1
|
Zhou G, Wang X, Chen Y, Kang D. Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes (Basel) 2024; 15:1454. [PMID: 39596654 PMCID: PMC11594492 DOI: 10.3390/genes15111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cashmere, known as "soft gold", is a highly prized fiber from Cashmere goats, produced by secondary hair follicles. Dermal papilla cells, located at the base of these follicles, regulate the proliferation and differentiation of hair matrix cells, which are essential for hair growth and cashmere formation. Recent studies emphasize the role of microRNAs (miRNAs) in controlling gene expression within these processes. METHODS This study centered on exploring the targeted regulatory interaction between miR-144 and the Lhx2 gene. Utilizing methodologies like miRNA target prediction, luciferase reporter assays, and quantitative PCR, they assessed the interplay between miR-144 and Lhx2. Dermal papilla cells derived from Cashmere goats were cultured and transfected with either miR-144 mimics or inhibitors to observe the subsequent effects on Lhx2 expression. RESULTS The results demonstrated that miR-144 directly targets the Lhx2 gene by binding to its mRNA, leading to a decrease in Lhx2 expression. This modulation of Lhx2 levels influenced the behavior of dermal papilla cells, affecting their ability to regulate hair matrix cell proliferation and differentiation. Consequently, the manipulation of miR-144 levels had a significant impact on the growth cycle of cashmere wool. CONCLUSIONS The findings suggest miR-144 regulates hair follicle dynamics by targeting Lhx2, offering insights into hair growth mechanisms. This could lead to innovations in enhancing cashmere production, fleece quality, and addressing hair growth disorders. Future research may focus on adjusting miR-144 levels to optimize Lhx2 expression and promote hair follicle activity.
Collapse
Affiliation(s)
- Guangxian Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Danju Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
2
|
Hussain Z, Hu T, Gou Y, He M, Lv X, Wang S, Sun W. CRABP1 Enhances the Proliferation of the Dermal Papilla Cells of Hu Sheep through the Wnt/β-catenin Pathway. Genes (Basel) 2024; 15:1291. [PMID: 39457415 PMCID: PMC11507202 DOI: 10.3390/genes15101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair follicle, including differentiation, proliferation, and apoptosis in keratinocytes. Previous research on Hu sheep hair follicles revealed the specific expression CRABP1 in dermal papilla cells (DPCs), suggesting that CRABP1 has a potential role in regulating the DPC population. Therefore, the main purpose of this study is to expose the performance of the CRABP1 genes in the development and proliferation of DPCs. METHODS Initially, overexpression and inhibition of CRABP1 in the DPCs were conducted through overexpression vector and siRNA. CCK-8, EDU, and RT-PCR cell cycle assays and immunostaining were performed to evaluate the proliferation and cell cycle of dermal papilla cells (DPCs). Although, the influence of CRABP1 upon β-catenin in dermal papilla cells (DPCs) was found using immunofluorescence labeling. Finally, RT-PCR was conducted to assess the impact of CRABP1 on the expression levels of CTNNB1, TCF4, and LEF1 in DPCs involved in the Wnt/β-catenin signaling pathway. RESULTS The results showed that CRABP1 overexpression promotes the growth rates of DPCs and significantly enhances the proportion of S-phase cells compared with the control group (p < 0.05). The results were the opposite when CRABP1 was a knockdown. In contrast, there was a significant decline in the mRNA expression levels of CTNNβ1, LEF1 (p < 0.05), and TCF4 (p < 0.01) by CRABP1 knockdown. CONCLUSIONS This study found that CRABP1 influences the expression of important genes within the Wnt/β-catenin signaling pathway and promotes DPC proliferation. This investigation provides a theoretical framework to explain the mechanisms that control hair follicle morphogenesis and development.
