1
|
Križanac AM, Reimer C, Heise J, Liu Z, Pryce JE, Bennewitz J, Thaller G, Falker-Gieske C, Tetens J. Sequence-based genome-wide association study and fine-mapping in German Holstein reveal new quantitative trait loci for health traits. J Dairy Sci 2025:S0022-0302(25)00320-0. [PMID: 40349760 DOI: 10.3168/jds.2025-26328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
We conducted a large GWAS of 11 health traits belonging to 3 trait complexes: (1) metabolic diseases, (2) infectious and noninfectious feet and claw disorders, and (3) udder-related traits in 100,809 to 180,217 German Holstein cows to investigate the genetic architecture and underlying biological mechanisms behind these complex traits. The GWAS identified 12,306 genome-wide significant variants across 10 traits. The new association signals were inspected with a Bayesian fine-mapping approach, leading to the discovery of 159 novel variants with high potential for causality. Variants were in known and novel regions for the traits studied, leading to a list of 53 novel candidate genes. Our study represents the largest whole-genome sequence GWAS for health traits so far, hence ensuring the power to detect meaningful variants, especially when enhanced with fine-mapping.
Collapse
Affiliation(s)
- A M Križanac
- Department of Animal Sciences, University of Goettingen, Burckhardtweg 2, 37077 Göttingen, Germany; Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany.
| | - C Reimer
- Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany
| | - J Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283 Verden, Germany
| | - Z Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283 Verden, Germany
| | - J E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - J Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - G Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118 Kiel, Germany
| | - C Falker-Gieske
- Department of Animal Sciences, University of Goettingen, Burckhardtweg 2, 37077 Göttingen, Germany; Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| | - J Tetens
- Department of Animal Sciences, University of Goettingen, Burckhardtweg 2, 37077 Göttingen, Germany; Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Alemu SW, Lopdell TJ, Trevarton AJ, Snell RG, Littlejohn MD, Garrick DJ. Comparison of genomic prediction accuracies in dairy cattle lactation traits using five classes of functional variants versus generic SNP. Genet Sel Evol 2025; 57:20. [PMID: 40217496 PMCID: PMC11987224 DOI: 10.1186/s12711-025-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Genomic selection, typically employing genetic markers from SNP chips, is routine in modern dairy cattle breeding. This study assessed the impact of functional sequence variants on genomic prediction accuracy relative to 50 k SNP chip markers for fat percent, protein percent, milk volume, fat yield, and protein yield in lactating dairy cattle. The functional variants were identified through GWAS, RNA-seq, Histone modification ChIP-seq, ATAC-seq, or were coding variants. The genomic prediction accuracy obtained using each class of functional variants was compared with matched numbers of SNPs randomly selected from the Illumina 50 k SNP chip. RESULTS The investigation revealed that variants identified by GWAS or RNA-seq, significantly improved the prediction accuracy across all five traits. Contributions from ChIP-seq, ATAC-seq, and coding variants varied. Some variants identified using ChIP-seq showed marked improvements, while others reduced accuracy in protein yield predictions. Relative to a matched number of 32,595 SNPs from the SNP chip, pooling all the functional variants demonstrated prediction accuracy increases of 1.76% for fat percent, 2.97% for protein percent, 0.51% for milk volume, and 0.26% for fat yield, but with a slight decrease of 0.43% in protein yield. CONCLUSION The study demonstrates that functional variants can improve prediction accuracy relative to equivalent numbers of variants from a generic SNP panel, with percent traits showing more significant gains than yield traits. The main advantage of using functional variants for genomic prediction was achievement of comparable accuracy using a smaller, more selective set of loci. This is particularly evident in trait-specific scenarios. Our findings indicate that specific combinations of functional variants comprising 16 k variants can achieve genomic prediction accuracy comparable to employing a standard panel of twice the size (32.6 k), especially for percent traits. This highlights the potential for the development of more efficient, trait-focused SNP panels utilizing functional variants.
Collapse
Affiliation(s)
- Setegn Worku Alemu
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand.
- Invermay Agricultural Centre, AgResearch Limited, Mosgiel, New Zealand.
| | | | | | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew D Littlejohn
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand
- LIC, Hamilton, New Zealand
| | - Dorian J Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand
| |
Collapse
|
3
|
Lin M, Zheng X, Yan J, Huang F, Chen Y, Ding R, Wan J, Zhang L, Wang C, Pan J, Cao X, Fu K, Lou Y, Feng XH, Ji J, Zhao B, Lan F, Shen L, He X, Qiu Y, Jin J. The RNF214-TEAD-YAP signaling axis promotes hepatocellular carcinoma progression via TEAD ubiquitylation. Nat Commun 2024; 15:4995. [PMID: 38862474 PMCID: PMC11167002 DOI: 10.1038/s41467-024-49045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.
Collapse
Affiliation(s)
- Mengjia Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fei Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinkai Wan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenliang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinchang Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolei Cao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyi Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Fei Lan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Orthopedics Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 3100014, Zhejiang, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
4
|
Lopdell TJ, Trevarton AJ, Moody J, Prowse-Wilkins C, Knowles S, Tiplady K, Chamberlain AJ, Goddard ME, Spelman RJ, Lehnert K, Snell RG, Davis SR, Littlejohn MD. A common regulatory haplotype doubles lactoferrin concentration in milk. Genet Sel Evol 2024; 56:22. [PMID: 38549172 PMCID: PMC11234695 DOI: 10.1186/s12711-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand.
| | - Alexander J Trevarton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Janelle Moody
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Claire Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Knowles
- Auckland War Memorial Museum, Victoria Street West, Auckland, New Zealand
| | - Kathryn Tiplady
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J Spelman
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Stephen R Davis
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
- AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Bhati M, Mapel XM, Lloret-Villas A, Pausch H. Structural variants and short tandem repeats impact gene expression and splicing in bovine testis tissue. Genetics 2023; 225:iyad161. [PMID: 37655920 PMCID: PMC10627265 DOI: 10.1093/genetics/iyad161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
Structural variants (SVs) and short tandem repeats (STRs) are significant sources of genetic variation. However, the impacts of these variants on gene regulation have not been investigated in cattle. Here, we genotyped and characterized 19,408 SVs and 374,821 STRs in 183 bovine genomes and investigated their impact on molecular phenotypes derived from testis transcriptomes. We found that 71% STRs were multiallelic. The vast majority (95%) of STRs and SVs were in intergenic and intronic regions. Only 37% SVs and 40% STRs were in high linkage disequilibrium (LD) (R2 > 0.8) with surrounding SNPs/insertions and deletions (Indels), indicating that SNP-based association testing and genomic prediction are blind to a nonnegligible portion of genetic variation. We showed that both SVs and STRs were more than 2-fold enriched among expression and splicing QTL (e/sQTL) relative to SNPs/Indels and were often associated with differential expression and splicing of multiple genes. Deletions and duplications had larger impacts on splicing and expression than any other type of SV. Exonic duplications predominantly increased gene expression either through alternative splicing or other mechanisms, whereas expression- and splicing-associated STRs primarily resided in intronic regions and exhibited bimodal effects on the molecular phenotypes investigated. Most e/sQTL resided within 100 kb of the affected genes or splicing junctions. We pinpoint candidate causal STRs and SVs associated with the expression of SLC13A4 and TTC7B and alternative splicing of a lncRNA and CAPP1. We provide a catalog of STRs and SVs for taurine cattle and show that these variants contribute substantially to gene expression and splicing variation.
