1
|
Ba H, Hu P, Yuan H, Ma C, Wang Z, Shang Y, Guo Q, Wang D, Li C. RXFP2-positive mesenchymal stem cells in the antlerogenic periosteum contribute to postnatal development of deer antlers. Commun Biol 2025; 8:645. [PMID: 40263536 PMCID: PMC12015367 DOI: 10.1038/s42003-025-08085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/12/2025] [Indexed: 04/24/2025] Open
Abstract
The postnatal development of secondary sexual characteristics is a highly complex process governed by diverse molecular signals and serves as a key marker of sexual maturity. Deer antlers exemplify such traits, distinguished not only by their unique ability to regenerate annually but also by their initiation in postnatal life. It is well established that the antlerogenic periosteum (AP) is the only tissue responsible for postnatal antler formation. Here, we identify a population of RXFP2-positive mesenchymal stem cells within the AP of both male and female deer that are crucial for antler development, primarily through the activation of canonical Wnt signaling. This process also relies on M2 macrophages recruited via IL-34 secretion. Furthermore, these cells exhibit reduced expression of HOX genes, suggesting a high degree of developmental plasticity. Our findings offer new insights into the molecular mechanisms underlying the postnatal development of secondary sexual characteristics, using deer antlers serving as a model system.
Collapse
Affiliation(s)
- Hengxing Ba
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
| | - Pengfei Hu
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Institute of Zoonoses, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chao Ma
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China
| | - Zhen Wang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China
| | - Yudong Shang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China
| | - Qianqian Guo
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China
| | - Datao Wang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chunyi Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Li S, Yang Y, Yu B, Gao X, Gao X, Nie S, Qin T, Hao Y, Guo L, Wu H, Ma T, Zheng Y, Geng D, Gao J, Xue B, Zhang Y, Yang S, Wei Y, Xia B, Luo Z, Qiu Q, Huang J. A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411571. [PMID: 39707695 PMCID: PMC11817900 DOI: 10.1002/adma.202411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed. It is decellularized antler cancellous bone (antler-DCB) to obtain a bone scaffold. Then, an antler-based bone graft is constructed by integrating antler-DCB with antler-derived biological signals, delivered by extracellular vesicles (EVs) from antler blastema progenitor cells (ABPCs), a novel stem cells responsible for antlerogenesis is discovered. The antler-based bone graft transformed bone marrow stromal cells into cells with an ABPC-like phenotype and transcriptomic signature. In vivo, the antler-based graft triggered rapid bone formation in a rat model, with doubled volume of newly formed bones than commercial DCBs. In addition, the antler-based graft orchestrated a coordinated process of vascularization, neurogenesis, and immunomodulation during osteogenesis, partially imitating early antlerogenesis. These findings provide practical insights to develop a therapeutic intervention for treating severe bone defects.
Collapse
Affiliation(s)
- Shengyou Li
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Xueli Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xue Gao
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'an710032P. R. China
| | - Shihao Nie
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Tao Qin
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Dan Geng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Jianbo Gao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Borui Xue
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Zhuojing Luo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qiang Qiu
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
3
|
Xing H, Wang Q, Ma Y, Han R, Li H. The significance of MDK growth factor in the antler development of sika deer (Cervus nippon): An in-depth analysis. Gene Expr Patterns 2024:119388. [PMID: 39733918 DOI: 10.1016/j.gep.2024.119388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Deer antlers exhibit rapid growth during the velvet phase. As a critical endogenous growth factor in animals, midkine (MDK) is likely closely associated with the growth of antlers. However, the spatio-temporal expression pattern of MDK during the velvet phase was unclear. This study explored the physiological role of MDK by analyzing its molecular characterization and spatio-temporal expression dynamics during the growth of sika deer antlers. The study cloned the coding sequences (CDS) of MDK, which spanned 429 bp and encoded 142 amino acids. The results of bioinformatics prediction analysis showed that MDK was an extracellular hydrophilic secreted protein, which was mainly composed of random coil. MDK protein was relatively conserved in evolution and MDK protein of sika deer had the closest relatives to ruminants and the furthest relatives to Aves. The tip tissues (dermis, mesenchyme, precartilage, cartilage) of antlers were collected from three important growth and development nodes (early period, EP. middle period, MP. late period, LP), and quantitative real-time polymerase chain reaction (qRT-PCR) was chosen to detect the spatio-temporal expression of the MDK. The results showed that MDK was expressed in all tissue sites of antler tip in EP, MP, LP. MDK had a consistent expression pattern under all growth periods and was strongly expressed in dermis and cartilage. The expression of MDK was consistently up-regulated in precartilage, whereas it was first up-regulated and then down-regulated in other tissues, and it was highly significant in MP compared to EP and LP (P < 0.01). This study suggested that MDK may regulate the growth of dermis and cartilage tissues mainly by participating in the process of angiogenesis and bone formation, thus promoting the rapid growth of antlers.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yukai Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Liu R, Zhang P, Bai J, Zhong Z, Shan Y, Cheng Z, Zhang Q, Guo Q, Zhang H, Zhang B. Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms. Int J Mol Sci 2024; 25:13215. [PMID: 39684926 DOI: 10.3390/ijms252313215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing (RNA-seq) and four-dimensional data-independent acquisition (4D DIA) technologies were employed to examine gene and protein expression differences among four tissue layers of the Chinese milu deer antler: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA). Overall, 4611 differentially expressed genes (DEGs) and 2388 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. Among the 828 DEGs common to both omics approaches, genes from the collagen, integrin, and solute carrier families, and signaling molecules were emphasized for their roles in the regulation of antler growth, development, and ossification. Bioinformatics analysis revealed that in addition to being regulated by vascular and nerve regeneration pathways, antler growth and development are significantly influenced by numerous cancer-related signaling pathways. This indicates that antler growth mechanisms may be similar to those of cancer cell proliferation and development. This study lays a foundation for future research on the mechanisms underlying the rapid growth and ossification of antlers.
