1
|
Panda S, Sahu MC, Turuk J, Pati S. Mucormycosis: A Rare disease to Notifiable Disease. Braz J Microbiol 2024; 55:1065-1081. [PMID: 38561499 PMCID: PMC11153412 DOI: 10.1007/s42770-024-01315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Mucormycosis is the third most frequent invasive mycosis, following candidiasis and aspergillosis. It is frequently neglected due to its rare occurrence; but recently attend the status of notifiable disease due to its higher incidence in both developed and developing nations. India has received global notice since its estimated instances were greater than the global estimated figures. Mucormycosis has several clinical manifestations, including rhino-orbital-cerebral (ROCM), pulmonary, gastrointestinal, cutaneous, renal, and diffuse Mucormycosis. ROCM is the most frequent clinical manifestation in India, although pulmonary mucormycosis is prevalent worldwide. This review also discusses host defenses, pre disposing risk factors and fungal virulence factors that impair host's ability to prevent fungus invasion and disease establishment. The diagnosis of the disease depends on clinical interventions, histological or microbiological procedures along with molecular methods to obtain timely results. But there are still unmet challenges for rapid diagnosis of the disease. Treatment of the disease is achieved by multimodal approaches such as reversal of underlying predisposing factors, rapid administration of antifungals in optimal doses and surgical procedures to remove infected tissues. Liposomal Amphotericin B, Posaconazole and Isavuconazoles are preferred as the first line of treatment procedures. clinical trials. Different studies have improved the existing drug and under clinical trials while several studies predicted the new potential targets as CotH and Ftr1 as shown in infection and in vitro models. Therefore, current scenario demands a multidisciplinary approach is needed to investigate the prevalence, pathogenesis which is highly important for the advancement of rapid diagnosis and effective treatment.
Collapse
Affiliation(s)
- Sunita Panda
- Regional Medical Research Center, Bhubaneswar, Odisha, 751023, India
| | | | - Jyotirmayee Turuk
- Regional Medical Research Center, Bhubaneswar, Odisha, 751023, India.
| | - Sanghamitra Pati
- Regional Medical Research Center, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
2
|
Tanwar M, Singh A, Singh TP, Sharma S, Sharma P. Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis. ACS Infect Dis 2024; 10:1431-1457. [PMID: 38682683 DOI: 10.1021/acsinfecdis.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.
Collapse
Affiliation(s)
- Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
3
|
Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S, Mondo SJ, Kutovenko VB, Kutovenko VO, Gajdeczka MT, Anishchenko IM, Pawlowska J, Tran NV, Ebersberger I, Voigt K, Wang Y, Chang Y, Pawlowska TE, Heitman J, Vilgalys R, Bonito G, Benny GL, Smith ME, Reynolds N, James TY, Grigoriev IV, Spatafora JW, Stajich JE. Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned? Microorganisms 2023; 11:1830. [PMID: 37513002 PMCID: PMC10386755 DOI: 10.3390/microorganisms11071830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Anna Muszewska
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Somayeh Dolatabadi
- Biology Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
| | - Vira B. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | - Volodymyr O. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | | | - Iryna M. Anishchenko
- MG Kholodny Institute of Botany, National Academy of Sciences, 01030 Kyiv, Ukraine;
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological & Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland;
| | - Ngoc Vinh Tran
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Ingo Ebersberger
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore;
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham, NC 27708, USA;
| | - Gregory Bonito
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Gerald L. Benny
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Matthew E. Smith
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Nicole Reynolds
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joseph W. Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 93106, USA;
| |
Collapse
|
4
|
Samaddar A, Shrimali T, Sharma A. Mucormycosis caused by Apophysomyces species: An experience from a tertiary care hospital in Western India and systematic review of global cases. Mycoses 2023; 66:181-195. [PMID: 36227645 DOI: 10.1111/myc.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
Abstract
