1
|
Yuan Q, Hodgkinson C, Liu X, Barton B, Diazgranados N, Schwandt M, Morgan T, Bataller R, Liangpunsakul S, Nagy LE, Goldman D. Exome-wide association analysis identifies novel risk loci for alcohol-associated hepatitis. Hepatology 2025; 81:1304-1317. [PMID: 39058584 PMCID: PMC11902603 DOI: 10.1097/hep.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND AIMS Alcohol-associated hepatitis (AH) is a clinically severe, acute disease that afflicts only a fraction of patients with alcohol use disorder. Genomic studies of alcohol-associated cirrhosis (AC) have identified several genes of large effect, but the genetic and environmental factors that lead to AH and AC, and their degree of genetic overlap, remain largely unknown. This study aims to identify genes and genetic variations that contribute to the development of AH. APPROACH AND RESULTS Exome-sequencing of patients with AH (N=784) and heavy drinking controls (N=951) identified an exome-wide significant association for AH at patalin-like phospholipase domain containing 3, as previously observed for AC in genome-wide association study, although with a much lower effect size. Single nucleotide polymorphisms (SNPs) of large effect size at inducible T cell costimulatory ligand ( ICOSLG ) (Chr 21) and TOX4/RAB2B (Chr 14) were also exome-wide significant. ICOSLG encodes a co-stimulatory signal for T-cell proliferation and cytokine secretion and induces B-cell proliferation and differentiation. TOX high mobility group box family member 4 ( TOX4 ) was previously implicated in diabetes and immune system function. Other genes previously implicated in AC did not strongly contribute to AH, and the only prominently implicated (but not exome-wide significant) gene overlapping with alcohol use disorder was alcohol dehydrogenase 1B ( ADH1B ). Polygenic signals for AH were observed in both common and rare variant analysis and identified genes with roles associated with inflammation. CONCLUSIONS This study has identified 2 new genes of high effect size with a previously unknown contribution to alcohol-associated liver disease and highlights both the overlap in etiology between liver diseases and the unique origins of AH.
Collapse
Affiliation(s)
- Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Xiaochen Liu
- Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, California, USA
| | - Bruce Barton
- Department of Population & Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | | | - Timothy Morgan
- Department of Gastroenterology, Long Beach Veterans Healthcare System (VALVE), Long Beach, California, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Suthat Liangpunsakul
- Division of Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Laura E. Nagy
- Department of Inflammation & Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Davis CN, Jinwala Z, Hatoum AS, Toikumo S, Agrawal A, Rentsch CT, Edenberg HJ, Baurley JW, Hartwell EE, Crist RC, Gray JC, Justice AC, Gelernter J, Kember RL, Kranzler HR. Utility of Candidate Genes From an Algorithm Designed to Predict Genetic Risk for Opioid Use Disorder. JAMA Netw Open 2025; 8:e2453913. [PMID: 39786773 PMCID: PMC11718552 DOI: 10.1001/jamanetworkopen.2024.53913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025] Open
Abstract
Importance Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated. Objective To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk. Design, Setting, and Participants This case-control study examined the association of 15 candidate genetic variants with risk of OUD using electronic health record data from December 20, 1992, to September 30, 2022. Electronic health record data, including pharmacy records, were accrued from participants in the Million Veteran Program across the US with opioid exposure (n = 452 664). Cases with OUD were identified using International Classification of Diseases, Ninth Revision, or International Classification of Diseases, Tenth Revision, diagnostic codes, and controls were individuals with no OUD diagnosis. Exposures Number of risk alleles present across 15 candidate genetic variants. Main Outcome and Measures Performance of 15 genetic variants for identifying OUD risk assessed via logistic regression and machine learning models. Results A total of 452 664 individuals with opioid exposure (including 33 669 with OUD) had a mean (SD) age of 61.15 (13.37) years, and 90.46% were male; the sample was ancestrally diverse (with individuals of genetically inferred European, African, and admixed American ancestries). Using Nagelkerke R2, collectively, the 15 candidate genes accounted for 0.40% of variation in OUD risk. In comparison, age and sex alone accounted for 3.27% of the variation. The ensemble machine learning. The ensemble machine learning model using the 15 variants as predictive factors correctly classified 52.83% (95% CI, 52.07%-53.59%) of individuals in an independent testing sample. Conclusions and Relevance Results of this study suggest that the candidate genetic variants included in the approved algorithm do not meet reasonable standards of efficacy in identifying OUD risk. Given the algorithm's limited predictive accuracy, its use in clinical care would lead to high rates of both false-positive and false-negative findings. More clinically useful models are needed to identify individuals at risk of developing OUD.