Collapse
Affiliation(s)
- Meenu Bhati
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Xena Marie Mapel
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | | | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
6
|
Zhou F, Fan X, Xu X, Li Z, Qiu L, Miao Y. Molecular Characteristics and Polymorphisms of Buffalo ( Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis. Animals (Basel) 2023; 13:3156. [PMID: 37835762 PMCID: PMC10571847 DOI: 10.3390/ani13193156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The ATP-binding cassette subfamily G member 2 (ABCG2) serves crucial roles in secreting riboflavin and biotin vitamins into the milk of cattle, mice, and humans, as well as in the transportation of xenotoxic and cytostatic drugs across the plasma membrane. However, the specific role of the ABCG2 gene in water buffaloes (Bubalus bubalis), especially its effect on milk fat synthesis in buffalo mammary epithelial cells (BuMECs), remains inadequately understood. In this study, the full-length CDS of the buffalo ABCG2 gene was isolated and identified from the mammary gland in buffaloes. A bioinformatics analysis showed a high degree of similarity in the transcriptional region, motifs, and conservative domains of the buffalo ABCG2 with those observed in other Bovidae species. The functional role of buffalo ABCG2 was associated with the transportation of solutes across lipid bilayers within cell membranes. Among the 11 buffalo tissues detected, the expression levels of ABCG2 were the highest in the liver and brain, followed by the mammary gland, adipose tissue, heart, and kidney. Notably, its expression in the mammary gland was significantly higher during peak lactation than during non-lactation. The ABCG2 gene was identified with five SNPs in river buffaloes, while it was monomorphic in swamp buffaloes. Functional experiments revealed that ABCG2 increased the triglyceride (TAG) content by affecting the expression of liposynthesis-related genes in BuMECs. The results of this study underscore the pivotal role of the ABCG2 gene in influencing the milk fat synthesis in BuMECs.
Collapse
Affiliation(s)
- Fangting Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
- College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
| | - Xiaoqi Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
| | - Zhuoran Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
| | - Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (F.Z.); (X.F.); (X.X.); (Z.L.); (L.Q.)
| |
Collapse
|
7
|
Moody J, Mears E, Trevarton AJ, Broadhurst M, Molenaar A, Chometon T, Lopdell T, Littlejohn M, Snell R. Successful editing and maintenance of lactogenic gene expression in primary bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00762-6. [PMID: 37278965 DOI: 10.1007/s11626-023-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/23/2023] [Indexed: 06/07/2023]
Abstract
In vitro investigation of bovine lactation processes is limited by a lack of physiologically representative cell models. This deficiency is most evident through the minimal or absent expression of lactation-specific genes in cultured bovine mammary tissues. Primary bovine mammary epithelial cells (pbMECs) extracted from lactating mammary tissue and grown in culture initially express milk protein transcripts at relatively representative levels. However, expression drops dramatically after only three or four passages, which greatly reduces the utility of primary cells to model and further examine lactogenesis. To investigate the effects of alternate alleles in pbMECs including effects on transcription, we have developed methods to deliver CRISPR-Cas9 gene editing reagents to primary mammary cells, resulting in very high editing efficiencies. We have also found that culturing the cells on an imitation basement membrane composed of Matrigel, results in the restoration of a more representative lactogenic gene expression profile and the cells forming three-dimensional structures in vitro. Here, we present data from four pbMEC lines recovered from pregnant cows and detail the expression profile of five key milk synthesis genes in these MECs grown on Matrigel. Additionally, we describe an optimised method for preferentially selecting CRISPR-Cas9-edited cells conferring a knock-out of DGAT1, using fluorescence-activated cell sorting (FACS). The combination of these techniques facilitates the use of pbMECs as a model to investigate the effects of gene introgressions and genetic variation in lactating mammary tissue.
Collapse
Affiliation(s)
- Janelle Moody
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Alexander J Trevarton
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | - Thaize Chometon
- Faculty of Sciences, Auckland Cytometry, The University of Auckland, Auckland, New Zealand
| | - Thomas Lopdell
- Livestock Improvement Corporation, Hamilton, New Zealand
| | | | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Carta S, Cesarani A, Correddu F, Macciotta NPP. Understanding the phenotypic and genetic background of the lactose content in Sarda dairy sheep. J Dairy Sci 2023; 106:3312-3320. [PMID: 37028961 DOI: 10.3168/jds.2022-22579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/17/2022] [Indexed: 04/09/2023]
Abstract
Lactose, the principal carbohydrate found in milk, plays an important role in the physiological processes of milk production because it is related to milk volume, and it is responsible for the osmotic equilibrium between blood and milk in the mammary gland. In this study, factors affecting lactose content (LC) in sheep milk are investigated. For this purpose, 2,358 test-day records were sampled from 509 ewes (3-7 records per animal). The LC and other main milk traits were analyzed using a mixed linear model that included days in milk (DIM) class, parity, lambing month, and type of lambing as fixed effects and animal, permanent environment, and flock test day as random effects. The pedigree-based approach was used to estimate the heritability and repeatability of LC. Moreover, the genomic background of LC was investigated through a GWAS. The LC was affected by all tested factors (i.e., DIM class, parity, lambing month, and type of lambing). Low heritability (0.10 ± 0.05) and moderate repeatability (0.42 ± 0.02) were estimated for LC. High negative genetic correlations were estimated between LC and NaCl (-0.99 ± 0.01) and between LC and somatic cell count (-0.94 ± 0.05). Only 2 markers passed the chromosome-wide Bonferroni threshold. Results of the present study, although obtained on a relatively small sample, suggest the possibility to include LC in the breeding programs, particularly because of its strong relationship with NaCl and somatic cell count.
Collapse
Affiliation(s)
- S Carta
- Dipartimento di Agraria, University of Sassari, 07100, Sassari, Italy
| | - A Cesarani
- Dipartimento di Agraria, University of Sassari, 07100, Sassari, Italy; Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F Correddu
- Dipartimento di Agraria, University of Sassari, 07100, Sassari, Italy.
| | - N P P Macciotta
- Dipartimento di Agraria, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
9
|
Jayawardana JMDR, Lopez-Villalobos N, McNaughton LR, Hickson RE. Genomic Regions Associated with Milk Composition and Fertility Traits in Spring-Calved Dairy Cows in New Zealand. Genes (Basel) 2023; 14:genes14040860. [PMID: 37107618 PMCID: PMC10137527 DOI: 10.3390/genes14040860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of this study was to identify genomic regions and genes that are associated with the milk composition and fertility traits of spring-calved dairy cows in New Zealand. Phenotypic data from the 2014–2015 and 2021–2022 calving seasons in two Massey University dairy herds were used. We identified 73 SNPs that were significantly associated with 58 potential candidate genes for milk composition and fertility traits. Four SNPs on chromosome 14 were highly significant for both fat and protein percentages, and the associated genes were DGAT1, SLC52A2, CPSF1, and MROH1. For fertility traits, significant associations were detected for intervals from the start of mating to first service, the start of mating to conception, first service to conception, calving to first service, and 6-wk submission, 6-wk in-calf, conception to first service in the first 3 weeks of the breeding season, and not in calf and 6-wk calving rates. Gene Ontology revealed 10 candidate genes (KCNH5, HS6ST3, GLS, ENSBTAG00000051479, STAT1, STAT4, GPD2, SH3PXD2A, EVA1C, and ARMH3) that were significantly associated with fertility traits. The biological functions of these genes are related to reducing the metabolic stress of cows and increasing insulin secretion during the mating period, early embryonic development, foetal growth, and maternal lipid metabolism during the pregnancy period.