Collapse
Affiliation(s)
- Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Yuan Gou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Vasu M, Ahlawat S, Chhabra P, Sharma U, Arora R, Sharma R, Mir MA, Singh MK. Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: A comparative skin transcriptome analysis. Gene 2024; 891:147826. [PMID: 37748630 DOI: 10.1016/j.gene.2023.147826] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Changthangi sheep, which inhabit the high-altitude regions of Ladakh, are known for their fine fiber production and are characterized by grey skin and either black or white coats. In contrast, Muzzafarnagri sheep from the plains of Uttar Pradesh produce coarse wool and have white skin and coats. We conducted comparative global gene expression profiling on four biological replicates of skin from each breed. Notably, our analysis identified 149 up-regulated genes and 2,139 down-regulated genes in Changthangi sheep compared to Muzzafarnagri sheep, with a p-adjusted value (padj) of ≤0.05 and a Log2 fold change of ≥1.5. Gene Ontology analysis of the up-regulated genes revealed an enrichment of terms related to melanin biosynthesis and developmental pigmentation. Additionally, enriched KEGG pathways included tyrosine metabolism and metabolic pathways. Among the melanogenesis-related genes that exhibited higher expression in Changthangi sheep were TYR, TYRP1, DCT, SLC45A2, PMEL, MLANA, and OCA2. These findings confirm melanin's role in both the animals' black coat color and UV protection at high-altitude. Furthermore, we observed more pronounced expression of genes related to fiber quality, namely KRTAP6, KRTAP7, KRTAP13, and KRTAP2, in the fine wool-producing sheep from Ladakh. The results of the RNA sequencing were validated using real-time PCR on 10 genes governing fiber quality and coat color, with ACTB and PPIB serving as reference genes. In conclusion, our comparative skin transcriptome analysis of Changthangi and Muzzafarnagri sheep sheds light on the genetic differences associated with distinct phenotypic traits and environmental adaptability, offering valuable insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India; ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, Shuhama (Aulestang), SKUAST-Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| |
Collapse
|
4
|
Zheng Q, Ye N, Bao P, Wang T, Ma C, Chu M, Wu X, Kong S, Guo X, Liang C, Pan H, Yan P. Interpretation of the Yak Skin Single-Cell Transcriptome Landscape. Animals (Basel) 2023; 13:3818. [PMID: 38136855 PMCID: PMC10741061 DOI: 10.3390/ani13243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The morphogenesis of hair follicle structure is accompanied by the differentiation of skin tissue. Mammalian coats are produced by hair follicles. The formation of hair follicles requires signal transmission between the epidermis and dermis. However, knowledge of the transcriptional regulatory mechanism is still lacking. We used single-cell RNA sequencing to obtain 26,573 single cells from the scapular skin of yaks at hair follicle telogen and anagen stages. With the help of known reference marker genes, 11 main cell types were identified. In addition, we further analyzed the DP cell and dermal fibroblast lineages, drew a single-cell map of the DP cell and dermal fibroblast lineages, and elaborated the key genes, signals, and functions involved in cell fate decision making. The results of this study provide a very valuable resource for the analysis of the heterogeneity of DP cells and dermal fibroblasts in the skin and provide a powerful theoretical reference for further exploring the diversity of hair follicle cell types and hair follicle morphogenesis.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Na Ye
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Siyuan Kong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
5
|
Correia M, Lopes J, Lopes D, Melero A, Makvandi P, Veiga F, Coelho JFJ, Fonseca AC, Paiva-Santos AC. Nanotechnology-based techniques for hair follicle regeneration. Biomaterials 2023; 302:122348. [PMID: 37866013 DOI: 10.1016/j.biomaterials.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.
