two candidate genes for ripening time control which we designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively). These genes likely contribute the phenotypic differences observed between PN and PNP. CONCLUSIONS Many of the 1,923 DEGs show highly similar expression profiles in both cultivars if the patterns are aligned according to developmental stage. In our work, putative genes differentially expressed between PNP and PN which could control ripening time as well as veraison-specific genes were identified. We point out connections of these genes to molecular events during berry development and discuss potential candidate genes which may control ripening time. Two of these candidates were observed to be differentially expressed in the early berry development phase. Several down-regulated genes during berry ripening are annotated as auxin response factors / ARFs. Conceivably, general changes in auxin signaling may cause the earlier ripening phenotype of PNP.
Collapse
Affiliation(s)
- Jens Theine
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Katja Herzog
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Florian Schwander
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Anna Kicherer
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Ludger Hausmann
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Reinhard Töpfer
- Julius Kühn-Institute, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Arshad W, Lenser T, Wilhelmsson PKI, Chandler JO, Steinbrecher T, Marone F, Pérez M, Collinson ME, Stuppy W, Rensing SA, Theißen G, Leubner-Metzger G. A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:166-181. [PMID: 33945185 DOI: 10.1111/tpj.15283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.
Collapse
Affiliation(s)
- Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Teresa Lenser
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Margaret E Collinson
- Department of Earth Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Wolfgang Stuppy
- Botanischer Garten der Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, D-44780, Germany
- The Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
21
|
You H, Liu Y, Minh TN, Lu H, Zhang P, Li W, Xiao J, Ding X, Li Q. Genome-wide identification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). J Appl Genet 2020; 61:489-501. [PMID: 32779148 DOI: 10.1007/s13353-020-00571-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
Abstract
Nitrate transporters (NRTs) are important channel proteins facilitating cross-membrane movement of small molecules like NO3- which is a critical nutrient for all life. However, the classification and evolution of nitrate transporters in the legume plants are still elusive. In this study, we surveyed the wild soybean (G. soja) genomic databases and identified 120 GsNRT1 and 5 GsNRT2 encoding genes. Phylogenetic analyses show that GsNRT1 subfamily is consisted of eight clades (NPF1 to NPF8), while GsNRT2 subfamily has only one clade. Gene chromosomal location and evolutionary historic analyses indicate that GsNRT genes are unevenly distributed on 19 out of 20 G. soja chromosomes and segmental duplications may take a major part in the expansion of GsNRT family. Investigations of gene structure and protein motif compositions suggest that GsNRT family members are highly conserved in structures of both gene and protein levels. In addition, we analyzed the spatial expression patterns of representative GsNRT genes and their responses to exogenous nitrogen and carbon supplies and different abiotic stresses. The qRT-PCR data indicated that 16 selected GsNRT genes showed various expression levels in the roots, stems, leaves, and pods of young G. soja plants, and these genes were regulated by not only nitrogen and carbohydrate nutrients but also NaCl, NaHCO3, abscisic acid (ABA), and salicylic acid (SA). These results suggest that GsNRT genes may be involved in the regulation of plant growth, development, and adaptation to environmental stresses, and the study will shed light on functional dissection of plant nitrate transporter proteins in the future.
Collapse
Affiliation(s)
- Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Thuy Nguyen Minh
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfeng Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Zhang J, Wu J, Guo M, Aslam M, Wang Q, Ma H, Li S, Zhang X, Cao S. Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress. BMC PLANT BIOLOGY 2020; 20:451. [PMID: 33004006 PMCID: PMC7528242 DOI: 10.1186/s12870-020-02677-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/24/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The HD-Zip transcription factors are unique to plants and play an essential role in plant growth, development and stress responses. The HD-Zip transcription factor family consists of a highly conserved homeodomain (HD) and a leucine zipper domain (LZ) domain. Although the HD-Zip gene family has been extensively studied in many plant species, a systematic study of the Eucalyptus HD-Zip family has not been reported until today. Here, we systematically identified 40 HD-Zip genes in Eucalyptus (Eucalyptus grandis). Besides, we comprehensively analyzed the HD-Zips of Eucalyptus by studying the homology, conserved protein regions, gene structure, 3D structure of the protein, location of the genes on the chromosomes and the expression level of the genes in different tissues. RESULTS The HD-Zip family in Eucalyptus has four subfamilies, which is consistent with other plants such as Arabidopsis and rice. Moreover, genes that are in the same group tend to have similar exon-intron structures, motifs, and protein structures. Under salt stress and temperature stress, the Eucalyptus HD-Zip transcription factors show a differential expression pattern. CONCLUSIONS Our findings reveal the response of HD-Zip transcription factors under salt and temperature stresses, laying a foundation for future analysis of Eucalyptus HD-Zip transcription factors.