Apophysomyces species are an emerging cause of mucormycosis in several regions of the world, primarily affecting immunocompetent individuals. The present study addresses the global epidemiology, clinical presentation, management and outcome of mucormycosis caused by Apophysomyces spp. The study included patients diagnosed with Apophysomyces infection at our hospital between March 2019 and August 2020. In addition, cases published in PubMed and Google Scholar from inception to July 2022 were systematically searched and analysed. Only proven and probable cases that meet the eligibility criteria were included. The Indian cases were compared with those from other countries, and the results were analysed by descriptive statistics. In total, six cases of mucormycosis due to Apophysomyces spp. were diagnosed at our hospital, with additional 250 cases identified through literature search. The main underlying diseases were diabetes mellitus (24%), malignancy (3.2%) and chronic kidney disease (2.8%). The major predisposing factor was trauma (55.6%). Necrotizing fasciitis was the most common (63.2%) clinical presentation. Healthcare-associated mucormycosis accounted for 10.4% of the cases. Globally, A. elegans was the most common species (48.8%), whereas A. variabilis was predominant (86.2%) in India. Surgery was performed in 83.5% of patients. Among those treated with antifungal agents, 98% received amphotericin B and 8.1% received posaconazole. Inappropriate antifungal usage was observed in 12.7%. The overall mortality was 42.3%. A combined medical and surgical management was associated with higher survival. Our study highlights the knowledge gap among physicians regarding this infection. A timely diagnosis and aggressive management can improve the outcomes in such cases.
Collapse
Affiliation(s)
- Arghadip Samaddar
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Twishi Shrimali
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Anuradha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India.,Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, India
| |
Collapse
|
5
|
Sharma R, Kumar P, Rauf A, Chaudhary A, Prajapati PK, Emran TB, Gonçalves Lima CM, Conte-Junior CA. Mucormycosis in the COVID-19 Environment: A Multifaceted Complication. Front Cell Infect Microbiol 2022; 12:937481. [PMID: 35923801 PMCID: PMC9339637 DOI: 10.3389/fcimb.2022.937481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
The second wave of coronavirus disease 2019 (COVID-19) caused severe infections with high mortality. An increase in the cases of COVID-19-associated mucormycosis (CAM) was reported predominantly in India. Commonly present in immunocompromised individuals, mucormycosis is often a life-threatening condition. Confounding factors and molecular mechanisms associated with CAM are still not well understood, and there is a need for careful research in this direction. In this review, a brief account of the diagnosis, management, and advancement in drug discovery for mucormycosis has been provided. Here, we summarize major factors that dictate the occurrence of mucormycosis in COVID-19 patients through the analysis of published literature and case reports. Major predisposing factors to mucormycosis appear to be uncontrolled diabetes, steroid therapy, and certain cancers. At the molecular level, increased levels of iron in COVID-19 might contribute to mucormycosis. We have also discussed the potential role and regulation of iron metabolism in COVID-19 patients in establishing fungal growth. Other factors including diabetes prevalence and fungal spore burden in India as contributing factors have also been discussed.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Rasa shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Ashun Chaudhary
- Department of Plant Science (Botany), Central University of Himachal Pradesh, Dharamshala, India
| | - Pradeep Kumar Prajapati
- Department of Rasashastra and Bhaishajya Kalpana, All India Institute of Ayurveda, New Delhi, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
|
7
|
Liang G, Zhang M, Xu W, Wang X, Zheng H, Mei H, Liu W. Characterization of mitogenomes from four Mucorales species and insights into pathogenicity. Mycoses 2021; 65:45-56. [PMID: 34570921 DOI: 10.1111/myc.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mucorales, as one major order of Zygomycetes fungi, can infect human beings and cause serious consequence. We have noticed the pathogenicity of Mucorales is closely related to energy metabolism, while mitochondria play the role of energy factories in almost all biological activities. METHODS Virulence of M irregularis, M hiemalis, L corymbifera and R arrhizus were verified in Galleria mellonella larvae, as well as mitochondrial gene copies analysed with RT-qPCR. Mitogenomes of the four Mucorales species were sequenced based on illumina NovaSeq technology to study their characteristic features and functional regions. RESULTS Variant virulence of M irregularis, M hiemalis, L corymbifera and R arrhizu were verified by clinical retrospective data and our G mellonella infection models, also copies of mitochondrial genes indicated the significant associations with pathogenicity. A total of 274.18 clean reads were generated to be assembled; the complete mitogenomes of the four Mucorales species were obtained with totally different length. After the genomes annotated and compared, M irregularis was found more similar with M hiemalis than those of L corymbifera and R arrhizus, especially the small (rrns) and large (rrnl) subunits of mitochondrial ribosomal RNA (rRNA) genes. The GC content, ncRNAs and the distribution of the SNPs and InDels were also compared, and the GC content rate of fungi seems to be related to the fungal thermal adaptability. In addition, linear mitogenomes of these four Mucorales showed diverse arrangements of orf genes and directionality of some conserved gene elements. CONCLUSION This study uncovered the pathogenicity variances among the four Mucorales species and the relationship between their mitogenomic features and clinical pathogenicity. Further studies like spatial structure of mitochondrial genomes and the comprehensive analysis of transcription regulation are needed.