Collapse
Affiliation(s)
- Ruijia Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Pan Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Jiade Bai
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Zhenyu Zhong
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Yunfang Shan
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Zhibin Cheng
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Qingyun Guo
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Xing H, Han R, Wang Q, Sun Z, Li H. The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer. Anim Biosci 2024; 37:1367-1376. [PMID: 38419534 PMCID: PMC11222856 DOI: 10.5713/ab.23.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. METHODS The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). RESULTS The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. CONCLUSION PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Zihui Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| |
Collapse
|
6
|
Calamari ZT, Flynn JJ. Gene expression supports a single origin of horns and antlers in hoofed mammals. Commun Biol 2024; 7:509. [PMID: 38769090 PMCID: PMC11106249 DOI: 10.1038/s42003-024-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Horns, antlers, and other bony cranial appendages of even-toed hoofed mammals (ruminant artiodactyls) challenge traditional morphological homology assessments. Cranial appendages all share a permanent bone portion with family-specific integument coverings, but homology determination depends on whether the integument covering is an essential component or a secondary elaboration of each structure. To enhance morphological homology assessments, we tested whether juvenile cattle horn bud transcriptomes share homologous gene expression patterns with deer antlers relative to pig outgroup tissues, treating the integument covering as a secondary elaboration. We uncovered differentially expressed genes that support horn and antler homology, potentially distinguish them from non-cranial-appendage bone and other tissues, and highlight the importance of phylogenetic outgroups in homology assessments. Furthermore, we found differentially expressed genes that could support a shared cranial neural crest origin for horns and antlers and expression patterns that refine our understanding of the timing of horn and antler differentiation.
Collapse
Affiliation(s)
- Zachary T Calamari
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Natural Sciences, Baruch College, City University of New York, 17 Lexington Avenue, Box A-920, New York, NY, 10010, USA.
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
7
|
Zhang G, Shi L, Li J, Ren J, Wang D, Guo X, Guo Q, Li C. Antler thymosin β10 reduces liver fibrosis via inhibiting TGF-β1/SMAD pathway. Int J Biol Macromol 2024; 264:130502. [PMID: 38428779 DOI: 10.1016/j.ijbiomac.2024.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hepatic stellate cell (HSC) activation is a crucial step in the development of liver fibrosis. Previous studies have shown that antler stem cells (AnSCs) inhibited HSC activation, suggesting that this may be achieved through secreting or releasing peptides. This study aimed to investigate whether AnSC-derived peptides (AnSC-P) could reduce liver fibrosis. The results showed that AnSC-P effectively reduced liver fibrosis in rats. Furthermore, we found that thymosin β10 (Tβ-10) was rich in AnSC-P, which may be the main component of AnSC-P contributing to the reduction in liver fibrosis. A further study showed that Tβ-10 reduced liver fibrosis in rats, with a reduction in HYP and MDA levels in the liver tissues, a decrease in the serum levels of ALP, ALT, AST, and TBIL and an increase in TP and ALB. Moreover, Tβ-10 decreased the expression levels of the genes related to the TGF-β/SMAD signaling pathway in vivo. In addition, Tβ-10 also inhibited TGF-β1-induced HSC activation and decreased the expression levels of the TGF-β/SMAD signaling pathway-related genes in HSCs in vitro. In conclusion, antler Tβ-10 is a potential drug candidate for the treatment of liver fibrosis, the effect of which may be achieved via inhibition of the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China
| | - Liyan Shi
- The Third Hospital of Jilin University, 130033 Changchun, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China; College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, China
| | - Dongxu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China
| | - Xin Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China
| | - Qianqian Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China.
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University; 130600 Changchun, China; College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, China.
| |
Collapse
|
8
|
Wang YS, Chu WH, Zhai JJ, Wang WY, He ZM, Zhao QM, Li CY. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells. World J Stem Cells 2024; 16:176-190. [PMID: 38455106 PMCID: PMC10915955 DOI: 10.4252/wjsc.v16.i2.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Cartilage defects are some of the most common causes of arthritis. Cartilage lesions caused by inflammation, trauma or degenerative disease normally result in osteochondral defects. Previous studies have shown that decellularized extracellular matrix (ECM) derived from autologous, allogenic, or xenogeneic mesenchymal stromal cells (MSCs) can effectively restore osteochondral integrity. AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells (RMCs), a xenogeneic material from antler stem cells, is superior to the currently available treatments for osteochondral defects. METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70% confluence; 50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition. Decellularized sheets of adipocyte-derived MSCs (aMSCs) and antlerogenic periosteal cells (another type of antler stem cells) were used as the controls. Three weeks after ascorbic acid stimulation, the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints. RESULTS The defects were successfully repaired by applying the ECM-sheets. The highest quality of repair was achieved in the RMC-ECM group both in vitro (including cell attachment and proliferation), and in vivo (including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues). Notably, the antler-stem-cell-derived ECM (xenogeneic) performed better than the aMSC-ECM (allogenic), while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells. CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell, particularly the active form (RMC-ECM), can achieve high quality repair/reconstruction of osteochondral defects, suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
Collapse
Affiliation(s)
- Yu-Su Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, Jilin Province, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Wen-Hui Chu
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing-Jie Zhai
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130000, Jilin Province, China
| | - Wen-Ying Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, Jilin Province, China
| | - Zhong-Mei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Quan-Min Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Chun-Yi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, Jilin Province, China.
| |
Collapse
|
9
|
Liu Q, Li J, Chang J, Guo Y, Wen D. The characteristics and medical applications of antler stem cells. Stem Cell Res Ther 2023; 14:225. [PMID: 37649124 PMCID: PMC10468909 DOI: 10.1186/s13287-023-03456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Antlers are the only fully regenerable mammalian appendages whose annual renewal is initiated by antler stem cells (ASCs), defined as a specialized type of mesenchymal stem cells (MSCs) with embryonic stem cell properties. ASCs possess the same biological features as MSCs, including the capacity for self-renewal and multidirectional differentiation, immunomodulatory functions, and the maintenance of stem cell characteristics after multiple passages. Several preclinical studies have shown that ASCs exhibit promising potential in wound healing, bone repair, osteoarthritis, anti-tissue fibrosis, anti-aging, and hair regeneration. Medical applications based on ASCs and ASC-derived molecules provide a new source of stem cells and therapeutic modalities for regenerative medicine. This review begins with a brief description of antler regeneration and the role of ASCs. Then, the properties and advantages of ASCs are described. Finally, medical research advances regarding ASCs are summarized, and the prospects and challenges of ASCs are highlighted.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Chang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Zhang GK, Ren J, Li JP, Wang DX, Wang SN, Shi LY, Li CY. Injectable hydrogel made from antler mesenchyme matrix for regenerative wound healing via creating a fetal-like niche. World J Stem Cells 2023; 15:768-780. [PMID: 37545751 PMCID: PMC10401419 DOI: 10.4252/wjsc.v15.i7.768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Scar formation and loss of cutaneous appendages are the greatest challenges in cutaneous wound healing. Previous studies have indicated that antler reserve mesenchyme (RM) cells and their conditioned medium improved regenerative wound healing with partial recovery of cutaneous appendages. AIM To develop hydrogels from the antler RM matrix (HARM) and evaluate the effect on wound healing. METHODS We prepared the hydrogels from the HARM via enzymatic solubilization with pepsin. Then we investigated the therapeutic effects of HARM on a full-thickness cutaneous wound healing rat model using both local injections surrounding the wound and topical wound application. RESULTS The results showed that HARM accelerated wound healing rate and reduced scar formation. Also, HARM stimulated the regeneration of cutaneous appendages and blood vessels, and reduced collagen fiber aggregation. Further study showed that these functions might be achieved via creating a fetal-like niche at the wound site. The levels of fetal wound healing-related genes, including Collagen III and TGFβ3 treated with HARM were all increased, while the expression levels of Collagen I, TGFβ1, and Engrailed 1 were decreased in the healing. Moreover, the number of stem cells was increased in the fetal-like niche created by HARM, which may contribute to the regeneration of cutaneous appendages. CONCLUSION Overall, we successfully developed an injectable hydrogel made from antler RM matrix for the regenerative repair of full-thickness cutaneous wounds. We uncovered the molecular mechanism of the hydrogels in promoting regenerative wound healing, and thus pave the way for HARM to be developed for the clinic use.
