1
|
Tsujimoto M, Dewi DAPR, Mason CE, Shiwa Y, Suzuki H. Shotgun metagenomic sequencing of swab samples from Japanese university campuses. Microbiol Resour Announc 2024; 13:e0021024. [PMID: 38837350 PMCID: PMC11256853 DOI: 10.1128/mra.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
We obtained shotgun metagenome sequences from swab samples obtained through 3-minute swabbing of different surfaces and the air within buildings at three university campuses in part of the Greater Tokyo Area in Japan. These data aid in understanding built environment microbial communities and elucidate various microbial profiles across different locations.
Collapse
Affiliation(s)
- Megumu Tsujimoto
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Dewa A. P. Rasmika Dewi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- School of Medicine and Health Sciences, Udayana University, Bali, Indonesia
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
2
|
Zampolli J, De Giani A, Rossi M, Finazzi M, Di Gennaro P. Who inhabits the built environment? A microbiological point of view on the principal bacteria colonizing our urban areas. Front Microbiol 2024; 15:1380953. [PMID: 38863750 PMCID: PMC11165352 DOI: 10.3389/fmicb.2024.1380953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Modern lifestyle greatly influences human well-being. Indeed, nowadays people are centered in the cities and this trend is growing with the ever-increasing population. The main habitat for modern humans is defined as the built environment (BE). The modulation of life quality in the BE is primarily mediated by a biodiversity of microbes. They derive from different sources, such as soil, water, air, pets, and humans. Humans are the main source and vector of bacterial diversity in the BE leaving a characteristic microbial fingerprint on the surfaces and spaces. This review, focusing on articles published from the early 2000s, delves into bacterial populations present in indoor and outdoor urban environments, exploring the characteristics of primary bacterial niches in the BE and their native habitats. It elucidates bacterial interconnections within this context and among themselves, shedding light on pathways for adaptation and survival across diverse environmental conditions. Given the limitations of culture-based methods, emphasis is placed on culture-independent approaches, particularly high-throughput techniques to elucidate the genetic and -omic features of BE bacteria. By elucidating these microbiota profiles, the review aims to contribute to understanding the implications for human health and the assessment of urban environmental quality in modern cities.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Xie J, Acosta EM, Gitai Z. Bacterial viability in the built environment of the home. PLoS One 2023; 18:e0288092. [PMID: 37939059 PMCID: PMC10631670 DOI: 10.1371/journal.pone.0288092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 11/10/2023] Open
Abstract
The built environment (BE) consists of human-made structures and, much like living organisms, is colonized by bacteria that make up the BE microbiome. The BE microbiome can potentially affect human health because of the constant proximity of these bacteria to humans. This has led to increasing public concern of whether the bacteria in the BE are harmful. Previous studies have used approaches based on DNA sequencing to assess the composition of the BE microbiome. However, the extent to which the bacterial DNA in the BE represents viable bacterial cells that could infect human hosts remains unknown. To address this open question we used both culture-based and culture-independent molecular methods to profile bacterial viability of the microbiomes from several BE sites. As part of an undergraduate-led project, we found that the vast majority of the bacterial DNA from the BE is not associated with viable bacteria, suggesting that most bacteria in the BE are dead. To begin to understand the determinants of bacterial viability in the BE we used mock bacterial communities to investigate the effects of temperature, relative humidity, and human interaction on bacterial viability. We found that relative humidity, temperature, and surface material did not have statistically significant effects on BE microbiome viability, but environmental exposure decreased bacterial viability. These results update our conception of the BE microbiome and begin to define the factors that affect BE microbiome viability.
