1
|
Soliman NS, Soliman MS, Khairat SM, Gad MA, Shawky S, Elkholy AA. Genetic diversities and drug resistance in Mycobacterium bovis isolates from zoonotic tuberculosis using whole genome sequencing. BMC Genomics 2024; 25:1024. [PMID: 39487429 PMCID: PMC11529264 DOI: 10.1186/s12864-024-10909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance. METHODS The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries. RESULTS Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa. CONCLUSIONS All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.
Collapse
Affiliation(s)
- Noha Salah Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - May Sherif Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Ali Gad
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherine Shawky
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Ali Elkholy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Chand P, Mendum TA, Butler RE, Hingley-Wilson SM, Stewart GR. Identification of gene targets that potentiate the action of rifampicin on Mycobacterium bovis BCG. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001488. [PMID: 39150447 PMCID: PMC11329110 DOI: 10.1099/mic.0.001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Tuberculosis (TB) caused by bacteria of the Mycobacterium tuberculosis complex remains one of the most important infectious diseases of mankind. Rifampicin is a first line drug used in multi-drug treatment of TB, however, the necessary duration of treatment with these drugs is long and development of resistance is an increasing impediment to treatment programmes. As a result, there is a requirement for research and development of new TB drugs, which can form the basis of new drug combinations, either due to their own anti-mycobacterial activity or by augmenting the activity of existing drugs such as rifampicin. This study describes a TnSeq analysis to identify mutants with enhanced sensitivity to sub-minimum inhibitory concentrations (MIC) of rifampicin. The rifampicin-sensitive mutants were disrupted in genes of a variety of functions and the majority fitted into three thematic groups: firstly, genes that were involved in DNA/RNA metabolism, secondly, genes involved in sensing and regulating mycobacterial cellular systems, and thirdly, genes involved in the synthesis and maintenance of the cell wall. Selection at two concentrations of rifampicin (1/250 and 1/62 MIC) demonstrated a dose response for mutants with statistically significant sensitivity to rifampicin. The dataset reveals mechanisms of how mycobacteria are innately tolerant to and initiate an adaptive response to rifampicin; providing putative targets for the development of adjunctive therapies that potentiate the action of rifampicin.
Collapse
Affiliation(s)
- Pooja Chand
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| |
Collapse
|
3
|
Prithviraj M, Kado T, Mayfield JA, Young DC, Huang AD, Motooka D, Nakamura S, Siegrist MS, Moody DB, Morita YS. Tuberculostearic Acid Controls Mycobacterial Membrane Compartmentalization. mBio 2023; 14:e0339622. [PMID: 36976029 PMCID: PMC10127668 DOI: 10.1128/mbio.03396-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
The intracellular membrane domain (IMD) is a laterally discrete region of the mycobacterial plasma membrane, enriched in the subpolar region of the rod-shaped cell. Here, we report genome-wide transposon sequencing to discover the controllers of membrane compartmentalization in Mycobacterium smegmatis. The putative gene cfa showed the most significant effect on recovery from membrane compartment disruption by dibucaine. Enzymatic analysis of Cfa and lipidomic analysis of a cfa deletion mutant (Δcfa) demonstrated that Cfa is an essential methyltransferase for the synthesis of major membrane phospholipids containing a C19:0 monomethyl-branched stearic acid, also known as tuberculostearic acid (TBSA). TBSA has been intensively studied due to its abundant and genus-specific production in mycobacteria, but its biosynthetic enzymes had remained elusive. Cfa catalyzed the S-adenosyl-l-methionine-dependent methyltransferase reaction using oleic acid-containing lipid as a substrate, and Δcfa accumulated C18:1 oleic acid, suggesting that Cfa commits oleic acid to TBSA biosynthesis, likely contributing directly to lateral membrane partitioning. Consistent with this model, Δcfa displayed delayed restoration of subpolar IMD and delayed outgrowth after bacteriostatic dibucaine treatment. These results reveal the physiological significance of TBSA in controlling lateral membrane partitioning in mycobacteria. IMPORTANCE As its common name implies, tuberculostearic acid is an abundant and genus-specific branched-chain fatty acid in mycobacterial membranes. This fatty acid, 10-methyl octadecanoic acid, has been an intense focus of research, particularly as a diagnostic marker for tuberculosis. It was discovered in 1934, and yet the enzymes that mediate the biosynthesis of this fatty acid and the functions of this unusual fatty acid in cells have remained elusive. Through a genome-wide transposon sequencing screen, enzyme assay, and global lipidomic analysis, we show that Cfa is the long-sought enzyme that is specifically involved in the first step of generating tuberculostearic acid. By characterizing a cfa deletion mutant, we further demonstrate that tuberculostearic acid actively regulates lateral membrane heterogeneity in mycobacteria. These findings indicate the role of branched fatty acids in controlling the functions of the plasma membrane, a critical barrier for the pathogen to survive in its human host.