Collapse
Affiliation(s)
- Guo-Kun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China
| | - Ji-Ping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Dong-Xu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Sheng-Nan Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
| | - Li-Yan Shi
- China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chun-Yi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, Jilin Province, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin Province, China.
| |
Collapse
|
11
|
Xing H, Zhang F, Han R, Li H. DNA methylation pattern and mRNA expression of OPN promoter in sika deer antler tip tissues. Gene 2023; 868:147382. [PMID: 36958507 DOI: 10.1016/j.gene.2023.147382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
In order to explore the biological role of OPN gene during the growth of sika deer antler, the dermis, mesenchyme, precartilage and cartilage tissues of sika deer antler tip at the early period of the antler with a saddle-like appearance (30 days), the rapid growth period of the antler with two branches (60 days), and the final period of the antler with three branches (90 days) were analyzed. Bisulfite sequencing PCR (BSP) and quantitative real-time PCR (qRT-PCR) were used to explore the DNA promoter methylation and mRNA expression of OPN in sika deer antler from the perspective of space and time. The test results showed that: 1) The methylation rates of OPN promoter at the early, middle and late periods of dermis tissue were (40.48±0.82)%, (40.00±1.43)%, and (39.05±0.82)%; The methylation rates in mesenchyme tissue were (37.62±0.82)%, (34.76±2.18)%, and (38.57±1.43)%; The methylation rates in precartilage tissue were (36.67±0.28)%, (29.52±1.65)%, (28.10±2.18)%; The methylation rates in cartilage tissue were (31.90±1.65)%, (26.67±1.65)%, (24.29±1.43)%. 2) There are 7 CpG sites in the OPN promoter region, and the 3 CpG sites of -367 bp, -245 bp and -31 bp are all methylated to different level. 3) The methylation level of OPN in the dermis, mesenchyme, precartilage and cartilage tissues decreased in sequence at the same growth period. At the middle and late periods, the methylation level of the promoter region of the precartilage tissue was significantly different from that of the dermis and mesenchyme tissues (P<0.05); At different growth periods, the methylation level of the promoter region of cartilage tissue was extremely significantly different from that of dermis and mesenchyme tissues (P<0.01); In the same tissue, the methylation level of the promoter region at the middle period was down-regulated compared with the early period, and the methylation level of the promoter region at the early period and the middle period was extremely significantly different in the precartilage and cartilage (P<0.01). 4) OPN mRNA is highly expressed in precartilage and cartilage tissues. 5) The methylation level of OPN promoter was negatively correlated with mRNA expression level. In summary, it is speculated that the OPN gene, which may be regulated by the DNA methylation level of the promoter, promotes the growth and development of deer antler mainly by regulating the growth of precartilage and cartilage tissues.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Furui Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Wu J, Yang F, Wu X, Liu X, Zheng D. Comparison of genome-wide DNA methylation patterns between antler precartilage and cartilage. Mol Genet Genomics 2023; 298:343-352. [PMID: 36513842 DOI: 10.1007/s00438-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Deer antlers are the only mammalian organs that can fully regenerate after being lost and provide a valuable model for cartilage development. As one of the best-studied epigenetic mechanisms, DNA methylation is known to engage in organ and tissue development. This study aimed to investigate the role of DNA methylation in antler chondrogenesis by comparing whole-genome DNA methylation between precartilage and cartilage. Quantitative reverse transcription PCR (RT-qPCR) showed significant differences in the expression levels of DNA methyltransferase genes (DNMT1, DNMT3A, and DNMT3B) between precartilage and cartilage. Subsequently, we obtained DNA methylation profiles of antler precartilage and cartilage tissues by whole-genome bisulfite sequencing. Although sequencing data indicated that overall methylation levels at CpG and non-CpG sites were similar between precartilage and cartilage, 140,784 differentially methylated regions (DMRs, P < 0.05) and 3,941 DMR-related genes were identified. Gene ontology (GO) analysis of DMR-related genes demonstrated some significantly enriched GO terms (P < 0.05) related to chondrogenesis, including insulin receptor binding, collage trimer, integrin binding, and extracellular matrix structural constituent. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DMR-related genes uncovered that the PI3K/AKT, cortisol synthesis and secretion, glycosaminoglycan biosynthesis-keratan sulfate, Hippo, and NF-κB signaling pathways might play a pivotal role in the transition of precartilage to cartilage. Moreover, we found that 25 DMR-related genes, including CD44, IGF1, ITGAV, ITGB1, RUNX1, COL2A1, COMP, and TAGLN, were most likely involved in antler chondrogenesis. In conclusion, this study revealed the genome-wide DNA methylation patterns of antler precartilage and cartilage, which may contribute to understanding the epigenetic regulation of antler chondrogenesis.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Fan Yang
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xuanye Wu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xuedong Liu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Dong Zheng
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
13
|
Zhang Z, He C, Bao C, Li Z, Jin W, Li C, Chen Y. MiRNA Profiling and Its Potential Roles in Rapid Growth of Velvet Antler in Gansu Red Deer ( Cervus elaphus kansuensis). Genes (Basel) 2023; 14:424. [PMID: 36833351 PMCID: PMC9957509 DOI: 10.3390/genes14020424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application value in many fields of biomedical research. Among them, the nature of cartilage tissue and the rapid growth and development process make deer antler a model for studying cartilage tissue development or rapid repair of damage. However, the molecular mechanisms underlying the rapid growth of antlers are still not well studied. MicroRNAs are ubiquitous in animals and have a wide range of biological functions. In this study, we used high-throughput sequencing technology to analyze the miRNA expression patterns of antler growth centers at three distinct growth phases, 30, 60, and 90 days following the abscission of the antler base, in order to determine the regulatory function of miRNA on the rapid growth of antlers. Then, we identified the miRNAs that were differentially expressed at various growth stages and annotated the functions of their target genes. The results showed that 4319, 4640, and 4520 miRNAs were found in antler growth centers during the three growth periods. To further identify the essential miRNAs that could regulate fast antler development, five differentially expressed miRNAs (DEMs) were screened, and the functions of their target genes were annotated. The results of KEGG pathway annotation revealed that the target genes of the five DEMs were significantly annotated to the "Wnt signaling pathway", "PI3K-Akt signaling pathway", "MAPK signaling pathway", and "TGF-β signaling pathway", which were associated with the rapid growth of velvet antlers. Therefore, the five chosen miRNAs, particularly ppy-miR-1, mmu-miR-200b-3p, and novel miR-94, may play crucial roles in rapid antler growth in summer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Caixia He