Collapse
Affiliation(s)
- Christal N. Davis
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Zeal Jinwala
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St Louis, Missouri
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Arpana Agrawal
- Department of Psychiatry, Washington University, St Louis, Missouri
| | - Christopher T. Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis
| | | | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Richard C. Crist
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Joshua C. Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, Bethesda, Maryland
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System, West Haven
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
3
|
Das D, Wang X, Chiu YC, Bouamar H, Sharkey FE, Lopera JE, Lai Z, Weintraub ST, Han X, Zou Y, Chen HIH, Zeballos Torrez CR, Gu X, Cserhati M, Michalek JE, Halff GA, Chen Y, Zheng S, Cigarroa FG, Sun LZ. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. J Natl Cancer Inst 2024; 116:1961-1978. [PMID: 39189979 PMCID: PMC11630563 DOI: 10.1093/jnci/djae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The incidence and mortality rates of hepatocellular carcinoma among Hispanic individuals in the United States are much higher than in non-Hispanic White people. We conducted multi-omics analyses to elucidate molecular alterations in hepatocellular carcinoma among Hispanic patients. METHODS Paired tumor and adjacent nontumor samples were collected from 31 Hispanic hepatocellular carcinomas in South Texas for genomic, transcriptomic, proteomic, and metabolomic profiling. Serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed hepatocellular carcinoma. RESULTS Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in South Texas Hispanic hepatocellular carcinoma patients, suggesting a predominant activation of the Wnt/β-catenin pathway. TERT promoter mutations were also statistically significantly more frequent in the Hispanic cohort (Fisher exact test, P < .05). Cell cycles and liver function were positively and negatively enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in serum samples of hepatocellular carcinoma patients (paired t test, P < .0001). Two hepatocellular carcinoma subtypes from our Hispanic cohort were identified and validated with the Cancer Genome Atlas liver cancer cohort. Patients with better overall survival showed higher activity of immune and angiogenesis signatures and lower activity of liver function-related gene signatures. They also had higher levels of immune checkpoint and immune exhaustion markers. CONCLUSIONS Our study revealed specific molecular features of Hispanic hepatocellular carcinoma and potential biomarkers for therapeutic management. It provides a unique resource for studying Hispanic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Debodipta Das
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hakim Bouamar
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jorge E Lopera
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Susan T Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hung-I H Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Carla R Zeballos Torrez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiang Gu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matyas Cserhati
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joel E Michalek
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Francisco G Cigarroa
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Penedo FJ, Moreno PI, Pons M, Pinheiro PS, Antoni MH, Lopes G, Calfa C, Chalela P, Garcini L, Wang CP, Chen Y, Diaz A, Cole S, Ramirez AG. Avanzando Caminos (Leading Pathways): design and procedures of the Hispanic/Latino Cancer Survivorship Study. Am J Epidemiol 2024; 193:940-950. [PMID: 38576195 PMCID: PMC11466847 DOI: 10.1093/aje/kwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Avanzando Caminos (Leading Pathways): The Hispanic/Latino Cancer Survivorship Cohort Study aims to examine the influence of sociocultural, medical, stress-related, psychosocial, lifestyle, behavioral, and biological factors on symptom burden, health-related quality of life, and clinical outcomes among Hispanics/Latinos who have been previously treated for cancer. Avanzando Caminos is a prospective, cohort-based study of 3000 Hispanics/Latinos who completed primary cancer treatment within the past 5 years that is representative of the general Hispanic/Latino population in the United States. Participants will complete self-report measures at baseline (time [T] 1), 6 months (T2), 1 year (T3), 2 years (T4), 3 years (T5), 4 years (T6), and 5 years (T7). Blood samples drawn for assessment of leukocyte gene expression, cardiometabolic markers, and genetic admixture will be collected at baseline (T1), 1 year (T3), 3 years (T5), and 5 years (T7). Medical and cancer characteristics and clinical outcomes will be extracted from the electronic medical record and/or state cancer registry at each time point. Data analysis will include general latent variable modeling and latent growth modeling. Avanzando Caminos will fill critical gaps in knowledge in order to guide future secondary and tertiary prevention efforts to mitigate cancer disparities and optimize health-related quality of life among Hispanic/Latino cancer survivors.