Collapse
Affiliation(s)
- J. M. D. R. Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | | | - Lorna R. McNaughton
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | | |
Collapse
|
10
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
11
|
Prowse-Wilkins CP, Lopdell TJ, Xiang R, Vander Jagt CJ, Littlejohn MD, Chamberlain AJ, Goddard ME. Genetic variation in histone modifications and gene expression identifies regulatory variants in the mammary gland of cattle. BMC Genomics 2022; 23:815. [PMID: 36482302 PMCID: PMC9733386 DOI: 10.1186/s12864-022-09002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants. RESULTS We assayed the histone modifications H3K4Me3, H3K4Me1 and H3K27ac and mRNA in the mammary gland of up to 400 animals. We identified QTL for peak height (histone QTL), exon expression (eeQTL), allele specific expression (aseQTL) and allele specific binding (asbQTL). By intersecting these results, we identify variants which may influence gene expression by altering regulatory regions of the genome, and may be causal variants for other traits. Lastly, we find that these variants are found in putative transcription factor binding sites, identifying a mechanism for the effect of many eQTL. CONCLUSIONS We find that allele specific and traditional QTL analysis often identify the same genetic variants and provide evidence that many eQTL are regulatory variants which alter activity at regulatory regions of the bovine genome. Our work provides methodological and biological updates on how regulatory mechanisms interplay at multi-omics levels.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia.
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Tiplady KM, Lopdell TJ, Sherlock RG, Johnson TJ, Spelman RJ, Harris BL, Davis SR, Littlejohn MD, Garrick DJ. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins. J Dairy Sci 2022; 105:9763-9791. [DOI: 10.3168/jds.2022-22089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
|
13
|
Breen EJ, MacLeod IM, Ho PN, Haile-Mariam M, Pryce JE, Thomas CD, Daetwyler HD, Goddard ME. BayesR3 enables fast MCMC blocked processing for largescale multi-trait genomic prediction and QTN mapping analysis. Commun Biol 2022; 5:661. [PMID: 35790806 PMCID: PMC9256732 DOI: 10.1038/s42003-022-03624-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/22/2022] [Indexed: 01/26/2023] Open
Abstract
Bayesian methods, such as BayesR, for predicting the genetic value or risk of individuals from their genotypes, such as Single Nucleotide Polymorphisms (SNP), are often implemented using a Markov Chain Monte Carlo (MCMC) process. However, the generation of Markov chains is computationally slow. We introduce a form of blocked Gibbs sampling for estimating SNP effects from Markov chains that greatly reduces computational time by sampling each SNP effect iteratively n-times from conditional block posteriors. Subsequent iteration over all blocks m-times produces chains of length m × n. We use this strategy to solve large-scale genomic prediction and fine-mapping problems using the Bayesian MCMC mixed-effects genetic model, BayesR3. We validate the method using simulated data, followed by analysis of empirical dairy cattle data using high dimension milk mid infra-red spectra data as an example of “omics” data and show its use to increase the precision of mapping variants affecting milk, fat, and protein yields relative to a univariate analysis of milk, fat, and protein. BayesR3 samples the polymorphisms affecting complex traits at reduced computational cost to predict the genetic value, breeding value, or individual risk of genotypes.
Collapse
|
14
|
Davis SR, Ward HE, Kelly V, Palmer D, Ankersmit-Udy AE, Lopdell TJ, Berry SD, Littlejohn MD, Tiplady K, Adams LF, Carnie K, Burrett A, Thomas N, Snell RG, Spelman RJ, Lehnert K. Screening for phenotypic outliers identifies an unusually low concentration of a β-lactoglobulin B protein isoform in bovine milk caused by a synonymous SNP. Genet Sel Evol 2022; 54:22. [PMID: 35296234 PMCID: PMC8925192 DOI: 10.1186/s12711-022-00711-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Milk samples from 10,641 dairy cattle were screened by a mass spectrometry method for extreme concentrations of the A or B isoforms of the whey protein, β-lactoglobulin (BLG), to identify causative genetic variation driving changes in BLG concentration. Results A cohort of cows, from a single sire family, was identified that produced milk containing a low concentration of the BLG B protein isoform. A genome-wide association study (GWAS) of BLG B protein isoform concentration in milk from AB heterozygous cows, detected a group of highly significant single nucleotide polymorphisms (SNPs) within or close to the BLG gene. Among these was a synonymous G/A variation at position + 78 bp in exon 1 of the BLG gene (chr11:103256256G > A). The effect of the A allele of this SNP (which we named B’) on BLG expression was evaluated in a luciferase reporter assay in transfected CHO-K1 and MCF-7 cells. In both cell types, the presence of the B’ allele in a plasmid containing the bovine BLG gene from -922 to + 898 bp (relative to the transcription initiation site) resulted in a 60% relative reduction in mRNA expression, compared to the plasmid containing the wild-type B sequence allele. Examination of a mammary RNAseq dataset (n = 391) identified 14 heterozygous carriers of the B’ allele which were homozygous for the BLG B protein isoform (BB’). The level of expression of the BLG B’ allele was 41.9 ± 1.0% of that of the wild-type BLG B allele. Milk samples from three cows, homozygous for the A allele at chr11:103,256,256 (B’B’), were analysed (HPLC) and showed BLG concentrations of 1.04, 1.26 and 1.83 g/L relative to a mean of 4.84 g/L in milk from 16 herd contemporaries of mixed (A and B) BLG genotypes. The mechanism by which B’ downregulates milk BLG concentration remains to be determined. Conclusions High-throughput screening and identification of outliers, enabled the discovery of a synonymous G > A mutation in exon 1 of the B allele of the BLG gene (B’), which reduced the milk concentration of β-lactoglobulin B protein isoform, by more than 50%. Milk from cows carrying the B’ allele is expected to have improved processing characteristics, particularly for cheese-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00711-z.
Collapse
Affiliation(s)
- Stephen R Davis
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand. .,ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand.
| | - Hamish E Ward
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Van Kelly
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - David Palmer
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Alexandra E Ankersmit-Udy
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Thomas J Lopdell
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Sarah D Berry
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Mathew D Littlejohn
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Kathryn Tiplady
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Linda F Adams
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Katie Carnie
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Alayna Burrett
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Natalie Thomas
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| | - Russell G Snell
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Richard J Spelman
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Klaus Lehnert
- ViaLactia Biosciences Ltd., a subsidiary (now closed) of Fonterra Co-Operative Ltd., Fanshawe Street, Auckland, New Zealand
| |
Collapse
|
15
|
Reynolds EGM, Lopdell T, Wang Y, Tiplady KM, Harland CS, Johnson TJJ, Neeley C, Carnie K, Sherlock RG, Couldrey C, Davis SR, Harris BL, Spelman RJ, Garrick DJ, Littlejohn MD. Non-additive QTL mapping of lactation traits in 124,000 cattle reveals novel recessive loci. Genet Sel Evol 2022; 54:5. [PMID: 35073835 PMCID: PMC8785530 DOI: 10.1186/s12711-021-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for recessive effects based on lactation traits. RESULTS We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composition traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting dominance. CONCLUSIONS We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield phenotypes acting as a better proxy of underlying biological disorders through presentation of a larger number of major recessive impacts.