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changhong Bao
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhaonan Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Wenjie Jin
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yanxia Chen
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
14
|
Ba H, Wang X, Wang D, Ren J, Wang Z, Sun HX, Hu P, Zhang G, Wang S, Ma C, Wang Y, Wang E, Chen L, Liu T, Gu Y, Li C. Single-cell transcriptome reveals core cell populations and androgen-RXFP2 axis involved in deer antler full regeneration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:43. [PMID: 36542206 PMCID: PMC9772379 DOI: 10.1186/s13619-022-00153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Deer antlers constitute a unique mammalian model for the study of both organ formation in postnatal life and annual full regeneration. Previous studies revealed that these events are achieved through the proliferation and differentiation of antlerogenic periosteum (AP) cells and pedicle periosteum (PP) cells, respectively. As the cells resident in the AP and the PP possess stem cell attributes, both antler generation and regeneration are stem cell-based processes. However, the cell composition of each tissue type and molecular events underlying antler development remain poorly characterized. Here, we took the approach of single-cell RNA sequencing (scRNA-Seq) and identified eight cell types (mainly THY1+ cells, progenitor cells, and osteochondroblasts) and three core subclusters of the THY1+ cells (SC2, SC3, and SC4). Endothelial and mural cells each are heterogeneous at transcriptional level. It was the proliferation of progenitor, mural, and endothelial cells in the activated antler-lineage-specific tissues that drove the rapid formation of the antler. We detected the differences in the initial differentiation process between antler generation and regeneration using pseudotime trajectory analysis. These may be due to the difference in the degree of stemness of the AP-THY1+ and PP-THY1+ cells. We further found that androgen-RXFP2 axis may be involved in triggering initial antler full regeneration. Fully deciphering the cell composition for these antler tissue types will open up new avenues for elucidating the mechanism underlying antler full renewal in specific and regenerative medicine in general.
Collapse
Affiliation(s)
- Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Xin Wang
- BGI-Shenzhen, Shenzhen, 518083 Guangdong China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Datao Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, 518083 Guangdong China
| | - Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Shengnan Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Chao Ma
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Yusu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Enpeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Tianbin Liu
- BGI-Shenzhen, Shenzhen, 518083 Guangdong China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, 518083 Guangdong China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120 Guangdong China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
15
|
Si H, Li S, Nan W, Sang J, Xu C, Li Z. Integrated Transcriptome and Microbiota Reveal the Regulatory Effect of 25-Hydroxyvitamin D Supplementation in Antler Growth of Sika Deer. Animals (Basel) 2022; 12:ani12243497. [PMID: 36552417 PMCID: PMC9774409 DOI: 10.3390/ani12243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The level of plasma 25-hydroxyvitamin D (25(OH)D) is associated with the growth of the antler, a fast-growing bone organ of Cervidae. However, the benefits of 25(OH)D supplementation on antler growth and the underlying mechanisms remain unclear. Here, the antler growth profile and transcriptome, plasma parameters, rumen bacteria, and metabolites (volatile fatty acids and amino acids) were determined in sika deer in a 25(OH)D supplementation group (25(OH)D, n = 8) and a control group (Ctrl, n = 8). 25(OH)D supplementation significantly increased the antler weight and growth rate. The levels of IGF-1,25(OH)D and 1,25-dihydroxyvitamin D were significantly higher in the 25(OH)D group than in the Ctrl group, while the levels of LDL-C were lower. The levels of valerate and branched-chain amino acids in the rumen fluid were significantly different between the 25(OH)D and Ctrl groups. The bacterial diversity indices were not significantly different between the two groups. However, the relative abundances of the butyrate-producing bacteria (families Lachnospiraceae and Succinivibrionaceae) and the pyruvate metabolism pathway were higher in the 25(OH)D group. The transcriptomic profile of the antler was significantly different between the 25(OH)D and Ctrl groups, with 356 up- and 668 down-regulated differentially expressed genes (DEGs) in the 25(OH)D group. The up-regulated DEGs were enriched in the proteinaceous extracellular matrix and collagen, while the down-regulated DEGs were enriched in the immune system and lipid metabolism pathways. Overall, these results provide novel insights into the effects of 25(OH)D supplementation on the host metabolism, rumen microbiota, and antler transcriptome of sika deer.
Collapse
Affiliation(s)
- Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Weixiao Nan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Sang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chao Xu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Correspondence: (C.X.); (Z.L.)
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (C.X.); (Z.L.)
| |
Collapse
|
16
|
Comprehensive transcriptome analysis of sika deer antler using PacBio and Illumina sequencing. Sci Rep 2022; 12:16161. [PMID: 36171236 PMCID: PMC9519574 DOI: 10.1038/s41598-022-20244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Antler is the fastest growing and ossifying tissue in animals and it is a valuable model for cartilage/bone development. To understand the molecular mechanisms of chondrogenesis and osteogenesis of antlers, the PacBio Sequel II and Illumina sequencing technology were combined and used to investigate the mRNA expression profiles in antler tip, middle, and base at six different developmental stages, i.e., at 15th, 25th, 45th, 65th, 100th and 130th growth days. Consequently, we identified 24,856 genes (FPKM > 0.1), including 8778 novel genes. Besides, principal component analysis (PCA) revealed a significant separation between the growth stage (25th, 45th and 65th days) and ossification stage (100th and 130th days). COL2A1 gene was significantly abundant in the growth stage, whereas S100A7, S100A12, S100A8, and WFDC18 genes were abundant at the ossification stage. Subsequently screened to 14,765 significantly differentially expressed genes (DEGs), WGCNA and GO functional enrichment analyses revealed that genes related to cell division and chondrocyte differentiation were up-regulated, whereas those with steroid hormone-mediated signaling pathways were down-regulated at ossification stages. Additionally, 25 tumor suppressor genes and 11 oncogenes were identified and were predicted to interact with p53. Co-regulation of tumor suppressor genes and oncogenes is responsible for the special growth pattern of antlers. Together, we constructed the most complete sika deer antler transcriptome database so far. The database provides data support for subsequent studies on the molecular mechanism of sika deer antler chondrogenesis and osteogenesis.