Collapse
Affiliation(s)
- Mafalda Correia
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia (Campus de Burjassot), Av. Vicente A. Estelles s/n, 46100, Burjassot, Valencia, Spain
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
6
|
Liu X, Zhang Y, Tang Y, Wang J, Yang K, Ni C, Li Z, Zhang Y, Wang J, Li H, Tang Y, Huang Y, Wu J, Liu Q, Wu W, Lin J. Long non-coding RNA AL136131.3 inhibits hair growth through mediating PPARγ in androgenetic alopecia. J Dermatol Sci 2023; 111:120-123. [PMID: 37580203 DOI: 10.1016/j.jdermsci.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Xiao Liu
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuting Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Ying Tang
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Wang
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Zheng Li
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Zhang
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji'an Wang
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiyang Li
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wenyu Wu
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Jing'an District Central Hospital, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Jinran Lin
- Deparment of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ma S, Ji D, Wang X, Yang Y, Shi Y, Chen Y. Transcriptomic Analysis Reveals Candidate Ligand-Receptor Pairs and Signaling Networks Mediating Intercellular Communication between Hair Matrix Cells and Dermal Papilla Cells from Cashmere Goats. Cells 2023; 12:1645. [PMID: 37371115 DOI: 10.3390/cells12121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Hair fiber growth is determined by the spatiotemporally controlled proliferation, differentiation, and apoptosis of hair matrix cells (HMCs) inside the hair follicle (HF); however, dermal papilla cells (DPCs), the cell population surrounded by HMCs, manipulate the above processes via intercellular crosstalk with HMCs. Therefore, exploring how the mutual commutations between the cells are molecularly achieved is vital to understanding the mechanisms underlying hair growth. Here, based on our previous successes in cultivating HMCs and DPCs from cashmere goats, we combined a series of techniques, including in vitro cell coculture, transcriptome sequencing, and bioinformatic analysis, to uncover ligand-receptor pairs and signaling networks mediating intercellular crosstalk. Firstly, we found that direct cellular interaction significantly alters cell cycle distribution patterns and changes the gene expression profiles of both cells at the global level. Next, we constructed the networks of ligand-receptor pairs mediating intercellular autocrine or paracrine crosstalk between the cells. A few pairs, such as LEP-LEPR, IL6-EGFR, RSPO1-LRP6, and ADM-CALCRL, are found to have known or potential roles in hair growth by acting as bridges linking cells. Further, we inferred the signaling axis connecting the cells from transcriptomic data with the advantage of CCCExplorer. Certain pathways, including INHBA-ACVR2A/ACVR2B-ACVR1/ACVR1B-SMAD3, were predicted as the axis mediating the promotive effect of INHBA on hair growth via paracrine crosstalk between DPCs and HMCs. Finally, we verified that LEP-LEPR and IL1A-IL1R1 are pivotal ligand-receptor pairs involved in autocrine and paracrine communication of DPCs and HMCs to DPCs, respectively. Our study provides a comprehensive landscape of intercellular crosstalk between key cell types inside HF at the molecular level, which is helpful for an in-depth understanding of the mechanisms related to hair growth.
Collapse
Affiliation(s)
- Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Comparative Analysis of mRNA and miRNA Expression between Dermal Papilla Cells and Hair Matrix Cells of Hair Follicles in Yak. Cells 2022; 11:cells11243985. [PMID: 36552749 PMCID: PMC9776824 DOI: 10.3390/cells11243985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction between the dermal papilla cells (DPCs) and epidermal hair matrix cells (HMCs) of hair follicles (HFs) is crucial for the growth and development of HFs, but the molecular mechanism is complex and remains unclear. MicroRNAs (miRNAs) are the key signaling molecules for cellular communication. In this study, the DPCs and HMCs of yak were isolated and cultured, and the differentially expressed mRNA and miRNA were characterized to analyze the molecular basis of the interaction between DPCs and HMCs during hair follicle (HF) development in yak. The mRNA differential expression and functional enrichment analysis revealed that there were significant differences between DPCs and HMCs, and they showed the molecular functional characteristics of dermal cells and epidermal cells, respectively. Multiple KEGG pathways related to HF development were enriched in the highly expressed genes in DPCs, while the pathways associated with microbiota and immunity were significantly enriched in the highly expressed genes in HMCs. By combining analysis with our previous 10× genomics single-cell transcriptome data, 39 marker genes of DPCs of yak were identified. A total of 123 relatively specifically expressed miRNAs were screened; among these, the miRNAs associated with HF development such as miR-143, miR-214, miR-125b, miR-31, and miR-200 were presented. In conclusion, the large changes in yak DPCs and HMCs for both mRNA and miRNA expression were revealed, and numerous specifically expressed mRNAs and miRNAs in DPCs or HMCs were identified, which may contribute to the interaction and cellular communication between DPCs and HMCs during HF development in yak.
