1
|
He C, Sun Y, Duan X, Wang W, Zhang C, Zhang H, Zheng H. The physiological and transcriptional differences between golden and brown noble scallops Chlamys nobilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101498. [PMID: 40199050 DOI: 10.1016/j.cbd.2025.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Mollusks are the second Phylum in the Kingdom Animalia, which provide not only high-quality protein but also serves as a viewing function for humans due to the polymorphism in shell colors. However, the mechanisms of the differences in shell colors, especially on scallops, have rarely been studied. In this study, the shell and mantle of two different shell colors (golden and brown) of the noble scallops Chlamys nobilis were analyzed, including their microstructure, pigment content, and gene expression. The results showed that the golden scallop shell is golden from the outside to the inside, while the prismatic and nacreous layers in the brown scallop are lighter in color than the periostracum. Unlike the golden scallop, there was a layer of melanin vesicles at the edge of the brown scallop mantle. The total carotenoids content (TCC) in the mantle and shell of the golden scallop was significantly higher than that of the brown scallops (P < 0.05), but the melanin content was significantly lower than that of the brown scallop (P < 0.05). Candidate genes such as BCDO1, CYP5A, CYP2J, CYBA, EP300, and GNAO were screened from the differentially expressed genes (DEGs), and their differential expression may explain the differences in melanin and carotenoid content between the golden and brown scallops. These findings will help to understand the color polymorphism of noble scallops and provide a basis for further research on the inheritance of noble scallops.
Collapse
Affiliation(s)
- Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Yizhou Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Xixi Duan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
2
|
Song J, Sun X, Wang C. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. BMC Genomics 2025; 26:223. [PMID: 40050716 PMCID: PMC11884202 DOI: 10.1186/s12864-025-11388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND QN Orange scallops are interspecific hybrids with orange adductor muscles that are rich in carotenoids. In this study, analysis of miRNA expression profiles was performed to explore possible regulatory patterns involved in carotenoid accumulation in adductor muscles of QN Orange scallops. RESULTS A total of 91 differentially expressed miRNA between the white and orange adductor muscles were identified. GO and KEGG analysis of target genes of differentially expressed miRNAs revealed enrichments in the transmembrane transporter activity-related pathways, kinase activity-related pathways, signal transduction-related pathways, ATP binding cassette transporters (ABC transporters), retinol metabolism, lipid-related metabolism, and calcium signaling pathway. In particular, miRNA Contig1462_36180, which was shown to negatively regulate the activity of methyltransferase 3 (METTL3) by dual-luciferase reporter assay, may play a pivotal role in the accumulation of carotenoids. Furthermore, METTL3 interference seemed to reduce the pectenoxanthin content and m6A level. CONCLUSION It is thus speculated that Contig1462_36180 may regulate m6A methylation by regulating METTL3, which in turn affects pectenoxanthin accumulation in QN Orange scallops.
Collapse
Affiliation(s)
- Junlin Song
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Sun
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Wang Z, Chen Y, Chen Y, Chen R, Wang W, Hu S, Li Y, Chen H, Wei P, He X. Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication. Front Cell Infect Microbiol 2025; 14:1529159. [PMID: 39872942 PMCID: PMC11770046 DOI: 10.3389/fcimb.2024.1529159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role. However, the underlying mechanisms that enable IBDV to block the IRF7 pathway remain unclear. In this study, we found that IRF7 and IFN-β expression were suppressed in DF-1 cells during infection with very virulent IBDV (vvIBDV), but not with attenuated IBDV, while the virus continued to replicate. Overexpression of IRF7 inhibits IBDV replication while knocking down IRF7 promotes IBDV replication. Overexpression of IRF7 couldn't compensate the IRF7 protein level in vvIBDV-infected cells, which suggested that IRF7 protein was degraded by IBDV infection. By using inhibitors, the degradation of IRF7 was found to be related to the proteasome pathway. Further study revealed that IRF7 was observed to interact and colocalize with the IBDV VP3 protein. Consistent with IBDV infection results, IBDV VP3 protein was observed to inhibit the IRF7-IFN-β expression, affect the degradation of IRF7 protein via proteasome pathway. All these results suggest that the IBDV exploits IRF7 by affecting its expression and proteasome degradation via the viral VP3 protein to facilitate viral replication in the cells. These findings revealed a novel mechanism that IBDV uses to evade host antiviral defense.