Collapse
|
17
|
Broggini C, Abril N, Carranza J, Membrillo A. Evaluation of candidate reference genes for quantitative real-time PCR normalization in blood from red deer developing antlers. Sci Rep 2022; 12:16264. [PMID: 36171416 PMCID: PMC9519901 DOI: 10.1038/s41598-022-20676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sexual selection favors male traits that increase their ability to monopolize the breeding access to several females. Deer antlers are cranial appendages that regenerate annually in males. Throughout life, the phenology of antler growth advances and antler mass increases until the stag reaches, between 8 and 10 years old, maximum body mass and highest reproductive success. The molecular mechanisms of antler development are of great interest in both evolutionary and regenerative medicine studies. To minimize errors in the assessment of gene expression levels by qRT-PCR, we analyzed the stability of a panel of eight candidate reference genes and concluded that qRT-PCR normalization to three stable genes is strongly convenient in experiments performed in red deer antler blood. To validate our proposal, we compared the expression level of three genes linked to red deer antler growth (ANXA2, APOD and TPM1) in fifteen male red deer classified as young (up to 4 years old) and adults (4–6 years old). Our data confirms that B2M, ACTB and RPLP0 are valuable reference genes for future gene expression studies in red deer antler blood, which would provide increased insight into the effects of intrinsic factors that determine antler development in red deer.
Collapse
Affiliation(s)
- Camilla Broggini
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain.
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
18
|
Chen Y, Zhang Z, Zhang J, Chen X, Guo Y, Li C. RNA sequencing-based identification of microRNAs in the antler cartilage of Gansu red deer ( Cervus elaphus kansuensis). PeerJ 2022; 10:e13947. [PMID: 36164600 PMCID: PMC9508884 DOI: 10.7717/peerj.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The velvet antler is a complex mammalian bone organ with unique biological characteristics, such as regeneration. The rapid growth stage (RGS) is a special period in the regeneration process of velvet antler. METHODS To elucidate the functions of microRNAs (miRNAs) at the RGS of antler development in Gansu red deer (Cervus elaphus kansuensis), we used RNA sequencing (RNA-seq) to analyze miRNA expression profiles in cartilage tissues of deer antler tips at three different growth stages. RESULTS The RNA-seq results revealed 1,073 known and 204 novel miRNAs, including 1,207, 1,242, and 1,204 from 30-, 60-, and 90-d antler cartilage tissues, respectively. To identify key miRNAs controlling rapid antler growth, we predicted target genes of screened 25 differentially expressed miRNAs (DEMs) and specifically expressed miRNAs (SEMs) in 60 d and annotated their functions. The KEGG results revealed that target genes of 25 DEMs and 30 SEMs were highly classified in the "Metabolic pathways", "Pathways in cancer", "Proteoglycans in cancer" and "PI3K-Akt signaling pathway". In addition, a novel miRNA (CM008039.1_315920), highly enriched in "NF-kappa B signaling pathway", may need further study. CONCLUSIONS The miRNAs identified in our study are potentially important in rapid antler growth. Our findings provide new insights to help elucidate the miRNA-mediated regulatory mechanisms involved during velvet antler development in C. elaphus kansuensis.
Collapse
Affiliation(s)
- Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhenxiang Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Jingjing Zhang
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Xiaxia Chen
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Yuqin Guo
- Research Monitoring and Evaluation Center of Qinghai National Park, Xining, Qinghai, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
19
|
Hu P, Wang Z, Li J, Wang D, Wang Y, Zhao Q, Li C. Identification and Characterization of Alternative Splicing Variants and Positive Selection Genes Related to Distinct Growth Rates of Antlers Using Comparative Transcriptome Sequencing. Animals (Basel) 2022; 12:2203. [PMID: 36077923 PMCID: PMC9454627 DOI: 10.3390/ani12172203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism underlying rapid antler growth has not been elucidated. The contrast of the wapiti and sika deer antler provides a potential model for comparative studies for the identification of potent growth factors and unique regulatory systems. In the present study, reference transcriptomes of antler RM tissue of wapiti and sika deer were constructed using single molecule real time sequencing data. The expression profiling, positive selection, and alternative splicing of the antler transcripts were compared. The results showed that: a total of 44,485 reference full-length transcripts of antlers were obtained; 254 highly expressed transcripts (HETs) and 1936 differentially expressed genes (DEGs) were enriched and correlated principally with translation, endochondral ossification and ribosome; 228 genes were found to be under strong positive selection and would thus be important for the evolution of wapiti and sika deer; among the alternative splicing variants, 381 genes were annotated; and 4 genes with node degree values greater than 50 were identified through interaction network analysis. We identified a negative and a positive regulator for rapid antler growth, namely RNA Binding Motif Protein X-Linked (RBMX) and methyltransferase-like 3 (METTL3), respectively. Overall, we took advantage of this significant difference in growth rate and performed the comparative analyses of the antlers to identify key specific factors that might be candidates for the positive or negative regulation of phenomenal antler growth rate.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| | - Dongxu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| | - Yusu Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| | - Quanmin Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130600, China
| |
Collapse
|
20
|
Xue F, Wang B, Guo DX, Jiao Y, Yin X, Cui WL, Zhou QQ, Yu FR, Lin YQ. Peptide Biomarkers Discovery for Seven Species of Deer Antler Using LC-MS/MS and Label-Free Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154756. [PMID: 35897939 PMCID: PMC9331363 DOI: 10.3390/molecules27154756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Deer antler is a globally widely used precious natural medicine and the material of deer horn gelatin. However, identification of deer antler species based on traditional approaches are problematic because of their similarity in appearance and physical-chemical properties. In this study, we performed a comprehensive antler peptidome analysis using a label-free approach: nano LC-Orbitrap MS was applied to discover peptide biomarkers in deer adult beta-globin (HBBA), and HPLC-Triple Quadrupole MS was used to verify their specificity. Nineteen peptide biomarkers were found, on which foundation a strategy for antlers and a strategy for antler mixtures such as flakes or powder are provided to identify seven species of deer antler including Eurasian elk (Alces alces), reindeer (Rangifer tarandus), white-tailed deer (Odocoileus viginianus), white-lipped deer (Przewalskium albirostris), fallow deer (Dama dama), sika deer (Cervus nippon), and red deer (Cervus elaphus) simultaneously. It is worth noting that our search found that the HBBA gene of sika deer, red deer, and North American wapiti (Cervus canadensis) in China may have undergone severe genetic drifts.