Collapse
|
9
|
Jiang Y, Liu H, Zou Q, Li S, Ding X. miR-29a-5p Inhibits Prenatal Hair Placode Formation Through Targeting EDAR by ceRNA Regulatory Network. Front Cell Dev Biol 2022; 10:902026. [PMID: 35646897 PMCID: PMC9133881 DOI: 10.3389/fcell.2022.902026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hair placode formation is an important stage of hair follicle morphogenesis and it is a complex process facilitated by non-coding RNAs. In this study, we conducted whole transcriptome sequencing analysis of skin, heart, liver, lung, and kidney tissues of day 41 (E41) normal and hairless pig embryos, and respectively detected 15, 8, and 515 skin-specific differentially expressed (DE) lncRNAs, miRNAs, and mRNAs. Furthermore, 18 competing endogenous RNA (ceRNA) networks were constructed. Following weighted gene co-expression network analysis (WGCNA) of stages E39, E41, E45, E52, and E60, between normal and hairless pig embryos, only two ceRNAs (lncRNA2162.1/miR-29a-5p/BMPR1b and lncRNA627.1/miR-29a-5p/EDAR) that showed period-specific differential expression in E41 skin were retained. Dual-luciferase reporter assays further indicated that EDAR was a direct, functioning target of miR-29a-5p and that no binding site was found in BMPR1b. Moreover, miR-29a-5p overexpression inhibited the mRNA and protein expression of EDAR while no significant differential expression of BMPR1b was detected. In addition, over-expressed lncRNA627.1 reduces the expression of miR-29a-5p and increase EDAR expression while inhibits lncRNA627.1 resulted in a opposite expression trend. Cell proliferation result demonstrated that lower expression of EDAR and lncRNA627.1 inhibited hair placode precursor cells (HPPCs) proliferation in a manner similar to that shown by over-expressed miR-29a-5p. This study identified that miR-29a-5p inhibited HPPCs proliferation via the suppression of EDAR expression in the EDA/EDAR signaling pathway, while lncRNA627.1 rescues EDAR expression. Our study provides a basis for a better understanding of the mechanisms underlying the ceRNA complex, miR29a-5p/EDAR/lncRNA627.1, that could regulate hair placode formation, which may help decipher diseases affecting human hair.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|
10
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
11
|
Wang Z, Wang Y, Hui T, Chen R, Xu Y, Zhang Y, Tian H, Wang W, Cong Y, Guo S, Zhu Y, Zhang X, Guo D, Bai M, Fan Y, Yue C, Bai Z, Sun J, Cai W, Zhang X, Gu M, Qin Y, Sun Y, Wu Y, Wu R, Dou X, Bai W, Zheng Y. Single-Cell Sequencing Reveals Differential Cell Types in Skin Tissues of Liaoning Cashmere Goats and Key Genes Related Potentially to the Fineness of Cashmere Fiber. Front Genet 2021; 12:726670. [PMID: 34858469 PMCID: PMC8631524 DOI: 10.3389/fgene.2021.726670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.
Collapse
Affiliation(s)
- Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - He Tian
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuyan Cong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanxu Zhu
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Xinghui Zhang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Dan Guo
- Liaoning Provincial Department of Science and Technology, Shenyang, China
| | - Man Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Wenlin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Sha RN, Dai B, Ren LQ, Han XY, Yuan JL, Liu DJ. Cx43 promotes SHF-DPCs proliferation in the hair follicle of Albas cashmere goats from anagen to telogen. Res Vet Sci 2020; 133:92-97. [PMID: 32957063 DOI: 10.1016/j.rvsc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
Connexin 43 (Cx43), known to form gap junction transmembrane channels between the cytoplasm of two adjacent cells, plays a key role in physiological functions, such as regulating cell growth, differentiation, and maintaining tissue homeostasis. Cashmere goat is an important farm animal that provides cashmere, which was produced by secondary hair follicles (SHF), for human consumption; however, there is no report about the role of Cx43 on the growth and development of SHF in cashmere goat. In this study, we investigated the effect of Cx43 on proliferation secondary hair follicle dermal papilla cells (SHF-DPCs) in Albas cashmere goat. In SHF-DPCs, Cx43 overexpression promoted cell proliferation and upregulated the expression of IGF-1, whereas Cx43 knockdown was associated with the opposite effects. These results suggested that Cx43 may promote cell proliferation by inducing IGF-1. Overall, our research not only contributes to a better understanding of the mechanism of the growth and development of SHF in cashmere goat, but also shed light on cashmere quality control in the future.