Collapse
Affiliation(s)
- Jiashuo Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinzhang Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingliang Guo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mohammad Aslam
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qi Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huayan Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shubin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
23
|
Zhao J, Li H, Yin Y, An W, Qin X, Wang Y, Fan Y, Li Y, Cao Y. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns. FEBS Open Bio 2020; 10:1550-1567. [PMID: 32533890 PMCID: PMC7396440 DOI: 10.1002/2211-5463.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022] Open
Abstract
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north‐western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22‐like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5‐like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22‐like, HAT5‐like and SCL32 warrant further functional studies.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Xiaoya Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yajun Wang
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yunfang Fan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yanlong Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| |
Collapse
|
24
|
Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P, Yuhong L. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int J Biol Macromol 2020; 158:S0141-8130(20)32981-0. [PMID: 32376256 DOI: 10.1016/j.ijbiomac.2020.04.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Information retrieved from genomic assembly may provide important clues and various molecular aspects in plants. Our research identified 40 CsHDZ genes in the Cucumber genome database. Subsequently; we performed the conserved motif and domain analysis of CsHDZ proteins. The phylogeny of the CsHDZ proteins further divides into 4 subfamilies (HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV) based on the structural similarities and functional diversities. The GO (Gene ontology) analysis of CsHDZ proteins showed that they are responsive to environmental stimuli and involved in numerous growth and developmental processes. The qRT-PCR analysis of 11 CsHDZ genes showed that they are expressed in all the tested tissues of Cucumis sativus. The differential expression pattern of CsHDZ genes unfolded their possible involvement in responding to various abiotic stresses and powdery mildew stress. It has been found that the CsHDZ22 localized in the nucleus which possibly participates in the regulatory mechanisms of various biological and cellular processes. In the light of above-mentioned outcomes, it has been deducted that CsHDZ genes in the Cucumis sativus genome play an important role in mediating the resistance to various abiotic stresses and powdery mildew stress as well as provide significant clues for functional studies.
Collapse
Affiliation(s)
- Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chen Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhen Cao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Li Yuhong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Xu X, Chen X, Chen Y, Zhang Q, Su L, Chen X, Chen Y, Zhang Z, Lin Y, Lai Z. Genome-wide identification of miRNAs and their targets during early somatic embryogenesis in Dimocarpus longan Lour. Sci Rep 2020; 10:4626. [PMID: 32170163 PMCID: PMC7069941 DOI: 10.1038/s41598-020-60946-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