Collapse
Affiliation(s)
- Frank J Penedo
- Department of Psychology, College of Arts and Sciences, University of Miami, Coral Gables, FL 33124, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Cancer Control Research Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, United States
| | - Patricia I Moreno
- Cancer Control Research Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, United States
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Magela Pons
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Paulo S Pinheiro
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Michael H Antoni
- Department of Psychology, College of Arts and Sciences, University of Miami, Coral Gables, FL 33124, United States
- Cancer Control Research Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, United States
| | - Gilberto Lopes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Carmen Calfa
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Patricia Chalela
- Institute for Health Promotion Research, UT Health San Antonio, San Antonio, TX 78229, United States
- Department of Population Health Sciences, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Luz Garcini
- Department of Psychological Sciences, School of Social Sciences, Rice University, Houston, TX 77005, United States
| | - Chen-Pin Wang
- Department of Population Health Sciences, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Yidong Chen
- Department of Population Health Sciences, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Adolfo Diaz
- Department of Medicine, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Steve Cole
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Amelie G Ramirez
- Institute for Health Promotion Research, UT Health San Antonio, San Antonio, TX 78229, United States
- Department of Population Health Sciences, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, United States
| |
Collapse
|
5
|
Davis CN, Jinwala Z, Hatoum AS, Toikumo S, Agrawal A, Rentsch CT, Edenberg HJ, Baurley JW, Hartwell EE, Crist RC, Gray JC, Justice AC, Gelernter J, Kember RL, Kranzler HR. Candidate Genes from an FDA-Approved Algorithm Fail to Predict Opioid Use Disorder Risk in Over 450,000 Veterans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307486. [PMID: 38798430 PMCID: PMC11118646 DOI: 10.1101/2024.05.16.24307486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Importance Recently, the Food and Drug Administration gave pre-marketing approval to algorithm based on its purported ability to identify genetic risk for opioid use disorder. However, the clinical utility of the candidate genes comprising the algorithm has not been independently demonstrated. Objective To assess the utility of 15 variants in candidate genes from an algorithm intended to predict opioid use disorder risk. Design This case-control study examined the association of 15 candidate genetic variants with risk of opioid use disorder using available electronic health record data from December 20, 1992 to September 30, 2022. Setting Electronic health record data, including pharmacy records, from Million Veteran Program participants across the United States. Participants Participants were opioid-exposed individuals enrolled in the Million Veteran Program (n = 452,664). Opioid use disorder cases were identified using International Classification of Disease diagnostic codes, and controls were individuals with no opioid use disorder diagnosis. Exposures Number of risk alleles present across 15 candidate genetic variants. Main Outcome and Measures Predictive performance of 15 genetic variants for opioid use disorder risk assessed via logistic regression and machine learning models. Results Opioid exposed individuals (n=33,669 cases) were on average 61.15 (SD = 13.37) years old, 90.46% male, and had varied genetic similarity to global reference panels. Collectively, the 15 candidate genetic variants accounted for 0.4% of variation in opioid use disorder risk. The accuracy of the ensemble machine learning model using the 15 genes as predictors was 52.8% (95% CI = 52.1 - 53.6%) in an independent testing sample. Conclusions and Relevance Candidate genes that comprise the approved algorithm do not meet reasonable standards of efficacy in predicting opioid use disorder risk. Given the algorithm's limited predictive accuracy, its use in clinical care would lead to high rates of false positive and negative findings. More clinically useful models are needed to identify individuals at risk of developing opioid use disorder.