Collapse
Affiliation(s)
- Ri-Na Sha
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Bai Dai
- Reproductive Medicine Center, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Li-Qing Ren
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiao-Yu Han
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian-Long Yuan
- Clinical laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, China
| | - Dong-Jun Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
14
|
Cultivation of Hair Matrix Cells from Cashmere Goat Skins and Exemplified Applications. Animals (Basel) 2020; 10:ani10081400. [PMID: 32806500 PMCID: PMC7460477 DOI: 10.3390/ani10081400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary A large scale of sequencing data pertaining to cashmere growth on cashmere goats have not been cost-effectively used due to the lack of in vitro cellular models, especially for hair matrix cells (HMCs)—the precursors of hair-forming keratinocytes, causing an enormous waste of data resources. Herein, we successfully isolated and cultivated previously unreported HMCs from cashmere goat skins and identified them morphologically and molecularly via their distinct appearance and signature genes’ expression from spatially adjacent dermal papilla cells. Through monitoring the effects of calcium and all-trans retinoic acid on HMCs using various biological techniques, we displayed that the cells are useful models to explore unsolved issues in hair fiber growth on goats. Therefore, our present success paves the road for further utilizing currently deposited data to unveil the secrets of cashmere growth and, ultimately, improve the quantity and quality of animal fibers. Abstract A functional interpretation of filtered candidates and predicted regulatory pathways related to cashmere growth from sequencing trials needs available cell models, especially for hair matrix cells (HMCs), whose continual proliferation and differentiation result in rapid hair growth. To fulfill such goals, we herein obtained primary goat HMCs via a microdissection-based method; optimized the selection of the culture medium and coating substances for better cell maintenance; and exemplified their usefulness through examining the effects of calcium and all-trans retinoic acid (ATRA) on cells using immunoblotting, flow cytometry, and other techniques. As a result, we successfully acquired primary and passaged goat HMCs with typical keratinocyte morphology. Calcium-free RPMI (Roswell Park Memorial Institute) 1640 and MEM (minimum Eagle’s medium) outperformed normal DMEM/F12 (Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12) on long-term cell maintenance, whereas serum-free media K-SFM and EpiLife failed to support cell growth. HMCs differed molecularly and morphologically from their neighbor dermal papilla cells on expressions of feature genes, such as HOXC13, and on characteristic keratinocyte-like appearances versus fibroblast shapes, respectively. Higher calcium concentrations significantly stimulated the expression of the genes (e.g., KRT1 and IVL) involved in keratinocyte differentiation and, promoted cell proliferation. Moreover, 10−5 M ATRA obviously boosted goat HMC expansions and changed their cell cycle distributions compared to the controls. Our study shines a light on researches exploring the mechanisms underlying the growth of cashmere.
Collapse
|
15
|
Nocelli C, Cappelli K, Capomaccio S, Pascucci L, Mercati F, Pazzaglia I, Mecocci S, Antonini M, Renieri C. Shedding light on cashmere goat hair follicle biology: from morphology analyses to transcriptomic landascape. BMC Genomics 2020; 21:458. [PMID: 32615938 PMCID: PMC7330943 DOI: 10.1186/s12864-020-06870-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cashmere goat is known for its precious undercoat. Being photoperiod-dictated, cashmere growth has been studied focusing mainly on hair follicle cycle phases (anagen, catagen and telogen). An accurate molecular knowledge of the goat hair follicle cycle, disentangling gene expression changes during phases and recognizing timing boundaries, could be useful to improve cashmere goat management and ultimately cashmere production. RESULTS To better describe goat's hair follicle transcriptome we applied RNA-sequencing to isolated hair follicles from five Italian cashmere goats, during the anagen and catagen phase, identifying total of 214 differentially expressed genes (DEGs): 97 were up-regulated while 117 were down-regulated in catagen with respect to anagen. Gene Ontology and pathway analysis were performed. We detected 144 significant pathways spanning from estrogen, pluripotency of stem cells, thermogenesis and fatty acid metabolism that were strongly expressed during the hair follicle phases analysed. Finally, we validated promising DEGs by RT-qPCR in the same set of samples as well as in hair follicles and entire skin biopsies of another cashmere goats cohort accounting for early anagen, anagen, early catagen, and catagen phases. CONCLUSIONS As in the isolated hair follicles, some target genes were homogenously modulated during the four hair follicle phases. Ceruloplasmin (CP) and Keratin 4 (K4), confirmed their clear cut expression between growing and resting phase. In fact, K4 was almost absent in catagen phases while CP was barely expressed in anagen phases. In particular, the strong expression of K4 in early anagen makes it an eligible marker to track the beginning of a new hair cycle, and therefore defining the optimum time for cashmere harvesting.