Collapse
Affiliation(s)
- Malavika Prithviraj
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob A. Mayfield
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David C. Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Annie D. Huang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Gibson AJ, Stiens J, Passmore IJ, Faulkner V, Miculob J, Willcocks S, Coad M, Berg S, Werling D, Wren BW, Nobeli I, Villarreal-Ramos B, Kendall SL. Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria. mBio 2022; 13:e0067222. [PMID: 35862770 PMCID: PMC9426507 DOI: 10.1128/mbio.00672-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ian J. Passmore
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Josephous Miculob
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Coad
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | | | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
6
|
Singh AV, Yadav VS, Chauhan DS, Singh SV. Mycobacterium bovis induced human tuberculosis in India: Current status, challenges & opportunities. Indian J Med Res 2022; 156:21-30. [PMID: 36510895 PMCID: PMC9903370 DOI: 10.4103/ijmr.ijmr_1161_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a leading cause of human deaths due to any infectious disease worldwide. However, infection of Mycobacterium bovis, primarily an animal pathogen, also leads to the development of 'human tuberculosis'. Infected animals have been considered the major source of M. bovis infection and humans get exposed to M. bovis through close contact with infected animals or consumption of contaminated milk, unpasteurized dairy products and improperly cooked contaminated meat. The information on the global distribution of bovine TB (bTB) is limited, but the disease has been reported from all the livestock-producing middle- and low-income countries of the world. In recent years, there is a renewed interest for the control of bTB to minimize human infection worldwide. In India, while the sporadic presence of M. bovis has been reported in domestic animals, animal-derived food products and human beings from different geographical regions of the country, the information on the national prevalence of bTB and transmission dynamics of zoonotic TB is, however, not available. The present article reviewed published information on the status of M. bovis-induced zoonotic TB to highlight the key challenges and opportunities for intervention to minimize the risk of M. bovis infection in humans and secure optimum animal productivity in India.
Collapse
Affiliation(s)
- Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Virendra Singh Yadav
- Department of Epidemiology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Ganeshi Lal Agrawal (GLA)University, Mathura, Uttar Pradesh, India
| |
Collapse
|
7
|
Gibson AJ, Passmore IJ, Faulkner V, Xia D, Nobeli I, Stiens J, Willcocks S, Clark TG, Sobkowiak B, Werling D, Villarreal-Ramos B, Wren BW, Kendall SL. Probing Differences in Gene Essentiality Between the Human and Animal Adapted Lineages of the Mycobacterium tuberculosis Complex Using TnSeq. Front Vet Sci 2021; 8:760717. [PMID: 35004921 PMCID: PMC8739905 DOI: 10.3389/fvets.2021.760717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) show distinct host adaptations, preferences and phenotypes despite being >99% identical at the nucleic acid level. Previous studies have explored gene expression changes between the members, however few studies have probed differences in gene essentiality. To better understand the functional impacts of the nucleic acid differences between Mycobacterium bovis and Mycobacterium tuberculosis, we used the Mycomar T7 phagemid delivery system to generate whole genome transposon libraries in laboratory strains of both species and compared the essentiality status of genes during growth under identical in vitro conditions. Libraries contained insertions in 54% of possible TA sites in M. bovis and 40% of those present in M. tuberculosis, achieving similar saturation levels to those previously reported for the MTBC. The distributions of essentiality across the functional categories were similar in both species. 527 genes were found to be essential in M. bovis whereas 477 genes were essential in M. tuberculosis and 370 essential genes were common in both species. CRISPRi was successfully utilised in both species to determine the impacts of silencing genes including wag31, a gene involved in peptidoglycan synthesis and Rv2182c/Mb2204c, a gene involved in glycerophospholipid metabolism. We observed species specific differences in the response to gene silencing, with the inhibition of expression of Mb2204c in M. bovis showing significantly less growth impact than silencing its orthologue (Rv2182c) in M. tuberculosis. Given that glycerophospholipid metabolism is a validated pathway for antimicrobials, our observations suggest that target vulnerability in the animal adapted lineages cannot be assumed to be the same as the human counterpart. This is of relevance for zoonotic tuberculosis as it implies that the development of antimicrobials targeting the human adapted lineage might not necessarily be effective against the animal adapted lineage. The generation of a transposon library and the first reported utilisation of CRISPRi in M. bovis will enable the use of these tools to further probe the genetic basis of survival under disease relevant conditions.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Ian J. Passmore
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dong Xia
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ben Sobkowiak
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom,*Correspondence: Sharon L. Kendall
| |
Collapse
|
8
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
10
|
Schuller M, Butler RE, Ariza A, Tromans-Coia C, Jankevicius G, Claridge TDW, Kendall SL, Goh S, Stewart GR, Ahel I. Molecular basis for DarT ADP-ribosylation of a DNA base. Nature 2021; 596:597-602. [PMID: 34408320 DOI: 10.1038/s41586-021-03825-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rachel E Butler
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Biozentrum, University of Basel, Basel, Switzerland
| | - Tim D W Claridge