Collapse
Affiliation(s)
- Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Meijie Zhang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Wenqi Xu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaowen Wang
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, China
| | - Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.,CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Apophysomyces variabilis, an emerging and worrisome cause of primary cutaneous necrotizing infections in India. J Mycol Med 2021; 31:101197. [PMID: 34454304 DOI: 10.1016/j.mycmed.2021.101197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
In India, Apophysomyces species complex is the second common agent of mucormycosis mainly affecting immunocompetent hosts unlike other Mucorales. It is frequently involved in causing necrotizing cutaneous infections. The present two-year study was planned to investigate the causative role of Apophysomyces spp. in cutaneous necrotizing infections. The tissue samples were processed using standard techniques and in five out of 65 patients, Apophysomyces variabilis was the etiological agent. Diabetes mellitus and trauma were common risk factors and despite appropriate treatment only one patient could be survived. Apophysomyces variabilis is emerging as agent of necrotizing infections which invariably result in poor patient outcomes.
Collapse
|
9
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|
10
|
Koczyk G, Pawłowska J, Muszewska A. Terpenoid Biosynthesis Dominates among Secondary Metabolite Clusters in Mucoromycotina Genomes. J Fungi (Basel) 2021; 7:285. [PMID: 33918813 PMCID: PMC8070225 DOI: 10.3390/jof7040285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Early-diverging fungi harbour unprecedented diversity in terms of living forms, biological traits and genome architecture. Before the sequencing era, non-Dikarya fungi were considered unable to produce secondary metabolites (SM); however, this perspective is changing. The main classes of secondary metabolites in fungi include polyketides, nonribosomal peptides, terpenoids and siderophores that serve different biological roles, including iron chelation and plant growth promotion. The same classes of SM are reported for representatives of early-diverging fungal lineages. Encouraged by the advancement in the field, we carried out a systematic survey of SM in Mucoromycotina and corroborated the presence of various SM clusters (SMCs) within the phylum. Among the core findings, considerable representation of terpene and nonribosomal peptide synthetase (NRPS)-like candidate SMCs was found. Terpene clusters with diverse domain composition and potentially highly variable products dominated the landscape of candidate SMCs. A uniform low-copy distribution of siderophore clusters was observed among most assemblies. Mortierellomycotina are highlighted as the most potent SMC producers among the Mucoromycota and as a source of novel peptide products. SMC identification is dependent on gene model quality and can be successfully performed on a batch scale with genomes of different quality and completeness.