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yang Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yanyan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Rui Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Shichen Hu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Yu T, Wang C, Fan J, Chen R, Liu G, Xu X, Ning J, Lu X. Single-cell RNA sequencing revealed the roles of macromolecule epidermal growth factor receptor (EGFR) in the hybrid sterility of hermaphroditic Argopecten scallops. Int J Biol Macromol 2024; 280:136062. [PMID: 39341320 DOI: 10.1016/j.ijbiomac.2024.136062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The macromolecule epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that belongs to the protein kinase superfamily, which plays versatile functions in cell proliferation, development and fertility regulation. Almost all F1 hybrids obtained from the hermaphroditic bay scallops and Peruvian scallops exhibit infertility, and the genetic mechanism remains unclear. In this study, the comprehensive scRNA-seq was first conducted in the gonads of hybrid scallops, deducing the developmental sequence of germ cells and identifying the critical regulators in hybrid sterility: epidermal growth factor receptor. During the development from oogenesis phase germ cells to oocytes, the expression of the EGFR gene gradually decreased in sterile hybrids but increased in fertile hybrids. The significantly lower EGFR expression and ATP content, but higher ROS production rate was detected in the gonad of sterile hybrids than that in fertile hybrids, which might cause slow development of oocytes, stagnation of cell cycle, insufficient energy supply, high level of apoptosis and final sterility. Specific knock-down of EGFR gene led to decreased ATP content, increased ROS production rate, and inhibited oocyte maturation and gonadal development. These findings provide new insights into the roles of EGFR in hybrid infertility of bivalves and the healthy development of scallop breeding.
Collapse
Affiliation(s)
- Tieying Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jiawei Fan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjie Chen
- Laizhou Marine Development and Fishery Service Center, Laizhou 261400, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| | - Xia Lu
- School of Ocean, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
5
|
Qin P, Pan Z, Zhang W, Wang R, Li X, Lu J, Xu S, Gong X, Ye J, Yan X, Liu Y, Li Y, Zhang Y, Fang F. Integrative proteomic and transcriptomic analysis in the female goat ovary to explore the onset of puberty. J Proteomics 2024; 301:105183. [PMID: 38688390 DOI: 10.1016/j.jprot.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries. The results showed that only six differentially expressed genes and differentially abundant proteins out of 18,139 genes and 7550 proteins quantified had significant correlations. CNTN2 and THBS1, discovered in the mRNA-mRNA interaction network, probably participated in pubertal and reproductive regulation by influencing GnRH receptor signals, follicular development, and ovulation. The predicted core transcription factors may either promote or inhibit the expression of reproductive genes and act synergistically to maintain normal reproductive function in animals. The interaction between PKM and TIMP3 with other proteins may impact animal puberty through energy metabolism and ovarian hormone secretion. Pathway enrichment analyses revealed that the co-associated key pathways between ovarian genes and proteins at puberty included calcium signalling pathway and olfactory transduction. These pathways were associated with gonadotropin-releasing hormone synthesis and secretion, signal transmission, and cell proliferation. In summary, these results enriched the potential molecules and signalling pathways that affect puberty and provided new insights for regulating and promoting the onset of puberty. SIGNIFICANCE: This study conducted the first transcriptomic and proteomic correlation analysis of pre-pubertal and pubertal goat ovaries and identified six significantly correlated molecules at both the gene and protein levels. Meanwhile, we were drawn to several molecules and signalling pathways that may play a regulatory role in the onset of puberty and reproduction by influencing reproductive-related gene expression, GnRH receptor signals, energy metabolism, ovarian hormone secretion, follicular development, and ovulation. This information contributed to identify potential biomarkers in pubertal goat ovaries, which was vital for predicting the onset of puberty and improving livestock performance.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhihao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
6
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Chen S, Nie H, Huo Z, Yan X. Comprehensive analysis of differentially expressed mRNA, lncRNA and miRNA, and their ceRNA networks in the regulation of shell color in the Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2024; 256:128404. [PMID: 38016607 DOI: 10.1016/j.ijbiomac.2023.128404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The regulatory mechanism of ceRNA network plays an important role in molecular function and biological processes, however, the molecular mechanism in the shell color of Ruditapes philippinarum has not yet been reported. In this study, we performed transcriptome sequencing on the mantle of R. philippinarum with different shell colors, and screened for mRNA, miRNA, and lncRNA. A total of 61 mRNAs, 3725 lncRNAs and 90 miRNAs were obtained from all the shell color comparison groups (all mRNAs, lncRNAs and miRNAs P < 0.05), and 7 mRNAs, 8 lncRNAs, and 4 miRNAs of the porphyrin pathway and melanin pathway were screened for competitive endogenous RNA (ceRNA) network construction. The results indicate that the ceRNA network composed of mRNA and lncRNA, centered around efu-miR-101, mle-bantam-3p, egr-miR-9-5p, and sma-miR-75p, may play a crucial regulatory role in shell color formation. This study reveals for the first time the mechanism of ceRNA regulatory networks in the shell color of R. philippinarum and providing important reference data for molecular breeding of shell color in R. philippinarum.