Collapse
|
21
|
Ba H, Chen M, Li C. Cross-Species Analysis Reveals Co-Expressed Genes Regulating Antler Development in Cervidae. Front Genet 2022; 13:878078. [PMID: 35664330 PMCID: PMC9157503 DOI: 10.3389/fgene.2022.878078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Antlers constitute an interesting model for basic research in regenerative biology. Despite decades of being studied, much is still unknown about the genes related to antler development. Here, we utilized both the genome and antlerogenic periosteum (AP) transcriptome data of four deer species to reveal antler-related genes through cross-species comparative analysis. The results showed that the global gene expression pattern matches the status of antler phenotypes, supporting the fact that the genes expressed in the AP may be related to antler phenotypes. The upregulated genes of the AP in three-antlered deer showed evidence of co-expression, and their protein sequences were highly conserved. These genes were growth related and likely participated in antler development. In contrast, the upregulated genes in antler-less deer (Chinese water deer) were involved mainly in organismal death and growth failure, possibly related to the loss of antlers during evolution. Overall, this study demonstrates that the co-expressed genes in antlered deer may regulate antler development.
Collapse
Affiliation(s)
- Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, China
| | - Min Chen
- School of Life Sciences, Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
22
|
Chen Y, Zhang Z, Jin W, Li Z, Bao C, He C, Guo Y, Li C. Integrative Analyses of Antler Cartilage Transcriptome and Proteome of Gansu Red Deer ( Cervus elaphus kansuensis) at Different Growth Stages. Animals (Basel) 2022; 12:934. [PMID: 35405922 PMCID: PMC8997108 DOI: 10.3390/ani12070934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The velvet antler is a unique model for cancer and regeneration research due to its periodic regeneration and rapid growth. Antler growth is mainly triggered by the growth center located in its tip, which consists of velvet skin, mesenchyme and cartilage. Among them, cartilage accounts for most of the growth center. We performed an integrative analysis of the antler cartilage transcriptome and proteome at different antler growth stages. RNA-seq results revealed 24,778 unigenes, 19,243 known protein-coding genes, and 5535 new predicted genes. Of these, 2722 were detected with differential expression patterns among 30 d, 60 d, and 90 d libraries, and 488 differentially expressed genes (DEGs) were screened at 30 d vs. 60 d and 60 d vs. 90 d but not at 30 d vs. 90 d. Proteomic data identified 1361 known proteins and 179 predicted novel proteins. Comparative analyses showed 382 differentially expressed proteins (DEPs), of which 16 had differential expression levels at 30 d vs. 60 d and 60 d vs. 90 d but not at 30 d vs. 90 d. An integrated analysis conducted for DEGs and DEPs showed that gene13546 and its coding protein protein13546 annotated in the Wnt signaling pathway may possess important bio-logical functions in rapid antler growth. This study provides in-depth characterization of candidate genes and proteins, providing further insights into the molecular mechanisms controlling antler development.
Collapse
Affiliation(s)
- Yanxia Chen
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| | - Zhenxiang Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Wenjie Jin
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| | - Zhaonan Li
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| | - Changhong Bao
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| | - Caixia He
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| | - Yuqin Guo
- Research Monitoring and Evaluation Center of Qinghai National Park, Xining 810016, China;
| | - Changzhong Li
- College of Eco–Environment Engineering, Qinghai University, Xining 810016, China; (W.J.); (Z.L.); (C.B.); (C.H.)
| |
Collapse
|
23
|
Hsiao C, Lin HH, Kang SR, Hung CY, Sun PY, Yu CC, Toh KL, Yu PJ, Ju YT. Development of 16 novel EST-SSR markers for species identification and cross-genus amplification in sambar, sika, and red deer. PLoS One 2022; 17:e0265311. [PMID: 35363791 PMCID: PMC8975116 DOI: 10.1371/journal.pone.0265311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Deer genera around the globe are threatened by anthropogenic interference. The translocation of alien species and their subsequent genetic introgression into indigenous deer populations is particularly harmful to the species of greatest conservation concern. Products derived from deer, including venison and antler velvet, are also at risk of fraudulent labeling. The current molecular markers used to genetically identify deer species were developed from genome sequences and have limited applicability for cross-species amplification. The absence of efficacious diagnostic techniques for identifying deer species has hampered conservation and wildlife crime investigation efforts. Expressed sequence tag-simple sequence repeat (EST-SSR) markers are reliable tools for individual and species identification, especially in terms of cross-species genotyping. We conducted transcriptome sequencing of sambar (Rusa unicolor) antler velvet and acquired 11,190 EST-SSRs from 65,074 newly assembled unigenes. We identified a total of 55 unambiguous amplicons in sambar (n = 45), which were selected as markers to evaluate cross-species genotyping in sika deer (Cervus nippon, n = 30) and red deer (Cervus elaphus, n = 46), resulting in cross-species amplification rates of 94.5% and 89.1%, respectively. Based on polymorphic information content (>0.25) and genotyping fidelity, we selected 16 of these EST-SSRs for species identification. This marker set revealed significant genetic differentiation based on the fixation index and genetic distance values. Principal coordinate analysis and STRUCTURE analysis revealed distinct clusters of species and clearly identified red-sika hybrids. These markers showed applicability across different genera and proved suitable for identification and phylogenetic analyses across deer species.
Collapse
Affiliation(s)
- Chen Hsiao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung Lin
- Kaohsiung Animal Propagation Station, Pingdong, Taiwan
| | | | - Chien-Yi Hung
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Sun
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chieh-Cheng Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kok-Lin Toh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Ju Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Anderson SJ, Côté SD, Richard JH, Shafer ABA. Genomic architecture of phenotypic extremes in a wild cervid. BMC Genomics 2022; 23:126. [PMID: 35151275 PMCID: PMC8841092 DOI: 10.1186/s12864-022-08333-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Identifying the genes underlying fitness-related traits such as body size and male ornamentation can provide tools for conservation and management and are often subject to various selective pressures. Here we performed high-depth whole genome re-sequencing of pools of individuals representing the phenotypic extremes for antler and body size in white-tailed deer (Odocoileus virginianus). Samples were selected from a tissue repository containing phenotypic data for 4,466 male white-tailed deer from Anticosti Island, Quebec, with four pools representing the extreme phenotypes for antler and body size after controlling for age. Our results revealed a largely homogenous population but detected highly divergent windows between pools for both traits, with the mean allele frequency difference of 14% for and 13% for antler and body SNPs in outlier windows, respectively. Genes in outlier antler windows were enriched for pathways associated with cell death and protein metabolism and some of the most differentiated windows included genes associated with oncogenic pathways and reproduction, processes consistent with antler evolution and growth. Genes associated with body size were more nuanced, suggestive of a highly complex trait. Overall, this study revealed the complex genomic make-up of both antler morphology and body size in free-ranging white-tailed deer and identified target loci for additional analyses.