Collapse
Affiliation(s)
| | - Thomas Lopdell
- Livestock Improvement Corporation, Hamilton, New Zealand
| | - Yu Wang
- Livestock Improvement Corporation, Hamilton, New Zealand
| | - Kathryn M. Tiplady
- Massey University, Palmerston North, New Zealand
- Livestock Improvement Corporation, Hamilton, New Zealand
| | | | | | | | - Katie Carnie
- Livestock Improvement Corporation, Hamilton, New Zealand
| | | | | | | | | | | | | | - Mathew D. Littlejohn
- Massey University, Palmerston North, New Zealand
- Livestock Improvement Corporation, Hamilton, New Zealand
| |
Collapse
|
16
|
Falchi L, Gaspa G, Cesarani A, Correddu F, Degano L, Vicario D, Lourenco D, Macciotta NPP. Investigation of β-hydroxybutyrate in early lactation of Simmental cows: Genetic parameters and genomic predictions. J Anim Breed Genet 2021; 138:708-718. [PMID: 34180560 PMCID: PMC8518359 DOI: 10.1111/jbg.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Genomic information allows for a more accurate calculation of relationships among animals than the pedigree information, leading to an increase in accuracy of breeding values. Here, we used pedigree-based and single-step genomic approaches to estimate variance components and breeding values for β-hydroxybutyrate milk content (BHB). Additionally, we performed a genome-wide association study (GWAS) to depict its genetic architecture. BHB concentrations within the first 90 days of lactation, estimated from milk medium infrared spectra, were available for 30,461 cows (70,984 records). Genotypes at 42,152 loci were available for 9,123 animals. Low heritabilities were found for BHB using pedigree-based (0.09 ± 0.01) and genomic (0.10 ± 0.01) approaches. Genetic correlation between BHB and milk traits ranged from -0.27 ± 0.06 (BHB and protein percentage) to 0.13 ± 0.07 (BHB and fat-to-protein ratio) using pedigree and from -0.26 ± 0.05 (BHB and protein percentage) to 0.13 ± 0.06 (BHB and fat-to-protein ratio) using genomics. Breeding values were validated for 344 genotyped cows using linear regression method. The genomic EBV (GEBV) had greater accuracy (0.51 vs. 0.45) and regression coefficient (0.98 vs. 0.95) compared to EBV. The correlation between two subsequent evaluations, without and with phenotypes for validation cows, was 0.85 for GEBV and 0.82 for EBV. Predictive ability (correlation between (G)EBV and adjusted phenotypes) was greater when genomic information was used (0.38) than in the pedigree-based approach (0.31). Validation statistics in the pairwise two-trait models (milk yield, fat and protein percentage, urea, fat/protein ratio, lactose and logarithmic transformation of somatic cells count) were very similar to the ones highlighted for the single-trait model. The GWAS allowed discovering four significant markers located on BTA20 (57.5-58.2 Mb), where the ANKH gene is mapped. This gene has been associated with lactose, alpha-lactalbumin and BHB. Results of this study confirmed the usefulness of genomic information to provide more accurate variance components and breeding values, and important insights about the genomic determination of BHB milk content.
Collapse
Affiliation(s)
- Laura Falchi
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Giustino Gaspa
- Department of Agricultural, Forest and Food SciencesUniversity of TorinoTorinoItaly
| | - Alberto Cesarani
- Department of Agricultural SciencesUniversity of SassariSassariItaly
- Department of Animal and Dairy ScienceUniversity of GeorgiaAthensGAUSA
| | - Fabio Correddu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Pezzata Rossa (ANAPRI)UdineItaly
| | - Daniele Vicario
- Associazione Nazionale Allevatori Pezzata Rossa (ANAPRI)UdineItaly
| | - Daniela Lourenco
- Department of Animal and Dairy ScienceUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
17
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
18
|
Zwierzchowski L, Ostrowska M, Żelazowska B, Bagnicka E. Single nucleotide polymorphisms in the bovine SLC2A12 and SLC5A1 glucose transporter genes - the effect on gene expression and milk traits of Holstein Friesian cows. Anim Biotechnol 2021; 34:225-235. [PMID: 34355642 DOI: 10.1080/10495398.2021.1954934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, novel single nucleotide polymorphisms (SNPs) were found in the 5'-regulatory regions (promoters) of the bovine glucose transporter (GT) genes SLC2A12 and SLC5A1. These polymorphisms were shown to associate with certain milk production traits in HF cows, including milk yield, milk composition, and somatic cell count. It was shown that the SNP g.-671C > G (NC_037336.1: g.72224078C > G) in the SLC2A12 gene could be an effective marker of cattle production traits and that genotypes CC and CG are associated with the best productivity. The polymorphisms found in the SLC5A1 gene promoter also influenced milk production traits in HF cows, albeit to a lesser extent, and we propose that these polymorphisms could be useful as genetic markers for milk production traits in marker-assisted selection (MAS); however, this must be confirmed on larger populations of cattle. In addition, the presence of polymorphisms within promoter regions appears to affect the expression of GT genes in the cow mammary gland and modify transcription factor (TF) binding capacity.
Collapse
Affiliation(s)
- Lech Zwierzchowski
- Institute of Genetics and Animal Biotechnology Polish Academy of Sciences (IGAB PAS), Jastrzębiec, Poland
| | - Małgorzata Ostrowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Żelazowska
- Institute of Genetics and Animal Biotechnology Polish Academy of Sciences (IGAB PAS), Jastrzębiec, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology Polish Academy of Sciences (IGAB PAS), Jastrzębiec, Poland
| |
Collapse
|
19
|
Tiplady KM, Lopdell TJ, Reynolds E, Sherlock RG, Keehan M, Johnson TJJ, Pryce JE, Davis SR, Spelman RJ, Harris BL, Garrick DJ, Littlejohn MD. Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol 2021; 53:62. [PMID: 34284721 PMCID: PMC8290608 DOI: 10.1186/s12711-021-00648-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.
Collapse
Affiliation(s)
- Kathryn M. Tiplady
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Thomas J. Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Edwardo Reynolds
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Richard G. Sherlock
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Thomas JJ. Johnson
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Jennie E. Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Stephen R. Davis
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Richard J. Spelman
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Bevin L. Harris
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Mathew D. Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
20
|
Lee YL, Takeda H, Costa Monteiro Moreira G, Karim L, Mullaart E, Coppieters W, Appeltant R, Veerkamp RF, Groenen MAM, Georges M, Bosse M, Druet T, Bouwman AC, Charlier C. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet 2021; 17:e1009331. [PMID: 34288907 PMCID: PMC8328317 DOI: 10.1371/journal.pgen.1009331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.
Collapse
Affiliation(s)
- Young-Lim Lee
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Ruth Appeltant
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Roel F. Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Aniek C. Bouwman
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Jivanji S, Harland C, Cole S, Brophy B, Garrick D, Snell R, Littlejohn M, Laible G. The genomes of precision edited cloned calves show no evidence for off-target events or increased de novo mutagenesis. BMC Genomics 2021; 22:457. [PMID: 34139989 PMCID: PMC8212539 DOI: 10.1186/s12864-021-07804-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. RESULTS No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. CONCLUSIONS We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.
Collapse
Affiliation(s)
- Swati Jivanji
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
| | - Chad Harland
- Livestock Improvement Corporation, Newstead, New Zealand
| | - Sally Cole
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Brigid Brophy
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Dorian Garrick
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Russell Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew Littlejohn
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Livestock Improvement Corporation, Newstead, New Zealand
| | - Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
22
|
Xiang R, Breen EJ, Prowse-Wilkins CP, Chamberlain AJ, Goddard ME. Bayesian genome-wide analysis of cattle traits using variants with functional and evolutionary significance. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Context
Functional genomics studies have highlighted genomic regions with regulatory and evolutionary significance. Such information independent of association analysis may benefit fine-mapping and genomic selection of economically important traits. However, systematic evaluation of the use of functional information in mapping, and genomic selection of cattle traits, is lacking. Also, single-nucleotide polymorphisms (SNPs) from the high-density (HD) panel are known to tag informative variants, but the performance of genomic prediction using HD SNPs together with variants supported by different functional genomics is unknown.
Aims
We selected six sets of functionally important variants and modelled each set together with HD SNPs in Bayesian models to map and predict protein, fat and milk yield as well as mastitis, somatic cell count and temperament of dairy cattle.