miRNAs are endogenous regulatory factors that play pivotal roles in post-transcriptional regulation. However, their specific roles in early somatic embryogenesis (SE) remain unclear. Study of the SE system is fundamental for clarifying the molecular mechanisms in Dimocarpus longan. We identified 289 known miRNAs from 106 different miRNA families and 1087 novel miRNAs during early longan SE, including embryogenic callus (EC), incomplete pro-embryogenic culture (ICpEC), globular embryo (GE), and non-embryogenic callus (NEC). The abundances of known miRNAs were concentrated in GE. The differentially expression (DE) miRNAs showed five expression patterns during early SE. Largely miRNAs were expressed highly and specially in EC, ICpEC, and GE, respectively. Some miRNAs and putative target genes were enriched in lignin metabolism. Most potential targets were related to the pathways of plant hormone signal transduction, alternative splicing, tyrosine metabolism and sulfur metabolism in early longan SE. The regulatory relationships between dlo-miR166a-3p and DlHD-zip8, dlo-miR397a and DlLAC7, dlo-miR408-3p and DlLAC12 were confirmed by RNA ligase-mediated rapid amplification of cDNA ends. The expression patterns of eight DE miRNAs detected by qRT-PCR were consistent with RNA-seq. Finally, the miRNA regulatory network in early SE was constructed, which provided new insight into molecular mechanism of early SE in longan.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinglin Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyao Su
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Li S, Chen N, Li F, Mei F, Wang Z, Cheng X, Kang Z, Mao H. Characterization of wheat homeodomain-leucine zipper family genes and functional analysis of TaHDZ5-6A in drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2020; 20:50. [PMID: 32005165 PMCID: PMC6993422 DOI: 10.1186/s12870-020-2252-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many studies in Arabidopsis and rice have demonstrated that HD-Zip transcription factors play important roles in plant development and responses to abiotic stresses. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, the function of the HD-Zip proteins in wheat is still largely unknown. RESULTS To explore the potential biological functions of HD-Zip genes in wheat, we performed a bioinformatics and gene expression analysis of the HD-Zip family. We identified 113 HD-Zip members from wheat and classified them into four subfamilies (I-IV) based on phylogenic analysis against proteins from Arabidopsis, rice, and maize. Most HD-Zip genes are represented by two to three homeoalleles in wheat, which are named as TaHDZX_ZA, TaHDZX_ZB, or TaHDZX_ZD, where X denotes the gene number and Z the wheat chromosome on which it is located. TaHDZs in the same subfamily have similar protein motifs and intron/exon structures. The expression profiles of TaHDZ genes were analysed in different tissues, at different stages of vegetative growth, during seed development, and under drought stress. We found that most TaHDZ genes, especially those in subfamilies I and II, were induced by drought stress, suggesting the potential importance of subfamily I and II TaHDZ members in the responses to abiotic stress. Compared with wild-type (WT) plants, transgenic Arabidopsis plants overexpressing TaHDZ5-6A displayed enhanced drought tolerance, lower water loss rates, higher survival rates, and higher proline content under drought conditions. Additionally, the transcriptome analysis identified a number of differentially expressed genes between 35S::TaHDZ5-6A transgenic and wild-type plants, many of which are involved in stress response. CONCLUSIONS Our results will facilitate further functional analysis of wheat HD-Zip genes, and also indicate that TaHDZ5-6A may participate in regulating the plant response to drought stress. Our experiments show that TaHDZ5-6A holds great potential for genetic improvement of abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhongxue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxiu Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Li Y, Zhang S, Dong R, Wang L, Yao J, van Nocker S, Wang X. The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways. BMC PLANT BIOLOGY 2019; 19:523. [PMID: 31775649 PMCID: PMC6882351 DOI: 10.1186/s12870-019-2144-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. RESULTS Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. CONCLUSION VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.