Collapse
Affiliation(s)
- Cristina Nocelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Irene Pazzaglia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Salvemini 1, 06126 Perugia, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Marco Antonini
- Italian National Agency for New Technology, Energy and Sustainable Economic Development, ENEA CR Casaccia—SSPT BIOAG Probio, S.M. di Galeria, 00123 Rome, Italy
| | - Carlo Renieri
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
16
|
Thymosin β4 Identified by Transcriptomic Analysis from HF Anagen to Telogen Promotes Proliferation of SHF-DPCs in Albas Cashmere Goat. Int J Mol Sci 2020; 21:ijms21072268. [PMID: 32218218 PMCID: PMC7177334 DOI: 10.3390/ijms21072268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Increasing cashmere yield is one of the important goals of cashmere goat breeding. To achieve this goal, we screened the key genes that can improve cashmere performance. In this study, we used the RNA raw datasets of the skin and dermal papilla cells of secondary hair follicle (SHF-DPCs) samples of hair follicle (HF) anagen and telogen of Albas cashmere goats and identified a set of significant differentially expressed genes (DEGs). To explore potential associations between gene sets and SHF growth features and to identify candidate genes, we detected functional enrichment and constructed protein-protein interaction (PPI) networks. Through comprehensive analysis, we selected Thymosin β4 (Tβ4), Rho GTPase activating protein 6 (ARHGAP6), ADAM metallopeptidase with thrombospondin type 1 motif 15, (ADAMTS15), Chordin (CHRD), and SPARC (Osteonectin), cwcv and kazal-like domains proteoglycan 1 (SPOCK1) as candidate genes. Gene set enrichment analysis (GSEA) for these genes revealed Tβ4 and ARHGAP6 have a close association with the growth and development of SHF-DPCs. However, the expression of Tβ4 in the anagen was higher than that in the telogen, so we finally chose Tβ4 as the ultimate research object. Overexpressing Tβ4 promoted and silencing Tβ4 inhibited the proliferation of SHF-DPCs. These findings suggest that Tβ4 can promote the growth and development of SHF-DPCs and indicate that this molecule may be a valuable target for increasing cashmere production.
Collapse
|
17
|
Comprehensive analysis of circRNAs from cashmere goat skin by next generation RNA sequencing (RNA-seq). Sci Rep 2020; 10:516. [PMID: 31949277 PMCID: PMC6965140 DOI: 10.1038/s41598-019-57404-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Circular RNA (circRNA) is endogenous non-coding RNA (ncRNA) with a covalently closed circular structure. It is mainly generated through RNA alternative splicing or back-splicing. CircRNA is known in the majority of eukaryotes and very stable. However, knowledge of the circRNA involved in regulating cashmere fineness is limited. Skin samples were collected from Liaoning cashmere goats (LCG) and Inner Mongolia cashmere goats (MCG) during the anagen period. For differentially expressed circRNAs, RNA sequencing was performed, and the analysis led to an identification of 17 up-regulated circRNAs and 15 down-regulated circRNAs in LCG compared with MCG skin samples. In order to find the differentially expressed circRNAs in LCG, we carried out qPCRs on 10 candidate circRNAs in coarse type skin of LCG (CT-LCG) and fine type skin of LCG (FT-LCG). Four circRNAs: ciRNA128, circRNA6854, circRNA4154 and circRNA3620 were confirmed to be significantly differential expression in LCG. Also, a regulatory network of circRNAs-miRNAs was bioinformatically deduced and may help to understand molecular mechanisms of potential circRNA involvement in regulating cashmere fineness.
Collapse
|