Collapse
|
25
|
SWATH-MS Quantitative Proteomic Analysis of Deer Antler from Two Regenerating and Mineralizing Sections. BIOLOGY 2021; 10:biology10070679. [PMID: 34356534 PMCID: PMC8301299 DOI: 10.3390/biology10070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Deer antler is a unique and astonishing case of annual regeneration in mammalians. Several studies have pointed out the potential for use of velvet antler extract as a nutraceutical supplement, among others, because of its anti-cancer activity. The study of antler regeneration and growth allow us to identify the main proteins and regulatory pathways involved in cell differentiation and regeneration. For this purpose, two sections of antlers (tips and middle sections) using ribs as controls were analyzed from a proteomic point of view. A total of 259 proteins mainly associated with antioxidant mechanisms and Wnt signalling pathways could be responsible for deer antler regeneration and these proteins may be linked to human health benefits. Further studies should be focused on discovering which proteins from velvet antler extracts are associated with these beneficial effects. Abstract Antlers are the only organ in the mammalian body that regenerates each year. They can reach growth rates of 1–3 cm/day in length and create more than 20 cm2/day of skin in the antler tips (their growth centers). Previous proteomic studies regarding antlers have focused on antler growth centers (tips) compared to the standard bone to detect the proteins involved in tissue growth. However, proteins of cell differentiation and regeneration will be more accurately detected considering more growing tissues. Thus, we set out to compare proteins expressed in antler tips (the highest metabolism rate and cell differentiation) vs. middle sections (moderate cell growth involving bone calcification), using ribs as controls. Samples were obtained in mid-June with antlers’ phenology corresponding to the middle of their growth period. Quantitative proteomic analysis identified 259 differentially abundant proteins mainly associated with antioxidant metabolic mechanisms, protein formation and Wnt signalling pathway, meanwhile, the mid antler section was linked to blood proteins. The high metabolic rate and subsequent risk of oxidative stress also seem to have resulted in strong antioxidant mechanisms. These results suggest that redox regulation of proteins is a key factor in the model of deer antler regeneration.
Collapse
|
26
|
Deng Y, Hu S, Luo C, Ouyang Q, Li L, Ma J, Lin Z, Chen J, Liu H, Hu J, Chen G, Shu D, Pan Y, Hu B, He H, Qu H, Wang J. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics 2021; 22:487. [PMID: 34193033 PMCID: PMC8244220 DOI: 10.1186/s12864-021-07822-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Chenglong Luo
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Zhenping Lin
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Junpeng Chen
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Jiangsu, 225009, Yangzhou, China
| | - Dingming Shu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Yuxuan Pan
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hao Qu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China.
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China.
| |
Collapse
|
27
|
Comparative antler proteome of sika deer from different developmental stages. Sci Rep 2021; 11:10484. [PMID: 34006919 PMCID: PMC8131589 DOI: 10.1038/s41598-021-89829-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Antler is a special bone tissue that has the ability to regenerate completely periodically. It is the fastest growing bone in the animal kingdom. Antler provides a valuable research model for bone growth and mineralization. Antler grows longitudinally by endochondral ossification with their growth center located in its tip. Many scholars have carried out detailed studies on morphology and gene expression of antler tip. However, few scholars have analyzed the protein expression patterns of antler tip at different development stages. This study used label-free proteomics approach to analyze the protein expression dynamics of the antler tip in six developmental periods (15, 25, 45, 65, 100 and 130 days after the previous antler cast) and costal cartilage. In result, 2052 proteins were confidently quantified, including 1937 antler proteins and 1044 costal cartilage proteins. Moreover, 913 antler core proteins and 132 antler-special proteins were obtained. Besides, the stages special proteins and differentially expressed proteins (DEPs) in different development stages were analyzed. A total of 875 DEPs were determined by one-way AVOVA. It is found that the growth period (15, 25, 45 and 65 days) showed more up-regulated protein including several chondrogenesis-associated proteins (collagen types II, collagen types XI, HAPLN1, PAPSS1 and PAPSS2). In ossification stages, the up-regulated proteins related with lysosome (CTSD, CTSB, MMP9, CAII) indicated that the antler has higher bone remodeling activity. Given the up-regulated expression of immune-related molecules (S100A7, CATHL7, LTF, AZU1, ELANE and MPO), we speculate that the local immune system may contribute to the ossification of antler tip. In conclusion, proteomics technology was used to deeply analyze the protein expression patterns of antler at different development stages. This provides a strong support for the research on the molecular regulation mechanism of rapid growth and ossification of velvet antler.
Collapse
|
28
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Feleke M, Bennett S, Chen J, Hu X, Williams D, Xu J. New physiological insights into the phenomena of deer antler: A unique model for skeletal tissue regeneration. J Orthop Translat 2020; 27:57-66. [PMID: 33437638 PMCID: PMC7773678 DOI: 10.1016/j.jot.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Generally, mammals are unable to regenerate complex tissues and organs however the deer antler provides a rare anomaly to this rule. This osseous cranial appendage which is located on the frontal bone of male deer is capable of stem cell-based organogenesis, annual casting, and cyclic de novo regeneration. A series of recent studies have classified this form of regeneration as epimorphic stem cell based. Antler renewal is initiated by the activation of neural crest derived pedicle periosteal cells (PPCs) found residing within the pedicle periosteum (PP), these PPCs have the potential to differentiate into multiple lineages. Other antler stem cells (ASCs) are the reserve mesenchymal cells (RMCs) located in the antlers tip, which develop into cartilage tissue. Antlerogenic periosteal cells (APCs) found within the antlerogenic periosteum (AP) form the tissues of both the pedicle and first set of antlers. Antler stem cells (ASCs) further appear to progress through various stages of activation, this coordinated transition is considered imperative for stem cell-based mammalian regeneration. The latest developments have shown that the rapid elongation of the main beam and antler branches are a controlled form of tumour growth, regulated by the tumour suppressing genes TP73 and ADAMTS18. Both osteoclastogenesis, as well as osteogenic and chondrogenic differentiation are also involved. While there remains much to uncover this review both summarises and comprehensively evaluates our existing knowledge of tissue regeneration in the deer antler. This will assist in achieving the goal of in vitro organ regeneration in humans by furthering the field of modern regenerative medicine. The Translational potential of this article As a unique stem cell-based organ regeneration process in mammals, the deer antler represents a prime model system for investigating mechanisms of regeneration in mammalian tissues. Novel ASCs could provide cell-based therapies for regenerative medicine and bone remodelling for clinical application. A greater understanding of this process and a more in-depth defining of ASCs will potentiate improved clinical outcomes.