Collapse
Affiliation(s)
- Yunduan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Ruzhuang Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
28
|
Zhang S, Wang L, Sun X, Li Y, Yao J, van Nocker S, Wang X. Genome-Wide Analysis of the YABBY Gene Family in Grapevine and Functional Characterization of VvYABBY4. FRONTIERS IN PLANT SCIENCE 2019; 10:1207. [PMID: 31649691 PMCID: PMC6791920 DOI: 10.3389/fpls.2019.01207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 05/22/2023]
Abstract
Genes of the plant-specific YABBY transcription factor family have various roles, including lateral organ development, establishment of dorsoventral polarity, and response to abiotic stress. In this study, we carried out a genomic census of YABBY genes in grapevine (Vitis vinifera) and characterized their expression pattern during ovule development. We identified seven YABBY genes and classified them into five subfamilies, based on peptide sequence, similarity of exon-intron structure and composition of peptide sequence motifs. Analysis of YABBY gene expression in various grapevine structures and organs suggested that these genes function in diverse aspects of development and physiology. Analysis of expression during ovule development in four cultivars showed that one gene, VvYABBY4, was preferentially expressed during the period of ovule abortion in seedless cultivars. Transgenic expression of VvYABBY4 in tomato conferred reduced plant stature, dark green leaves, elongated pistil, and reduced size of fruit and seeds. Reduced seed size was associated with smaller endosperm cells. Expression of VvYABBY4 also affected expression of numerous tomato genes with presumed roles in seed development. These data suggest the potential for VvYABBY4 to influence seed development in grapevine, which may impact seedless grape breeding.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Xiaomeng Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yunduan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Ahmad B, Zhang S, Yao J, Rahman MU, Hanif M, Zhu Y, Wang X. Genomic Organization of the B3-Domain Transcription Factor Family in Grapevine ( Vitis vinifera L.) and Expression during Seed Development in Seedless and Seeded Cultivars. Int J Mol Sci 2019; 20:ijms20184553. [PMID: 31540007 PMCID: PMC6770561 DOI: 10.3390/ijms20184553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 genes in grapevine (Vitis vinifera L.). In this study, we identified 50 B3 genes in the grapevine genome and analyzed these genes in terms of chromosomal location and syntenic relationships, intron–exon organization, and promoter cis-element content. We also analyzed the presumed proteins in terms of domain structure and phylogenetic relationships. Based on the results, we classified these genes into five subfamilies. The syntenic relationships suggest that approximately half of the genes resulted from genome duplication, contributing to the expansion of the B3 family in grapevine. The analysis of cis-element composition suggested that most of these genes may function in response to hormones, light, and stress. We also analyzed expression of members of the B3 family in various structures of grapevine plants, including the seed during seed development. Many B3 genes were expressed preferentially in one or more structures of the developed plant, suggesting specific roles in growth and development. Furthermore, several of the genes were expressed differentially in early developing seeds from representative seeded and seedless cultivars, suggesting a role in seed development or abortion. The results of this study provide a foundation for functional analysis of B3 genes and new resources for future molecular breeding of grapevine.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Muhammad Hanif
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
30
|
Li Y, Xiong H, Cuo D, Wu X, Duan R. Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:250-258. [PMID: 31195255 DOI: 10.1016/j.plaphy.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 05/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family plays an important role in plant growth and environmental responses. At present, research on the HD-Zip gene family of barley is incomplete. In this study, 32 HD-Zip genes (HvHD-Zip 1-32) were identified from the barley genome and were subsequently divided into four subfamilies according to conserved structure and motif analysis. Whole genome replication events in barley and Arabidopsis, rice, and wheat HD-Zip gene families were analyzed, yielding 3, 14 and 25 gene pairs, respectively, but no segmental or tandem duplication events were identified in the barley HD-Zip gene family. Subsequently, quantitative real-time PCR (qRT-PCR) analysis revealed that the HvHD-Zip gene is sensitive to drought stress and that members of the HD-Zip I and HD-Zip IV subfamilies are generally more sensitive to abiotic stresses. Our results suggest a relationship between barley resistance and the potential key HvHD-Zip gene, which lay the foundation for further functional studies.
Collapse
Affiliation(s)
- Yuan Li
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, 810016, China
| | - Duojie Cuo
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Xiongxiong Wu
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Ruijun Duan
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China; Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai University, Qinghai, 810016, China.