Collapse
Affiliation(s)
- Sitong Chen
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
8
|
Liu Y, Wang Z, Guo C, Li S, Li Y, Huang R, Deng Y. Transcriptome and exosome proteome analyses provide insights into the mantle exosome involved in nacre color formation of pearl oyster Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101151. [PMID: 37913699 DOI: 10.1016/j.cbd.2023.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, β,β-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Yong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziman Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengao Guo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyao Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youxi Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China.
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China
| |
Collapse
|
9
|
Wan S, Li Q, Yu H, Liu S, Kong L. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene 2022; 818:146226. [PMID: 35063572 DOI: 10.1016/j.gene.2022.146226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Carotenoids are essential micronutrients for animals, and they can only be obtained from the diet for mollusk as well as other animals. In the body, carotenoids undergo processes including absorption, transport, deposition, and metabolic conversion; however, knowledge of the involved genes is still limited. To elucidate the molecular mechanisms of carotenoid processing and identify the related genes in Pacific oyster (Crassostrea gigas), we performed a comparative transcriptome analysis using digestive gland tissues of oysters on a beta-carotene supplemented diet or a normal diet. A total of 718 differentially expressed genes were obtained, including 505 upregulated and 213 downregulated genes in the beta-carotene supplemented group. Function Annotation and enrichment analyses revealed enrichment in genes possibly involved in carotenoid transport and storage (e.g., LOC105342035), carotenoid cleavage (e.g., LOC105341121), retinoid homeostasis (e.g., LOC105339597) and PPAR signaling pathway (e.g., LOC105323212). Notably, down-regulation of mRNA expressions of two apolipoprotein genes (LOC105342035 and LOC105342186) by RNA interference significantly decreased the carotenoid level in the digestive gland, supporting their role in carotenoid transport and storage. Based on these differentially expressed genes, we propose that there may be a negative feedback mechanism regulated by nuclear receptor transcription factors controlling carotenoid oxygenases. Our findings provide useful hints for elucidating the molecular basis of carotenoid metabolism and functions of carotenoid-related genes in the oyster.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
10
|
Li G, Zhao H, Guo D, Liu Z, Wang H, Sun Q, Liu Q, Xu B, Guo X. Distinct molecular impact patterns of abamectin on Apis mellifera ligustica and Apis cerana cerana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113242. [PMID: 35104778 DOI: 10.1016/j.ecoenv.2022.113242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of insecticides on bee health are a topic of intensive research. Although abamectin is toxic to bees, the molecular impact of abamectin needs to be clarified. Here, we found that Apis cerana cerana exhibited a higher mortality rate when exposed to abamectin than Apis mellifera ligustica. In addition, A. cerana cerana had markedly higher numbers of differentially expressed genes (DEGs), differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs) than A. mellifera ligustica during exposure to abamectin. These results indicate that abamectin exposure exerts stronger effects on A. cerana cerana than on A. mellifera ligustica. In addition, six DEGs, two DEPs and two DEMs overlapped between the two bee species under abamectin exposure; however, some genes or proteins from the zinc finger protein, superoxide dismutase and peroxiredoxin families and the energy metabolism pathway were only unregulated in A. cerana cerana, which indicates a significant difference in the impact of abamectin on the two bee species. Despite these differences, several of the same gene families, such as heat shock proteins, cytochrome P450, odorant-binding proteins and cuticle proteins, and pathways, including the carbohydrate metabolism, immune system, lipid metabolism, amino acid metabolism, sensory system, locomotion and development pathways, were influenced by abamectin exposure in both A. cerana cerana and A. mellifera ligustica. Together, our results indicate that abamectin causes adverse effects on bees and thus poses a risk to bee populations and that abamectin exposure affects A. cerana cerana more strongly than A. mellifera ligustica. These findings improve our understanding of the behavioural and physiological effects of abamectin on bees.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China; College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China; College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