Methods
Two models were used, namely (1) BayesR, which includes priors of four distribution of variant effects, and (2) BayesRC, which includes additional priors of different functional classes of variants. Bayesian models were trained in three breeds of 28 000 cows of Holstein, Jersey and Australian Red and predicted into 2600 independent bulls.
Key results
Adding functionally important variants significantly increased the enrichment of genetic variance explained for mapped variants, suggesting improved genome-wide mapping precision. Such improvement was significantly higher when the same set of variants was modelled by BayesRC than by BayesR. Combining functional variant sets with HD SNPs improves genomic prediction accuracy in the majority of the cases and such improvement was more common and stronger for non-Holstein breeds and traits such as mastitis, somatic cell count and temperament. In contrast, adding a large number of random sequence variants to HD SNPs reduces mapping precision and has a worse or similar prediction accuracy, compared with using HD SNPs alone to map or predict. While BayesRC tended to have better genomic prediction accuracy than did BayesR, the overall difference in prediction accuracy between the two models was insignificant.
Conclusions
Our findings demonstrated the usefulness of functional data in genomic mapping and prediction.
Implications
We have highlighted the need for effective tools exploiting complex functional datasets to improve genomic prediction.
Collapse
|
23
|
Tribout T, Croiseau P, Lefebvre R, Barbat A, Boussaha M, Fritz S, Boichard D, Hoze C, Sanchez MP. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genet Sel Evol 2020; 52:55. [PMID: 32998688 PMCID: PMC7529513 DOI: 10.1186/s12711-020-00575-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background Over the last years, genome-wide association studies (GWAS) based on imputed whole-genome sequences (WGS) have been used to detect quantitative trait loci (QTL) and highlight candidate genes for important traits. However, in general this approach does not allow to validate the effects of candidate mutations or determine if they are truly causative for the trait(s) in question. To address these questions, we applied a two-step, within-breed GWAS approach on 15 traits (5 linked with milk production, 2 with udder health, and 8 with udder morphology) in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cattle. We detected the most-promising candidate variants (CV) using imputed WGS of 2515 MON, 2203 NOR, and 6321 HOL bulls, and validated their effects in three younger populations of 23,926 MON, 9400 NOR, and 51,977 HOL cows. Results Bull sequence-based GWAS detected 84 QTL: 13, 10, and 30 for milk production traits; 3, 0, and 2 for somatic cell score (SCS); and 8, 2 and 16 for udder morphology traits, in MON, NOR, and HOL respectively. Five genomic regions with effects on milk production traits were shared among the three breeds whereas six (2 for production and 4 for udder morphology and health traits) had effects in two breeds. In 80 of these QTL, 855 CV were highlighted based on the significance of their effects and functional annotation. The subsequent GWAS on MON, NOR, and HOL cows validated 8, 9, and 23 QTL for production traits; 0, 0, and 1 for SCS; and 4, 1, and 8 for udder morphology traits, respectively. In 47 of the 54 confirmed QTL, the CV identified in bulls had more significant effects than single nucleotide polymorphisms (SNPs) from the standard 50K chip. The best CV for each validated QTL was located in a gene that was functionally related to production (36 QTL) or udder (9 QTL) traits. Conclusions Using this two-step GWAS approach, we identified and validated 54 QTL that included CV mostly located within functional candidate genes and explained up to 6.3% (udder traits) and 37% (production traits) of the genetic variance of economically important dairy traits. These CV are now included in the chip used to evaluate French dairy cattle and can be integrated into routine genomic evaluation.
Collapse
Affiliation(s)
- Thierry Tribout
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pascal Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Rachel Lefebvre
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Chris Hoze
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
24
|
Fink T, Lopdell TJ, Tiplady K, Handley R, Johnson TJJ, Spelman RJ, Davis SR, Snell RG, Littlejohn MD. A new mechanism for a familiar mutation - bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement. BMC Genomics 2020; 21:591. [PMID: 32847516 PMCID: PMC7449055 DOI: 10.1186/s12864-020-07004-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The DGAT1 gene encodes an enzyme responsible for catalysing the terminal reaction in mammary triglyceride synthesis, and underpins a well-known pleiotropic quantitative trait locus (QTL) with a large influence on milk composition phenotypes. Since first described over 15 years ago, a protein-coding variant K232A has been assumed as the causative variant underlying these effects, following in-vitro studies that demonstrated differing levels of triglyceride synthesis between the two protein isoforms. RESULTS We used a large RNAseq dataset to re-examine the underlying mechanisms of this large milk production QTL, and hereby report novel expression-based functions of the chr14 g.1802265AA > GC variant that encodes the DGAT1 K232A substitution. Using expression QTL (eQTL) mapping, we demonstrate a highly-significant mammary eQTL for DGAT1, where the K232A mutation appears as one of the top associated variants for this effect. By conducting in vitro expression and splicing experiments in bovine mammary cell culture, we further show modulation of splicing efficiency by this mutation, likely through disruption of an exon splice enhancer as a consequence of the allele encoding the 232A variant. CONCLUSIONS The relative contributions of the enzymatic and transcription-based mechanisms now attributed to K232A remain unclear; however, these results suggest that transcriptional impacts contribute to the diversity of lactation effects observed at the DGAT1 locus.
Collapse
Affiliation(s)
- Tania Fink
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas J Lopdell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand. .,Livestock Improvement Corporation, Hamilton, New Zealand.
| | - Kathryn Tiplady
- Livestock Improvement Corporation, Hamilton, New Zealand.,Al Rae Centre, Massey University, Hamilton, New Zealand
| | - Renee Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew D Littlejohn
- Livestock Improvement Corporation, Hamilton, New Zealand.,Al Rae Centre, Massey University, Hamilton, New Zealand
| |
Collapse
|
25
|
Tiplady KM, Lopdell TJ, Littlejohn MD, Garrick DJ. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J Anim Sci Biotechnol 2020; 11:39. [PMID: 32322393 PMCID: PMC7164258 DOI: 10.1186/s40104-020-00445-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
Over the last 100 years, significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs. Technological progress has enabled a shift from labour intensive, on-farm collection and processing of samples that assess yield and fat levels in milk, to large-scale processing of samples through centralised laboratories, with the scope extended to include quantification of other traits. Fourier-transform mid-infrared (FT-MIR) spectroscopy has had a significant role in the transformation of milk composition phenotyping, with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs. This includes traits related to the nutritional value of milk, the processability of milk into products such as cheese, and traits relevant to animal health and the environment. The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations between the FT-MIR predicted and actual trait values. Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis. The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes. Additionally, there are other molecular phenotypes such as those related to the metabolome, chromatin accessibility, and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest. Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets, and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.
Collapse
Affiliation(s)
- K M Tiplady
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - T J Lopdell
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - M D Littlejohn
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - D J Garrick
- 2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
26
|
Lu H, Wang Y, Bovenhuis H. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle. J Dairy Sci 2020; 103:5234-5245. [PMID: 32229127 DOI: 10.3168/jds.2019-17257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
Abstract
Substantial evidence demonstrates that the genetic background of milk production traits changes during lactation. However, most GWAS for milk production traits assume that genetic effects are constant during lactation and therefore might miss those quantitative trait loci (QTL) whose effects change during lactation. The GWAS for genotype by lactation stage interaction are aimed at explicitly detecting the QTL whose effects change during lactation. The purpose of this study was to perform GWAS for genotype by lactation stage interaction for milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, and somatic cell score to detect QTL with changing effects during lactation. For this study, 19,286 test-day records of 1,800 first-parity Dutch Holstein cows were available and cows were genotyped using a 50K SNP panel. A total of 7 genomic regions with effects that change during lactation were detected in the GWAS for genotype by lactation stage interaction. Two regions on Bos taurus autosome (BTA)14 and BTA19 were also significant based on a GWAS that assumed constant genetic effects during lactation. Five regions on BTA4, BTA10, BTA11, BTA16, and BTA23 were only significant in the GWAS for genotype by lactation stage interaction. The biological mechanisms that cause these changes in genetic effects are still unknown, but negative energy balance and effects of pregnancy may play a role. These findings increase our understanding of the genetic background of lactation and may contribute to the development of better management indicators based on milk composition.