| |
Collapse
|
31
|
Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Genes (Basel) 2019; 10:E575. [PMID: 31366162 PMCID: PMC6723700 DOI: 10.3390/genes10080575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family, whose members play vital roles in plant growth and development, and participate in responding to various stresses, is an important class of transcription factors currently only found in plants. Although the HD-Zip gene family, especially the HD-Zip I subfamily, has been extensively studied in many plant species, the systematic report on HD-Zip I subfamily in cultivated tobacco (Nicotiana tabacum) is lacking. In this study, 39 HD-Zip I genes were systematically identified in N. tabacum (Nt). Interestingly, that 64.5% of the 31 genes with definite chromosome location information were found to originate from N. tomentosoformis, one of the two ancestral species of allotetraploid N. tabacum. Phylogenetic analysis divided the NtHD-Zip I subfamily into eight clades. Analysis of gene structures showed that NtHD-Zip I proteins contained conserved homeodomain and leucine-zipper domains. Three-dimensional structure analysis revealed that most NtHD-Zip I proteins in each clade, except for those in clade η, share a similar structure to their counterparts in Arabidopsis. Prediction of cis-regulatory elements showed that a number of elements responding to abscisic acid and different abiotic stresses, including low temperature, drought, and salinity, existed in the promoter region of NtHD-Zip I genes. The prediction of Arabidopsis ortholog-based protein-protein interaction network implied that NtHD-Zip I proteins have complex connections. The expression profile of these genes showed that different NtHD-Zip I genes were highly expressed in different tissues and could respond to abscisic acid and low-temperature treatments. Our study provides insights into the evolution and expression patterns of NtHD-Zip I genes in N. tabacum and will be useful for further functional characterization of NtHD-Zip I genes in the future.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Bingchuan Bai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Min Zhao
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
32
|
Yin X, Shang B, Dou M, Liu R, Chen T, Xiang G, Li Y, Liu G, Xu Y. The Nuclear-Localized RxLR Effector PvAvh74 From Plasmopara viticola Induces Cell Death and Immunity Responses in Nicotiana benthamiana. Front Microbiol 2019; 10:1531. [PMID: 31354650 PMCID: PMC6636413 DOI: 10.3389/fmicb.2019.01531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Downy mildew is one of the most serious diseases of grapevine (Vitis spp). The causal agent of grapevine downy mildew, Plasmopara viticola, is an obligate biotrophic oomycete. Although oomycete pathogens such as P. viticola are known to secrete RxLR effectors to manipulate host immunity, there have been few studies of the associated mechanisms by which these may act. Here, we show that a candidate P. viticola RxLR effector, PvAvh74, induces cell death in Nicotiana benthamiana leaves. Using agroinfiltration, we found that nuclear localization, two putative N-glycosylation sites, and 427 amino acids of the PvAvh74 carboxyl terminus were necessary for cell-death-inducing activity. Using virus-induced gene silencing (VIGS), we found that PvAvh74-induced cell death in N. benthamiana requires EDS1, NDR1, SGT1, RAR1, and HSP90, but not BAK1. The MAPK cascade components MEK2, WIPK, and SIPK were also involved in PvAvh74-induced cell death in N. benthamiana. Transient expression of PvAvh74 could suppress Phytophthora capsici colonization of N. benthamiana, which suggests that PvAvh74 elicits plant immune responses. Suppression of P. capsici colonization also was dependent on nuclear localization of PvAvh74. Additionally, PvAvh74-triggered cell death could be suppressed by another effector, PvAvh8, from the same isolate. This work provides a framework to further investigate the interactions of PvAvh74 and other RxLR effectors with host immunity.