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Disease, Pathology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Shan Goh
- Centre for Emerging, Endemic and Exotic Disease, Pathology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Quantification of Brucella abortus population structure in a natural host. Proc Natl Acad Sci U S A 2021; 118:2023500118. [PMID: 33688053 DOI: 10.1073/pnas.2023500118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cattle are natural hosts of the intracellular pathogen Brucella abortus, which inflicts a significant burden on the health and reproduction of these important livestock. The primary routes of infection in field settings have been described, but it is not known how the bovine host shapes the structure of B. abortus populations during infection. We utilized a library of uniquely barcoded B. abortus strains to temporally and spatially quantify population structure during colonization of cattle through a natural route of infection. Introducing 108 bacteria from this barcoded library to the conjunctival mucosa resulted in expected levels of local lymph node colonization at a 1-wk time point. We leveraged variance in strain abundance in the library to demonstrate that only 1 in 10,000 brucellae introduced at the site of infection reached a parotid lymph node. Thus, cattle restrict the overwhelming majority of B. abortus introduced via the ocular conjunctiva at this dose. Individual strains were spatially restricted within the host tissue, and the total B. abortus census was dominated by a small number of distinct strains in each lymph node. These results define a bottleneck that B. abortus must traverse to colonize local lymph nodes from the conjunctival mucosa. The data further support a model in which a small number of spatially isolated granulomas founded by unique strains are present at 1 wk postinfection. These experiments demonstrate the power of barcoded transposon tools to quantify infection bottlenecks and to define pathogen population structure in host tissues.
Collapse
|
12
|
Smith AA, Villarreal-Ramos B, Mendum TA, Williams KJ, Jones GJ, Wu H, McFadden J, Vordermeier HM, Stewart GR. Genetic screening for the protective antigenic targets of BCG vaccination. Tuberculosis (Edinb) 2020; 124:101979. [PMID: 32814303 DOI: 10.1016/j.tube.2020.101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Bovine tuberculosis is an important animal health problem and the predominant cause of zoonotic tuberculosis worldwide. It results in serious economic burden due to losses in productivity and the cost of control programmes. Control could be greatly improved by the introduction of an efficacious cattle vaccine but the most likely candidate, BCG, has several limitations including variable efficacy. Augmentation of BCG with a subunit vaccine booster has been shown to increase protection but the selection of antigens has hitherto been left largely to serendipity. In the present study, we take a rational approach to identify the protective antigens of BCG, selecting a BCG transposon mutant library in naïve and BCG-vaccinated cattle. Ten mutants had increased relative survival in vaccinated compared to naïve cattle, consistent with loss of protective antigen targets making the mutants less visible to the BCG immune response. The immunogenicity of three putative protective antigens, BCG_0116, BCG_0205 (YrbE1B) and BCG_1448 (PPE20) was investigated using peptide pools and PBMCs from BCG vaccinated cattle. BCG vaccination induced PBMC to release elevated levels of IP10, IL-17a and IL-10 in response to all three antigens. Taken together, the data supports the further study of these antigens for use in subunit vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- Cattle
- Cytokines/immunology
- Cytokines/metabolism
- DNA Transposable Elements
- Immunogenicity, Vaccine
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Mutation
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Tuberculosis, Bovine/immunology
- Tuberculosis, Bovine/metabolism
- Tuberculosis, Bovine/microbiology
- Tuberculosis, Bovine/prevention & control
- Vaccination/veterinary
Collapse
Affiliation(s)
- Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kerstin J Williams
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Gareth J Jones
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Johnjoe McFadden
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - H Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
13
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
14
|
Butler RE, Smith AA, Mendum TA, Chandran A, Wu H, Lefrançois L, Chambers M, Soldati T, Stewart GR. Mycobacterium bovis uses the ESX-1 Type VII secretion system to escape predation by the soil-dwelling amoeba Dictyostelium discoideum. ISME JOURNAL 2020; 14:919-930. [PMID: 31896783 PMCID: PMC7082363 DOI: 10.1038/s41396-019-0572-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis and the predominant cause of zoonotic tuberculosis in people. Bovine tuberculosis occurs in farmed cattle but also in a variety of wild animals, which form a reservoir of infection. Although direct transmission of tuberculosis occurs between mammals, the low frequency of contact between different host species and abundant shedding of bacilli by infected animals suggests an infectious route via environmental contamination. Other intracellular pathogens that transmit via the environment deploy strategies to survive or exploit predation by environmental amoebae. To explore if M. bovis has this capability, we investigated its interactions with the soil and dung-dwelling amoeba, Dictyostelium discoideum. We demonstrated that M. bovis evades phagocytosis and destruction by D. discoideum and actively transits through the amoeba using the ESX-1 Type VII Secretion System as part of a programme of mechanisms, many of which have been co-opted as virulence factors in the mammalian host. This capacity of M. bovis to utilise an environmental stage between mammalian hosts may enhance its transmissibility. In addition, our data provide molecular evidence to support an evolutionary role for amoebae as training grounds for the pathogenic M. tuberculosis complex.