Collapse
Affiliation(s)
- Haibo Lu
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, P. R. China
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands.
| |
Collapse
|
27
|
Toro Ospina AM, Silva Faria RA, Vercesi Filho AE, Cyrillo JNDSG, Zerlotti Mercadante ME, Curi RA, Vasconcelos Silva JA. Genome‐wide identification of runs of homozygosity islands in the Gyr breed (
Bos indicus
). Reprod Domest Anim 2020; 55:333-342. [DOI: 10.1111/rda.13639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/29/2019] [Indexed: 01/19/2023]
|
28
|
Rong Y, Zeng M, Guan X, Qu K, Liu J, Zhang J, Chen H, Huang B, Lei C. Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle. Animals (Basel) 2019; 9:E1027. [PMID: 31775331 PMCID: PMC6941060 DOI: 10.3390/ani9121027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
The heat shock factor 1 (HSF1) gene is a regulator of the heat stress response, maximizing HSP protein expression survival. In this research, we explored the frequency distribution of a missense mutation (NC_037341.1 g.616087A > G, rs135258919) in the HSF1 gene in Chinese cattle with amino acid substitution, valine to alanine. This mutation could be related to the heat tolerance in Bos indicus. A total of 941 individuals representing 35 Chinese native cattle breeds, combining pure taurine (Angus) and indicine cattle, were used to determine the genotypes of the mutation through PCR and partial DNA sequencing. The results showed significant differences in allele frequencies and their genotypes amongst Chinese cattle from different regions. Allele G or indicine-specific allele frequency diminished from south to north China, while allele A (genotype AA) or the taurine-specific allele had a contrary pattern, which agreed with the distribution of taurine and indicine cattle. According to the association analysis, the NC_037341.1 g.616087A > G (rs135258919) of the bovine HSF1 gene, annual temperature (T), relative humidity (RH), and the temperature humidity index (THI) (p < 0.01) were interrelated closely, which indicated that the NC_037341.1 g.616087A > G of the HSF1 gene is associated with heat tolerance in indicine cattle.
Collapse
Affiliation(s)
- Yu Rong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China; (Y.R.); (M.Z.); (X.G.); (H.C.)
| | - Mingfei Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China; (Y.R.); (M.Z.); (X.G.); (H.C.)
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China; (Y.R.); (M.Z.); (X.G.); (H.C.)
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China; (K.Q.); (J.L.); (J.Z.)
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China; (K.Q.); (J.L.); (J.Z.)
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China; (K.Q.); (J.L.); (J.Z.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China; (Y.R.); (M.Z.); (X.G.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China; (K.Q.); (J.L.); (J.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China; (Y.R.); (M.Z.); (X.G.); (H.C.)
| |
Collapse
|
29
|
Jivanji S, Worth G, Lopdell TJ, Yeates A, Couldrey C, Reynolds E, Tiplady K, McNaughton L, Johnson TJJ, Davis SR, Harris B, Spelman R, Snell RG, Garrick D, Littlejohn MD. Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle. Genet Sel Evol 2019; 51:62. [PMID: 31703548 PMCID: PMC6839108 DOI: 10.1186/s12711-019-0506-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND White spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein-Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein-Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date. RESULTS Using imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region. CONCLUSIONS Our findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics.
Collapse
Affiliation(s)
- Swati Jivanji
- Massey University Manawatu, Private Bag 11 222, Palmerston North, 4442 New Zealand
| | - Gemma Worth
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Thomas J. Lopdell
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Anna Yeates
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Christine Couldrey
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Edwardo Reynolds
- Massey University Manawatu, Private Bag 11 222, Palmerston North, 4442 New Zealand
| | - Kathryn Tiplady
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Lorna McNaughton
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Thomas J. J. Johnson
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Stephen R. Davis
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Bevin Harris
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Richard Spelman
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| | - Russell G. Snell
- The University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Dorian Garrick
- Massey University Manawatu, Private Bag 11 222, Palmerston North, 4442 New Zealand
| | - Mathew D. Littlejohn
- Livestock Improvement Corporation (LIC), 605 Ruakura Rd, Newstead, 3286 New Zealand
| |
Collapse
|
30
|
Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, Penasa M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102:10088-10099. [PMID: 31447150 DOI: 10.3168/jds.2019-16663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.
Collapse
Affiliation(s)
- Angela Costa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria.
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Christian Fuerst
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Strasse 89/19, A-1200 Vienna, Austria
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
31
|
Sequence-based GWAS, network and pathway analyses reveal genes co-associated with milk cheese-making properties and milk composition in Montbéliarde cows. Genet Sel Evol 2019; 51:34. [PMID: 31262251 PMCID: PMC6604208 DOI: 10.1186/s12711-019-0473-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Milk quality in dairy cattle is routinely assessed via analysis of mid-infrared (MIR) spectra; this approach can also be used to predict the milk's cheese-making properties (CMP) and composition. When this method of high-throughput phenotyping is combined with efficient imputations of whole-genome sequence data from cows' genotyping data, it provides a unique and powerful framework with which to carry out genomic analyses. The goal of this study was to use this approach to identify genes and gene networks associated with milk CMP and composition in the Montbéliarde breed. RESULTS Milk cheese yields, coagulation traits, milk pH and contents of proteins, fatty acids, minerals, citrate, and lactose were predicted from MIR spectra. Thirty-six phenotypes from primiparous Montbéliarde cows (1,442,371 test-day records from 189,817 cows) were adjusted for non-genetic effects and averaged per cow. 50 K genotypes, which were available for a subset of 19,586 cows, were imputed at the sequence level using Run6 of the 1000 Bull Genomes Project (comprising 2333 animals). The individual effects of 8.5 million variants were evaluated in a genome-wide association study (GWAS) which led to the detection of 59 QTL regions, most of which had highly significant effects on CMP and milk composition. The results of the GWAS were further subjected to an association weight matrix and the partial correlation and information theory approach and we identified a set of 736 co-associated genes. Among these, the well-known caseins, PAEP and DGAT1, together with dozens of other genes such as SLC37A1, ALPL, MGST1, SEL1L3, GPT, BRI3BP, SCD, GPAT4, FASN, and ANKH, explained from 12 to 30% of the phenotypic variance of CMP traits. We were further able to identify metabolic pathways (e.g., phosphate and phospholipid metabolism and inorganic anion transport) and key regulator genes, such as PPARA, ASXL3, and bta-mir-200c that are functionally linked to milk composition. CONCLUSIONS By using an approach that integrated GWAS with network and pathway analyses at the whole-genome sequence level, we propose candidate variants that explain a substantial proportion of the phenotypic variance of CMP traits and could thus be included in genomic evaluation models to improve milk CMP in Montbéliarde cows.