Collapse
Affiliation(s)
- Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanzhuo Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
33
|
Tang Y, Wang J, Bao X, Liang M, Lou H, Zhao J, Sun M, Liang J, Jin L, Li G, Qiu Y, Liu K. Genome-wide identification and expression profile of HD-ZIP genes in physic nut and functional analysis of the JcHDZ16 gene in transgenic rice. BMC PLANT BIOLOGY 2019; 19:298. [PMID: 31286900 PMCID: PMC6615155 DOI: 10.1186/s12870-019-1920-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/03/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Homeodomain-leucine zipper (HD-ZIP) transcription factors play important roles in the growth, development and stress responses of plants, including (presumably) physic nut (Jatropha curcas), which has high drought and salinity tolerance. However, although physic nut's genome has been released, there is little knowledge of the functions, expression profiles and evolutionary histories of the species' HD-ZIP genes. RESULTS In this study, 32 HD-ZIP genes were identified in the physic nut genome (JcHDZs) and divided into four groups (I-IV) based on phylogenetic analysis with homologs from rice, maize and Arabidopsis. The analysis also showed that most of the JcHDZ genes were closer to members from Arabidopsis than to members from rice and maize. Of the 32 JcHDZ genes, most showed differential expression patterns among four tissues (root, stem cortex, leaf, and seed). Expression profile analysis based on RNA-seq data indicated that 15 of the JcHDZ genes respond to at least one abiotic stressor (drought and/or salinity) in leaves at least at one time point. Transient expression of a JcHDZ16-YFP fusion protein in Arabidopsis protoplasts cells showed that JcHDZ16 is localized in the nucleus. In addition, rice seedlings transgenically expressing JcHDZ16 had lower proline contents and activities of antioxidant enzymes (catalase and superoxide dismutase) together with higher relative electrolyte leakage and malondialdehyde contents under salt stress conditions (indicating higher sensitivity) than wild-type plants. The transgenic seedlings also showed increased sensitivity to exogenous ABA, and increases in the transcriptional abundance of several salt stress-responsive genes were impaired in their responses to salt stress. Further data on JcHDZ16-overexpressing plants subjected to salt stress treatment verified the putative role of JcHDZ genes in salt stress responses. CONCLUSION Our results may provide foundations for further investigation of functions of JcHDZ genes in responses to abiotic stress, and promote application of JcHDZ genes in physic nut breeding.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| | - Jian Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Zhoukou, Henan China
| | - Mengyu Liang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Huimin Lou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Junwei Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Mengting Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Jing Liang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Lisha Jin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Guangling Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Yahui Qiu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Kun Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| |
Collapse
|
34
|
Zhang K, Zheng T, Zhu X, Jiu S, Liu Z, Guan L, Jia H, Fang J. Genome-Wide Identification of PIFs in Grapes ( Vitis vinifera L.) and Their Transcriptional Analysis under Lighting/Shading Conditions. Genes (Basel) 2018; 9:genes9090451. [PMID: 30205517 PMCID: PMC6162725 DOI: 10.3390/genes9090451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Phytochrome-interacting factors (PIFs), as the basic helix⁻loop⁻helix (bHLH) transcription factors, are the primary signaling partners for phytochromes (PHY) that play a key role in PHY-mediated light signal transduction. At present, there are few studies on PIFs in fruit trees. In order to clarify the status of PIFs in grapevines, we identified members of the grape PIFs family and conducted phylogenetic and expression analysis. We identified PIF1, PIF3, PIF4, and PIF7 in PIFs families of the grapevine (Vitis vinifera L.), which were distributed on four different chromosomes with similar gene structures. Except for the closer relationship with PIF1 of citrus, PIFs of grape were distant from the other fruit species such as apple, pear, peach, and strawberry. The VvPIFs (except VvPIF4) were located in the syntenic block with those from Arabidopsisthaliana, Solanum lycopersicum, or Citrus sinensis. In addition to PIF1, all PIFs in grapevines have conserved active PHYB binding (APB) sequences. VvPIF1 has a conserved PIF1-specific active PHYA binding (APA) sequence, while amino acid mutations occurred in the specific APA sequence in VvPIF3. Interestingly, two specific motifs were found in the PIF4 amino acid sequence. The photoreceptor-related elements in the VvPIFs promoter region were the most abundant. PIF1, LONG HYPOCOTYL 5 (HY5) and PIF3, PIF4, GIBBERELLIC ACID INSENSITIVE 1 (GAI1) may interact with each other and participate together in light signal transduction. The relative expression levels of the VvPIFs showed diverse patterns in the various organs at different developmental stages, of which PIF4 was most highly expressed. Prior to maturation, the expression of PIF4 and PIF7 in the skin of the different cultivars increased, while the expression of all PIFs in the flesh decreased. The transcription level of PIFs in grape leaves was sensitive to changes in lighting and shading. Shading treatment was beneficial for enhancing the transcription level of VvPIFs, but the effect on VvPIF3 and VvPIF4 was time-controlled. We concluded that PIFs in grapevines are both conservative and species-specific. The identification and analysis of grape PIFs could provide a theoretical foundation for the further construction of grape light regulation networks.
Collapse
Affiliation(s)
- Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Songtao Jiu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|