Collapse
Affiliation(s)
- Joy Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Ellen M. Acosta
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
4
|
Dhanya Raj CT, Kandaswamy S, Suryavanshi MV, Ramasamy KP, Rajasabapathy R, Arthur James R. Genomic and metabolic properties of Staphylococcus gallinarum FCW1 MCC4687 isolated from naturally fermented coconut water towards GRAS assessment. Gene 2023; 867:147356. [PMID: 36907276 DOI: 10.1016/j.gene.2023.147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Staphylococcus gallinarum FCW1 was isolated from naturally fermented coconut-water and identified by biochemical and molecular methods. Probiotic characterization and safety assessment were conducted through a series of in vitro tests. A high survival rate was observed when the strain was tested for resistance to bile, lysozyme, simulated gastric and intestinal fluid, phenol, and different temperature and salt concentrations. The strain showed antagonism against some pathogens, was susceptible to all antibiotics tested except penicillin, and showed no hemolytic and DNase activity. Hydrophobicity, autoaggregation, biofilm formation, and antioxidation tests indicated that the strain possessed a high adhesive and antioxidant ability. Enzymatic activity was used to evaluate the metabolic capacities of the strain. In-vivo experiment on zebrafish was performed to check its safety status. The whole-genome sequencing indicated that the genome contained 2,880,305 bp with a GC content of 33.23%. The genome annotation confirmed the presence of probiotic-associated genes and genes for oxalate degradation, sulfate reduction, acetate metabolism, and ammonium transport in the FCW1 strain, adding to the theory that this strain may be helpful in treating kidney stones. This study revealed that the strain FCW1 might be an excellent potential probiotic in developing fermented coconut beverages and treating and preventing kidney stone disease.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom; Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6(th) Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, United States.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
5
|
Urban Microbiomes in Narita, Chiba, Japan: Shotgun Metagenome Sequences of a Train Station. Microbiol Resour Announc 2023; 12:e0109222. [PMID: 36515525 PMCID: PMC9872656 DOI: 10.1128/mra.01092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, we performed shotgun metagenome sequencing of swab samples collected on floors at a train station in Narita City, Chiba, Japan. The taxonomic analysis revealed that Actinobacteria and Proteobacteria were the dominant phyla. The data will contribute to insight into the microbiome community on the surfaces of urban built environments.
Collapse
|
6
|
Mizuno M, Endo K, Katano H, Tsuji A, Kojima N, Watanabe K, Shimizu N, Morio T, Sekiya I. The environmental risk assessment of cell-processing facilities for cell therapy in a Japanese academic institution. PLoS One 2020; 15:e0236600. [PMID: 32756610 PMCID: PMC7406055 DOI: 10.1371/journal.pone.0236600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
Cell therapy is a promising treatment. One of the key aspects of cell processing products is ensuring sterility of cell-processing facilities (CPFs). The objective of this study was to assess the environmental risk factors inside and outside CPFs. We monitored the temperature, humidity, particle number, colony number of microorganisms, bacteria, fungi, and harmful insects in and around our CPF monthly over one year. The temperature in the CPF was constant but the humidity fluctuated depending on the humidity outside. The particle number correlated with the number of entries to the room. Except for winter, colonies of microorganisms and harmful insects were detected depending on the cleanliness of the room. Seven bacterial and two fungal species were identified by PCR analyses. Psocoptera and Acari each accounted for 41% of the total trapped insects. These results provide useful data for taking the appropriate steps to keep entire CPFs clean.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Ayako Tsuji
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Naomi Kojima
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Ken Watanabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Norio Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Tomohiro Morio
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- Department of Pediatrics and Developmental Biology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Fritz B, Schäfer K, März M, Wahl S, Ziemssen F, Egert M. Eye-Catching Microbes-Polyphasic Analysis of the Microbiota on Microscope Oculars Verifies Their Role as Fomites. J Clin Med 2020; 9:jcm9051572. [PMID: 32455878 PMCID: PMC7290821 DOI: 10.3390/jcm9051572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Microscopes are used in virtually every biological and medical laboratory. Previous cultivation-based studies have suggested that direct contact with microscope eyepieces increases the risk of eye infections. To obtain a deeper insight into the microbiota on oculars, we analysed 10 recently used university microscopes. Their left oculars were used for a cultivation-based approach, while the right oculars served for massive gene sequencing. After cleaning with isopropyl alcohol, the oculars were re-sampled and analysed again. All oculars were found to be contaminated with bacteria, with a maximum load of 1.7 × 103 CFU cm-2. MALDI Biotyping revealed mainly Cutibacterium (68%), Staphylococcus (14%) and Brevibacterium (10%), with the most abundant species being Cutibacterium acnes (13%) and Staphylococcus capitis (6%). Cleaning reduced the microbial load by up to 2 log scales. Within 10 uncleaned and 5 cleaned samples, 1480 ASVs were assigned to 10 phyla and 262 genera. The dominant genera before cleaning were Cutibacterium (78%), Paracoccus (13%), Pseudomonas (2%) and Acinetobacter (1%). The bacteriota composition on the cleaned oculars was similar; however, it probably largely represented dead bacteria. In summary, used oculars were significantly contaminated with skin and environmental bacteria, including potential pathogens. Regular cleaning is highly recommended to prevent eye and skin infections.
Collapse
Affiliation(s)
- Birgit Fritz
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Karin Schäfer
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Melanie März
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430 Aalen, Germany;
- Institute for Ophthalmic Research, Eberhard-Karls University, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany
| | - Focke Ziemssen
- Center for Ophthalmology, Eberhard-Karls University, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany;
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
- Correspondence: ; Tel.: +49-7720-307-4554
| |
Collapse
|