Collapse
|
32
|
Benedet A, Ho PN, Xiang R, Bolormaa S, De Marchi M, Goddard ME, Pryce JE. The use of mid-infrared spectra to map genes affecting milk composition. J Dairy Sci 2019; 102:7189-7203. [PMID: 31178181 DOI: 10.3168/jds.2018-15890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the feasibility of using mid-infrared (MIR) spectroscopy analysis of milk samples to increase the power and precision of genome-wide association studies (GWAS) for milk composition and to better distinguish linked quantitative trait loci (QTL). To achieve this goal, we analyzed phenotypic data of milk composition traits, related MIR spectra, and genotypic data comprising 626,777 SNP on 5,202 Holstein, Jersey, and crossbred cows. We performed a conventional GWAS on protein, lactose, fat, and fatty acid concentrations in milk, a GWAS on individual MIR wavenumbers, and a partial least squares regression (PLS), which is equivalent to a multi-trait GWAS, exploiting MIR data simultaneously to predict SNP genotypes. The PLS detected most of the QTL identified using single-trait GWAS, usually with a higher significance value, as well as previously undetected QTL for milk composition. Each QTL tends to have a different pattern of effects across the MIR spectrum and this explains the increased power. Because SNP tracking different QTL tend to have different patterns of effect, it was possible to distinguish closely linked QTL. Overall, the results of this study suggest that using MIR data through either GWAS or PLS analysis applied to genomic data can provide a powerful tool to distinguish milk composition QTL.
Collapse
Affiliation(s)
- A Benedet
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro 35020, Padova, Italy
| | - P N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - R Xiang
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria 3010, Australia
| | - S Bolormaa
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro 35020, Padova, Italy
| | - M E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria 3010, Australia
| | - J E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
33
|
Costa A, Lopez-Villalobos N, Sneddon NW, Shalloo L, Franzoi M, De Marchi M, Penasa M. Invited review: Milk lactose-Current status and future challenges in dairy cattle. J Dairy Sci 2019; 102:5883-5898. [PMID: 31079905 DOI: 10.3168/jds.2018-15955] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
Lactose is the main carbohydrate in mammals' milk, and it is responsible for the osmotic equilibrium between blood and alveolar lumen in the mammary gland. It is the major bovine milk solid, and its synthesis and concentration in milk are affected mainly by udder health and the cow's energy balance and metabolism. Because this milk compound is related to several biological and physiological factors, information on milk lactose in the literature varies from chemical properties to heritability and genetic associations with health traits that may be exploited for breeding purposes. Moreover, lactose contributes to the energy value of milk and is an important ingredient for the food and pharmaceutical industries. Despite this, lactose has seldom been included in milk payment systems, and it has never been used as an indicator trait in selection indices. The interest in lactose has increased in recent years, and a summary of existing information about lactose in the dairy sector would be beneficial for the scientific community and the dairy industry. The present review collects and summarizes knowledge about lactose by covering and linking several aspects of this trait in bovine milk. Finally, perspectives on the use of milk lactose in dairy cattle, especially for selection purposes, are outlined.
Collapse
Affiliation(s)
- A Costa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - N Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - N W Sneddon
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - L Shalloo
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C997, Ireland
| | - M Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| |
Collapse
|
34
|
Garcia-Mateos D, Garcia-Lino AM, Alvarez-Fernandez I, Blanco-Paniagua E, de la Fuente A, Alvarez AI, Merino G. Role of ABCG2 in Secretion into Milk of the Anti-Inflammatory Flunixin and Its Main Metabolite: In Vitro-In Vivo Correlation in Mice and Cows. Drug Metab Dispos 2019; 47:516-524. [PMID: 30858238 DOI: 10.1124/dmd.118.085506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/07/2019] [Indexed: 01/10/2023] Open
Abstract
Flunixin meglumine is a nonsteroidal anti-inflammatory drug (NSAID) widely used in veterinary medicine. It is indicated to treat inflammatory processes, pain, and pyrexia in farm animals. In addition, it is one of the few NSAIDs approved for use in dairy cows, and consequently gives rise to concern regarding its milk residues. The ABCG2 efflux transporter is induced during lactation in the mammary gland and plays an important role in the secretion of different compounds into milk. Previous reports have demonstrated that bovine ABCG2 Y581S polymorphism increases fluoroquinolone levels in cow milk. However, the implication of this transporter in the secretion into milk of anti-inflammatory drugs has not yet been studied. The objective of this work was to study the role of ABCG2 in the secretion into milk of flunixin and its main metabolite, 5-hydroxyflunixin, using Abcg2(-/-) mice, and to investigate the implication of the Y581S polymorphism in the secretion of these compounds into cow milk. Correlation with the in vitro situation was assessed by in vitro transport assays using Madin-Darby canine kidney II cells overexpressing murine and the two variants of the bovine transporter. Our results show that flunixin and 5-hydroxyflunixin are transported by ABCG2 and that this protein is responsible for their secretion into milk. Moreover, the Y581S polymorphism increases flunixin concentration into cow milk, but it does not affect milk secretion of 5-hydroxyflunixin. This result correlates with the differences in the in vitro transport of flunixin between the two bovine variants. These findings are relevant to the therapeutics of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Alba Maria Garcia-Lino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Indira Alvarez-Fernandez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Alvaro de la Fuente
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Ana Isabel Alvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty (D.G.-M., A.M.G.-L., I.A.-F., A.I.A., G.M.), and Instituto de Desarrollo Ganadero y Sanidad Animal (D.G.-M., A.M.G.-L., I.A.-F., E.B.-P., A.F., A.I.A., G.M.), Universidad de León, Campus de Vegazana, Leon, Spain
| |
Collapse
|
35
|
Iung LHS, Petrini J, Ramírez-Díaz J, Salvian M, Rovadoscki GA, Pilonetto F, Dauria BD, Machado PF, Coutinho LL, Wiggans GR, Mourão GB. Genome-wide association study for milk production traits in a Brazilian Holstein population. J Dairy Sci 2019; 102:5305-5314. [PMID: 30904307 DOI: 10.3168/jds.2018-14811] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Advances in the molecular area of selection have expanded knowledge of the genetic architecture of complex traits through genome-wide association studies (GWAS). Several GWAS have been performed so far, but confirming these results is not always possible due to several factors, including environmental conditions. Thus, our objective was to identify genomic regions associated with traditional milk production traits, including milk yield, somatic cell score, fat, protein and lactose percentages, and fatty acid composition in a Holstein cattle population producing under tropical conditions. For this, 75,228 phenotypic records from 5,981 cows and genotypic data of 56,256 SNP from 1,067 cows were used in a weighted single-step GWAS. A total of 46 windows of 10 SNP explaining more than 1% of the genetic variance across 10 Bos taurus autosomes (BTA) harbored well-known and novel genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 (BTA14), and PAEP (BTA11) genes were confirmed within some of the regions identified in our study. Potential novel genes involved in tissue damage and repair of the mammary gland (COL18A1), immune response (LTTC19), glucose homeostasis (SLC37A1), synthesis of unsaturated fatty acids (LTBP1), and sugar transport (SLC37A1 and MFSD4A) were found for milk yield, somatic cell score, fat percentage, and fatty acid composition. Our findings may assist genomic selection by using these regions to design a customized SNP array to improve milk production traits on farms with similar environmental conditions.
Collapse
Affiliation(s)
- L H S Iung
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Ramírez-Díaz
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - M Salvian
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - F Pilonetto
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - B D Dauria
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - P F Machado
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G R Wiggans
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil.
| |
Collapse
|
36
|
Guillocheau GM, El Hou A, Meersseman C, Esquerré D, Rebours E, Letaief R, Simao M, Hypolite N, Bourneuf E, Bruneau N, Vaiman A, Vander Jagt CJ, Chamberlain AJ, Rocha D. Survey of allele specific expression in bovine muscle. Sci Rep 2019; 9:4297. [PMID: 30862965 PMCID: PMC6414783 DOI: 10.1038/s41598-019-40781-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/22/2019] [Indexed: 02/04/2023] Open
Abstract
Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3’UTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance.