Collapse
Affiliation(s)
- Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland;
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Prakash H, Karuppiah P, A Al-Dhabi N, Prasad GS, Badapanda C, Chakrabarti A, Rudramurthy SM. Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants. Future Microbiol 2020; 15:1465-1481. [PMID: 33179528 DOI: 10.2217/fmb-2019-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Ponmurugan Karuppiah
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif A Al-Dhabi
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gandham S Prasad
- Technology, Industrial Liaison & Entrepreneurship Unit, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Chandan Badapanda
- Bioinformatics Division, Xcelris Labs Limited, Ahmedabad 380015, Gujarat, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
12
|
Soare AY, Watkins TN, Bruno VM. Understanding Mucormycoses in the Age of "omics". Front Genet 2020; 11:699. [PMID: 32695145 PMCID: PMC7339291 DOI: 10.3389/fgene.2020.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mucormycoses are deadly invasive infections caused by several fungal species belonging to the subphylum Mucoromycotina, order Mucorales. Hallmarks of disease progression include angioinvasion and tissue necrosis that aid in fungal dissemination through the blood stream, causing deeper infections and resulting in poor penetration of antifungal agents to the site of infection. In the absence of surgical removal of the infected focus, antifungal therapy alone is rarely curative. Even when surgical debridement is combined with high-dose antifungal therapy, the mortality associated with mucormycoses is >50%. The unacceptably high mortality rate, limited options for therapy and the extreme morbidity of highly disfiguring surgical therapy provide a clear mandate to understand the molecular mechanisms that govern pathogenesis with the hopes of developing alternative strategies to treat and prevent mucormycoses. In the absence of robust forward and reverse genetic systems available for this taxonomic group of fungi, unbiased next generation sequence (NGS)-based approaches have provided much needed insights into our understanding of many aspects of Mucormycoses, including genome structure, drug resistance, diagnostic development, and fungus-host interactions. Here, we will discuss the specific contributions that NGS-based approaches have made to the field and discuss open questions that can be addressed using similar approaches.
Collapse
Affiliation(s)
- Alexandra Y. Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya N. Watkins
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Pamidimukkala U, Sudhaharan S, Kancharla A, Vemu L, Challa S, Karanam SD, Chavali P, Prakash H, Ghosh AK, Gupta S, Rudramurthy SM, Chakrabarti A. Mucormycosis due to Apophysomyces species complex- 25 years' experience at a tertiary care hospital in southern India. Med Mycol 2020; 58:425-433. [PMID: 31342074 DOI: 10.1093/mmy/myz081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Apophysomyces elegans species complex is an important cause of cutaneous mucormycosis in India. However, majority of those cases are reported as case reports only. We desired to analyze our patients with Apophysomyces infection reported over 25 years (1992-2017) to understand the epidemiology, management, and outcome of the disease. During the study period 24 cases were reported, and the majority (95.8%) of them presented with necrotizing fasciitis following accidental/surgical/iatrogenic trauma. One patient presented with continuous ambulatory peritoneal dialysis (CAPD) related peritonitis. Healthcare related Apophysomyces infection was noted in 29.2% patients. In addition to trauma, comorbidities were noted in 37.5% patients (type 2diabetes mellitus-6, chronic alcoholism-2, and chronic kidney disease-1). Of the 24 isolates, 11 isolates starting from year 2014 were identified as Apophysomyces variabilis by molecular methods. Majority (95.8%) of the patients were managed surgically with or without amphotericin B deoxycholate therapy, while one patient was treated with amphotericin B deoxycholate alone. Among 24 patients, seven (29.1%) recovered, six (25%) patients could not afford antifungal management and left the hospital against medical advice, and 11 (45.9%) patients died.The present case series highlights that necrotizing fasciitis caused by A. variabilis is prevalent in India, and the disease may be healthcare related. Although diagnosis is not difficult, awareness among surgeons is still limited about the infection, leading to a delay in sending samples to the mycology laboratory. Apophysomyces infection must be considered in the differential diagnosis in apatient with progressive necrosis of a wound who is not responding to antibacterial therapy.
Collapse
Affiliation(s)
- Umabala Pamidimukkala
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sukanya Sudhaharan
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Anuradha Kancharla
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Lakshmi Vemu
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sundaram Challa
- Dept. of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sandhya Devi Karanam
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Padmasri Chavali
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Hariprasath Prakash
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Gupta
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Walther G, Wagner L, Kurzai O. Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. J Fungi (Basel) 2019; 5:E106. [PMID: 31739583 PMCID: PMC6958464 DOI: 10.3390/jof5040106] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.