Collapse
Affiliation(s)
- Rachel E Butler
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Aneesh Chandran
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Louise Lefrançois
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| | - Mark Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
15
|
Development of a diagnostic compatible BCG vaccine against Bovine tuberculosis. Sci Rep 2019; 9:17791. [PMID: 31780694 PMCID: PMC6882907 DOI: 10.1038/s41598-019-54108-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
Bovine tuberculosis (BTB) caused by Mycobacterium bovis remains a major problem in both the developed and developing countries. Control of BTB in the UK is carried out by test and slaughter of infected animals, based primarily on the tuberculin skin test (PPD). Vaccination with the attenuated strain of the M. bovis pathogen, BCG, is not used to control bovine tuberculosis in cattle at present, due to its variable efficacy and because it interferes with the PPD test. Diagnostic tests capable of Differentiating Infected from Vaccinated Animals (DIVA) have been developed that detect immune responses to M. bovis antigens absent in BCG; but these are too expensive and insufficiently sensitive to be used for BTB control worldwide. To address these problems we aimed to generate a synergistic vaccine and diagnostic approach that would permit the vaccination of cattle without interfering with the conventional PPD-based surveillance. The approach was to widen the pool of M. bovis antigens that could be used as DIVA targets, by identifying antigenic proteins that could be deleted from BCG without affecting the persistence and protective efficacy of the vaccine in cattle. Using transposon mutagenesis we identified genes that were essential and those that were non-essential for persistence in bovine lymph nodes. We then inactivated selected immunogenic, but non-essential genes in BCG Danish to create a diagnostic-compatible triple knock-out ΔBCG TK strain. The protective efficacy of the ΔBCG TK was tested in guinea pigs experimentally infected with M. bovis by aerosol and found to be equivalent to wild-type BCG. A complementary diagnostic skin test was developed with the antigenic proteins encoded by the deleted genes which did not cross-react in vaccinated or in uninfected guinea pigs. This study demonstrates the functionality of a new and improved BCG strain which retains its protective efficacy but is diagnostically compatible with a novel DIVA skin test that could be implemented in control programmes.
Collapse
|
16
|
Borgers K, Vandewalle K, Festjens N, Callewaert N. A guide to Mycobacterium mutagenesis. FEBS J 2019; 286:3757-3774. [PMID: 31419030 DOI: 10.1111/febs.15041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
The genus Mycobacterium includes several pathogens that cause severe disease in humans, like Mycobacterium tuberculosis (M. tb), the infectious agent causing tuberculosis. Genetic tools to engineer mycobacterial genomes, in a targeted or random fashion, have provided opportunities to investigate M. tb infection and pathogenesis. Furthermore, they have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. This review describes the various methods that are available for the generation of mutants in Mycobacterium species, focusing specifically on tools for altering slow-growing mycobacteria from the M. tb complex. Among others, it incorporates the recent new molecular biological technologies (e.g. ORBIT) to rapidly and/or genome-wide comprehensively obtain targeted mutants in mycobacteria. As such, this review can be used as a guide to select the appropriate genetic tools to generate mycobacterial mutants of interest, which can be used as tools to aid understanding of M. tb infection or to help developing TB intervention strategies.
Collapse
Affiliation(s)
- Katlyn Borgers
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Kristof Vandewalle
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nele Festjens
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nico Callewaert
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|