Collapse
Affiliation(s)
| | - Abdelmajid El Hou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, 87060, Limoges, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Morgane Simao
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Hypolite
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Nicolas Bruneau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBiociences Centre, Bundoora, Victoria, Australia
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
37
|
Lopdell TJ, Hawkins V, Couldrey C, Tiplady K, Davis SR, Harris BL, Snell RG, Littlejohn MD. Widespread cis-regulation of RNA editing in a large mammal. RNA (NEW YORK, N.Y.) 2019; 25:319-335. [PMID: 30530731 PMCID: PMC6380278 DOI: 10.1261/rna.066902.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA-editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole-genome and high-depth RNA sequencing to discover, characterize, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply sequenced cows, we identify 2413 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (98.6%). Most sites are predicted to reside in double-stranded secondary structures (85.1%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlight 152 cis-regulated edQTL, of which 15 appear to cosegregate with expression QTL effects. Trait association analyses in a separate population of 9989 lactating cows also shows 12 of the cis-edQTL coincide with at least one cosegregating lactation QTL. Together, these results enhance our understanding of RNA-editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA editing mediated processes.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Victoria Hawkins
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| |
Collapse
|
38
|
Liu Z, Wang T, Pryce JE, MacLeod IM, Hayes BJ, Chamberlain AJ, Jagt CV, Reich CM, Mason BA, Rochfort S, Cocks BG. Fine-mapping sequence mutations with a major effect on oligosaccharide content in bovine milk. Sci Rep 2019; 9:2137. [PMID: 30765736 PMCID: PMC6376028 DOI: 10.1038/s41598-019-38488-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Human milk contains abundant oligosaccharides (OS) which are believed to have strong health benefits for neonates. OS are a minor component of bovine milk and little is known about how the production of OS is regulated in the bovine mammary gland. We have measured the abundance of 12 major OS in milk of 360 cows, which had high density SNP marker genotypes. Most of the OS were found to be highly heritable (h2 between 50 and 84%). A genome-wide association study allowed us to fine-map several QTL and identify candidate genes with major effects on five OS. Among them, a putative causal mutation close to the ABO gene on Chromosome 11 accounted for approximately 80% of genetic variance for two OS, N-acetylgalactosaminyllactose and lacto-N-neotetraose. This mutation lies very close to a variant associated with the expression levels of ABO. A third QTL mapped close to ST3GAL6 on Chromosome 1 explaining 33% of genetic variation of an abundant OS, 3′-sialyllactose. The presence of major gene effects suggests that targeted marker-assisted selection would lead to a significant increase in the level of these OS in milk. This is the first attempt to map candidate genes and causal mutations for bovine milk OS.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Tingting Wang
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Ben J Hayes
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, Queensland, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Christy Vander Jagt
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Brett A Mason
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Benjamin G Cocks
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
39
|
Lopdell TJ, Tiplady K, Couldrey C, Johnson TJJ, Keehan M, Davis SR, Harris BL, Spelman RJ, Snell RG, Littlejohn MD. Multiple QTL underlie milk phenotypes at the CSF2RB locus. Genet Sel Evol 2019; 51:3. [PMID: 30678637 PMCID: PMC6346582 DOI: 10.1186/s12711-019-0446-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background Over many years, artificial selection has substantially improved milk production by cows. However, the genes that underlie milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we investigate a previously reported QTL located at the CSF2RB locus on chromosome 5, for several milk production phenotypes, to better understand its underlying genetic and molecular causes. Results Using a population of 29,350 taurine dairy cows, we conducted association analyses for milk yield and composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein concentration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were used to investigate eQTL for 11 genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating one or both of these genes as responsible for these effects. Using the same gene expression dataset representing 357 lactating cows, we also identified 38 novel RNA editing sites in the 3′ UTR of CSF2RB transcripts. The extent to which two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further layer of regulatory complexity that involves the CSF2RB gene. Conclusions This locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes. Electronic supplementary material The online version of this article (10.1186/s12711-019-0446-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand. .,School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand.
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Thomas J J Johnson
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Richard J Spelman
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| |
Collapse
|
40
|
|
41
|
Hanuš O, Samková E, Křížová L, Hasoňová L, Kala R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review. Molecules 2018; 23:E1636. [PMID: 29973572 PMCID: PMC6100482 DOI: 10.3390/molecules23071636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) of milk fat are considered to be important nutritional components of the diets of a significant portion of the human population and substantially affect human health. With regard to dairy farming, the FA profile is also seen as an important factor in the technological quality of raw milk. In this sense, making targeted modifications to the FA profile has the potential to significantly contribute to the production of dairy products with higher added value. Thus, FAs also have economic importance. Current developments in analytical methods and their increasing efficiency enable the study of FA profiles not only for scientific purposes but also in terms of practical technological applications. It is important to study the sources of variability of FAs in milk, which include population genetics, type of farming, and targeted animal nutrition. It is equally important to study the health and technological impacts of FAs. This review summarizes current knowledge in the field regarding sources of FA variability, including the impact of factors such as: animal nutrition, seasonal feed changes, type of animal farming (conventional and organic), genetic parameters (influence of breed), animal individuality, lactation, and milk yield. Potential practical applications (to improve food technology and consumer health) of FA profile information are also reviewed.
Collapse
Affiliation(s)
- Oto Hanuš
- Dairy Research Institute Ltd., 16000 Prague, Czech Republic.
| | - Eva Samková
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Ludmila Křížová
- Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic.
| | - Lucie Hasoňová
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Robert Kala
- Department of Food Biotechnologies and Agricultural Products´ Quality, Faculty of Agriculture, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
42
|
Lopdell TJ, Tiplady K, Struchalin M, Johnson TJJ, Keehan M, Sherlock R, Couldrey C, Davis SR, Snell RG, Spelman RJ, Littlejohn MD. DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genomics 2017; 18:968. [PMID: 29246110 PMCID: PMC5731188 DOI: 10.1186/s12864-017-4320-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background Lactose provides an easily-digested energy source for neonates, and is the primary carbohydrate in milk in most species. Bovine lactose is also a key component of many human food products. However, compared to analyses of other milk components, the genetic control of lactose has been little studied. Here we present the first GWAS focussed on analysis of milk lactose traits. Results Using a discovery population of 12,000 taurine dairy cattle, we detail 27 QTL for lactose concentration and yield, and subsequently validate the effects of 26 of these loci in a distinct population of 18,000 cows. We next present data implicating causative genes and variants for these QTL. Fine mapping of these regions using imputed, whole genome sequence-resolution genotypes reveals protein-coding candidate causative variants affecting the ABCG2, DGAT1, STAT5B, KCNH4, NPFFR2 and RNF214 genes. Eleven of the remaining QTL appear to be driven by regulatory effects, suggested by the presence of co-locating, co-segregating eQTL discovered using mammary RNA sequence data from a population of 357 lactating cows. Pathway analysis of genes representing all lactose-associated loci shows significant enrichment of genes located in the endoplasmic reticulum, with functions related to ion channel activity mediated through the LRRC8C, P2RX4, KCNJ2 and ANKH genes. A number of the validated QTL are also found to be associated with additional milk volume, fat and protein phenotypes. Conclusions Overall, these findings highlight novel candidate genes and variants involved in milk lactose regulation, whose impacts on membrane transport mechanisms reinforce the key osmo-regulatory roles of lactose in milk. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4320-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand.,School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Maksim Struchalin
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Thomas J J Johnson
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Ric Sherlock
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Richard J Spelman
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand.
| |
Collapse
|