11
|
Song J, Wang C. Transcriptomic and metabonomic analyses reveal roles of VPS 29 in carotenoid accumulation in adductor muscles of QN Orange scallops. Genomics 2021; 113:2839-2846. [PMID: 34119599 DOI: 10.1016/j.ygeno.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In our previous studies, we demonstrated that the accumulation of carotenoids in QN Orange scallops might be regulated by the vacuolar protein sorting 29 (VPS29) gene. VPS genes are involved in pigments accumulation (including carotenoids) in some species and VPS29 is known as the core component of the membrane transport complex Retromer. However, the possible mechanism of carotenoids accumulation underlying the VPS29 remains unexplored. This study aimed to further elucidate the roles of VPS29 in the carotenoid deposition. RESULTS Transcriptomic analyses revealed four differentially expressed genes related to carotenoid accumulation, including three down-regulated genes, low-density lipoprotein receptor domain class, scavenger receptor, Niemann Pick C1-like 1, and one up-regulated gene, ATP binding cassette transporter in RNAi group. Results from metabonomic analyses indicated increased profiles of retinol and decreased fatty acids between the RNAi and the control group. CONCLUSIONS It thus speculated that VPS may be related to the accumulation of carotenoids as RNAi of VPS 29 seemed to result in a reduction in pectenolone through the blockage in the absorption of carotenoids and an accelerated cleavage of carotenoids into retinol.
Collapse
Affiliation(s)
- Junlin Song
- Qingdao Agricultural University, Qingdao 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao 266109, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
12
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
13
|
Chen Q, Wang Y, Liu Z, Guo X, Sun Y, Kang L, Jiang Y. Transcriptomic and proteomic analyses of ovarian follicles reveal the role of VLDLR in chicken follicle selection. BMC Genomics 2020; 21:486. [PMID: 32677893 PMCID: PMC7367319 DOI: 10.1186/s12864-020-06855-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Background Follicle selection in chickens refers to the process of selecting one follicle from a group of small yellow follicles (SY, 6–8 mm in diameter) for development into 12–15 mm hierarchical follicles (usually F6 follicles), which is an important process affecting laying performance in the poultry industry. Although transcriptomic analysis of chicken ovarian follicles has been reported, integrated analysis of chicken follicles for selection by using both transcriptomic and proteomic approaches is still rarely performed. In this study, we compared the proteomes and transcriptomes of SY and F6 follicles in laying hens and identified several genes involved in chicken follicle selection. Results Transcriptomic analysis revealed 855 differentially expressed genes (DEGs) between SY follicles and F6 follicles in laying hens, among which 202 were upregulated and 653 were downregulated. Proteomic analysis revealed 259 differentially expressed proteins (DEPs), including 175 upregulated and 84 downregulated proteins. Among the identified DEGs and DEPs, changes in the expression of seven genes, including VLDLR1, WIF1, NGFR, AMH, BMP15, GDF6 and MMP13, and nine proteins, including VLDLR, VTG1, VTG3, PSCA, APOB, APOV1, F10, ZP2 and ZP3L2, were validated. Further analysis indicated that the mRNA level of chicken VLDLR was higher in F6 follicles than in SY follicles and was also higher in granulosa cells (GCs) than in thecal cells (TCs), and it was stimulated by FSH in GCs. Conclusions By comparing the proteomes and transcriptomes of SY and F6 follicles in laying hens, we identified several differentially expressed proteins/genes that might play certain roles in chicken follicle selection. These data may contribute to the identification of functional genes and proteins involved in chicken follicle selection.
Collapse
Affiliation(s)
- Qiuyue Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yiya Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.,College of Life Science, Qi Lu Normal University, Jinan, China
| | - Zemin Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaoli Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.
| |
Collapse
|
14
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|