Collapse
Affiliation(s)
- Mesalie Feleke
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, China
| | - Desmond Williams
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
30
|
Yao B, Wang C, Zhou Z, Zhang M, Zhao D, Bai X, Leng X. Comparative transcriptome analysis of the main beam and brow tine of sika deer antler provides insights into the molecular control of rapid antler growth. Cell Mol Biol Lett 2020; 25:42. [PMID: 32944020 PMCID: PMC7487962 DOI: 10.1186/s11658-020-00234-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Deer antlers have become a valuable model for biomedical research due to the capacities of regeneration and rapid growth. However, the molecular mechanism of rapid antler growth remains to be elucidated. The aim of the present study was to compare and explore the molecular control exerted by the main beam and brow tine during rapid antler growth. Methods The main beams and brow tines of sika deer antlers were collected from Chinese sika deer (Cervus nippon) at the rapid growth stage. Comparative transcriptome analysis was conducted using RNA-Seq technology. Differential expression was assessed using the DEGseq package. Functional Gene Ontology (GO) enrichment analysis was accomplished using a rigorous algorithm according to the GO Term Finder tool, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was accomplished with the R function phyper, followed by the hypergeometric test and Bonferroni correction. Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to verify the RNA levels for differentially expressed mRNAs. Results The expression levels of 16 differentially expressed genes (DEGs) involved in chondrogenesis and cartilage development were identified as significantly upregulated in the main beams, including transcription factor SOX-9 (Sox9), collagen alpha-1(II) chain (Col2a1), aggrecan core protein (Acan), etc. However, the expression levels of 17 DEGs involved in endochondral ossification and bone formation were identified as significantly upregulated in the brow tines, including collagen alpha-1(X) chain (Col10a1), osteopontin (Spp1) and bone sialoprotein 2 (Ibsp), etc. Conclusion These results suggest that the antler main beam has stronger growth capacity involved in chondrogenesis and cartilage development compared to the brow tine during rapid antler growth, which is mainly achieved through regulation of Sox9 and its target genes, whereas the antler brow tine has stronger capacities of endochondral bone formation and resorption compared to the main beam during rapid antler growth, which is mainly achieved through the genes involved in regulating osteoblast and osteoclast activities. Thus, the current research has deeply expanded our understanding of the intrinsic molecular regulation displayed by the main beam and brow tine during rapid antler growth.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Chaonan Wang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| |
Collapse
|
31
|
Su H, Yang C, Jin C, Zhang H, Yin C, Yang Y, Chen H, Jing L, Qi B, Zhao D, Bai X, Liu L. Comparative Metabolomics Study Revealed Difference in Central Carbon Metabolism between Sika Deer and Red Deer Antler. Int J Genomics 2020; 2020:7192896. [PMID: 32908856 PMCID: PMC7471787 DOI: 10.1155/2020/7192896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
The antler regeneration has been well studied for the past two decades and adopted in the regenerative medicine model for studying on developmental biology. Despite our growing knowledge of functional molecules regulating antler regeneration, we still do not know whether antler from different deer species possess the exact same mechanism or not. Our previous comparative study between sika deer and red deer suggests that the metabolic pathways between them are profoundly different based on protein level. Therefore, the metabolomic technology is used to identify and quantify the metabolites in antler samples, providing interesting insights into differential metabolite profile of antlers between sika deer and red deer. The distinct metabolic characteristics of sika deer compared to red deer provide an opportunity to explain why the red deer antler with a larger size. The enrichment analysis of differential metabolites showed that three pathways including glycine and serine metabolism, methionine metabolism, and pterine biosynthesis had a significant difference between two antler groups.
Collapse
Affiliation(s)
- Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chonghui Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengcheng Yin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Yang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoyuan Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Jing
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
32
|
Jia B, Wang G, Zheng J, Yang W, Chang S, Zhang J, Liu Y, Li Q, Ge C, Chen G, Liu D, Yang F. Development of novel EST microsatellite markers for genetic diversity analysis and correlation analysis of velvet antler growth characteristics in Sika deer. Hereditas 2020; 157:24. [PMID: 32591015 PMCID: PMC7320565 DOI: 10.1186/s41065-020-00137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sika deer is one of the most popular and valued animals in China. However, few studies have been conducted on the microsatellite of Sika deer, which has hampered the progress of genetic selection breeding. To develop and characterize a set of microsatellites for Sika deer which provide helpful information for protection of Sika deer natural resources and effectively increase the yield and quantity of velvet antler. RESULTS We conducted a transcriptome survey of Sika deer using next-generation sequencing technology. One hundred eighty-two thousand two hundred ninety-five microsatellite markers were identified in the transcriptome, 170 of 200 loci were successfully amplified across panels of 140 individuals from Shuangyang Sika deer population. And 29 loci were found to be obvious polymorphic. Number of alleles is from 3 to 14. The expected heterozygosity ranged from 0.3087 to 0.7644. The observed heterozygosity ranged from 0 to 0.7698. The polymorphism information content values of those microsatellites varied ranged from 0.2602 to 0.7507. The marker-trait association was tested for 6 important and kernel characteristics of two-branched velvet antler in Shuangyang Sika deer through one-way analysis of variance. The results showed that marker-trait associations were identified with 8 different markers, especially M009 and M027. CONCLUSIONS This study not only provided a large scale of microsatellites which were valuable for future genetic mapping and trait association in Sika deer, but also offers available information for molecular breeding in Sika deer.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guiwu Wang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Junjun Zheng
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Wanyun Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Shuzhuo Chang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | - Jiali Zhang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qining Li
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chenxia Ge
- College of Vocational and Technical Education, Changchun Sci-Tech University, 1699 Donghua Street, Changchun, 130606, China
| | - Guang Chen
- Key laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Dongdong Liu
- Key laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China. .,College of Engineering and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China.
| |
Collapse
|
33
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
34
|
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers - Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone 2019; 128:115046. [PMID: 31446115 DOI: 10.1016/j.bone.2019.115046] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Antlers are bony appendages of deer that undergo periodic regeneration from the top of permanent outgrowths (the pedicles) of the frontal bones. Of the "less familiar" bone types whose study was advocated by John Currey to gain a better understanding of structure-function relationships of mineralized tissues and organs, antlers were of special interest to him. The present review summarizes our current knowledge about the evolution, development, structure, mineralization, and biomechanics of antlers and how their formation is affected by environmental factors like nutrition. Furthermore, the potential role of antlers as a model in bone biology and several fields of biomedicine as well as their use as a monitoring tool in environmental studies are discussed.
Collapse
Affiliation(s)
- T Landete-Castillejos
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| | - H Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| | - S Gomez
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - S Luna
- Universidad de Cádiz, 11071 Cádiz, Spain
| | - A J García
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Cappelli
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - M Pérez-Serrano
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - J Pérez-Barbería
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - L Gallego
- Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - U Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany
| |
Collapse
|