Collapse
Affiliation(s)
- Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
| | - Lysett Wagner
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; (L.W.); (O.K.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
15
|
Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med Mycol 2019; 57:S245-S256. [PMID: 30816980 PMCID: PMC6394756 DOI: 10.1093/mmy/myz011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fungi of the basal lineage order Mucorales are able to cause infections in animals and humans. Mucormycosis is a well-known, life-threatening disease especially in patients with a compromised immune system. The rate of mortality and morbidity caused by mucormycosis has increased rapidly during the last decades, especially in developing countries. The systematic, phylogenetic, and epidemiological distributions of mucoralean fungi are addressed in relation to infection in immunocompromised patients. The review highlights the current achievements in (i) diagnostics and management of mucormycosis, (ii) the study of the interaction of Mucorales with cells of the innate immune system, (iii) the assessment of the virulence of Mucorales in vertebrate and invertebrate infection models, and (iv) the determination of virulence factors that are key players in the infection process, for example, high-affinity iron permease (FTR1), spore coat protein (CotH), alkaline Rhizopus protease enzyme (ARP), ADP-ribosylation factor (ARF), dihydrolipoyl dehydrogenase, calcineurin (CaN), serine and aspartate proteases (SAPs). The present mini-review attempts to increase the awareness of these difficult-to-manage fungal infections and to encourage research in the detection of ligands and receptors as potential diagnostic parameters and drug targets.
Collapse
Affiliation(s)
- Mohamed I Abdelwahab Hassan
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Faculty of Biological Sciences, University of Jena, Neugasse 25, 07743 Jena, Germany
- Pests and Plant Protection Department, National Research Centre, 33rd El Buhouth Street (Postal code: 12622) Dokki, Giza, Egypt
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Faculty of Biological Sciences, University of Jena, Neugasse 25, 07743 Jena, Germany
| |
Collapse
|
16
|
Khuna S, Suwannarach N, Kumla J, Jomkhwan Meerak, Nuangmek W, Kiatsiriroat T, Saisamorn Lumyong. Apophysomycesthailandensis (Mucorales, Mucoromycota), a new species isolated from soil in northern Thailand and its solubilization of non-soluble minerals. MycoKeys 2019:75-92. [PMID: 30733638 PMCID: PMC6363719 DOI: 10.3897/mycokeys.45.30813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
A new species of soil fungi, described herein as Apophysomycesthailandensis, was isolated from soil in Chiang Mai Province, Thailand. Morphologically, this species was distinguished from previously described Apophysomyces species by its narrower trapezoidal sporangiospores. A physiological determination showed that A.thailandensis differs from other Apophysomyces species by its assimilation of D-turanose, D-tagatose, D-fucose, L-fucose, and nitrite. A phylogenetic analysis, performed using combined internal transcribed spacers (ITS), the large subunit (LSU) of ribosomal DNA (rDNA) regions, and a part of the histone 3 (H3) gene, lends support to our the finding that A.thailandensis is distinct from other Apophysomyces species. The genetic distance analysis of the ITS sequence supports A.thailandensis as a new fungal species. A full description, illustrations, phylogenetic tree, and taxonomic key to the new species are provided. Its metal minerals solubilization ability is reported.
Collapse
Affiliation(s)
- Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Chiang Mai University Chiang Mai Thailand.,PhD Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand University of Phayao Phayao Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Chiang Mai University Chiang Mai Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand Academy of Science, The Royal Society of Thailand Bangkok Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Chiang Mai University Chiang Mai Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand Academy of Science, The Royal Society of Thailand Bangkok Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Chiang Mai University Chiang Mai Thailand
| | - Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand Chiang Mai University Chiang Mai Thailand
| | - Tanongkiat Kiatsiriroat
- Center of Excellence for Renewable Energy, Chiang Mai University, Chiang Mai 50200, Thailand University of Phayao Phayao Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Chiang Mai University Chiang Mai Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand Academy of Science, The Royal Society of Thailand Bangkok Thailand.,Center of Excellence for Renewable Energy, Chiang Mai University, Chiang Mai 50200, Thailand University of Phayao Phayao Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand Academy of Science, The Royal Society of Thailand Bangkok Thailand
| |
Collapse
|
17
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|