Collapse
Affiliation(s)
- Christal N. Davis
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Christopher T. Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard C. Crist
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua C. Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, Bethesda, MD, USA
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Das D, Wang X, Chiu YC, Bouamar H, Sharkey FE, Lopera JE, Lai Z, Weintraub ST, Han X, Zou Y, Chen HIH, Zeballos Torrez CR, Gu X, Cserhati M, Michalek JE, Halff GA, Chen Y, Zheng S, Cigarroa FG, Sun LZ. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306447. [PMID: 38746245 PMCID: PMC11092709 DOI: 10.1101/2024.04.27.24306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/β-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.
Collapse
|
7
|
He F, Bandyopadhyay AM, Klesse LJ, Rogojina A, Chun SH, Butler E, Hartshorne T, Holland T, Garcia D, Weldon K, Prado LNP, Langevin AM, Grimes AC, Sugalski A, Shah S, Assanasen C, Lai Z, Zou Y, Kurmashev D, Xu L, Xie Y, Chen Y, Wang X, Tomlinson GE, Skapek SX, Houghton PJ, Kurmasheva RT, Zheng S. Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer. Nat Commun 2023; 14:7600. [PMID: 37990009 PMCID: PMC10663468 DOI: 10.1038/s41467-023-43373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Subcutaneous patient-derived xenografts (PDXs) are an important tool for childhood cancer research. Here, we describe a resource of 68 early passage PDXs established from 65 pediatric solid tumor patients. Through genomic profiling of paired PDXs and patient tumors (PTs), we observe low mutational similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show an aggressive PT minor subclone seeds the major clone in the PDX. We show evidence that this subclone is more immunogenic and is likely suppressed by immune responses in the PT. These results suggest interplay between intratumoral heterogeneity and antitumor immunity may underlie the genetic disparity between PTs and PDXs. We further show that PDXs generally recapitulate PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and our study highlights the role of immune constraints on tumor evolution.
Collapse
Affiliation(s)
- Funan He
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Abhik M Bandyopadhyay
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sang H Chun
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trevor Holland
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luz-Nereida Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne-Marie Langevin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allison C Grimes
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Aaron Sugalski
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shafqat Shah
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
8
|
Rogojina A, Klesse LJ, Butler E, Kim J, Zhang H, Xiao X, Guo L, Zhou Q, Hartshorne T, Garcia D, Weldon K, Holland T, Bandyopadhyay A, Prado LP, Wang S, Yang DM, Langevan AM, Zou Y, Grimes AC, Assanasen C, Gidvani-Diaz V, Zheng S, Lai Z, Chen Y, Xie Y, Tomlinson GE, Skapek SX, Kurmasheva RT, Houghton PJ, Xu L. Comprehensive characterization of patient-derived xenograft models of pediatric leukemia. iScience 2023; 26:108171. [PMID: 37915590 PMCID: PMC10616347 DOI: 10.1016/j.isci.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Patient-derived xenografts (PDX) remain valuable models for understanding the biology and for developing novel therapeutics. To expand current PDX models of childhood leukemia, we have developed new PDX models from Hispanic patients, a subgroup with a poorer overall outcome. Of 117 primary leukemia samples obtained, successful engraftment and serial passage in mice were achieved in 82 samples (70%). Hispanic patient samples engrafted at a rate (51/73, 70%) that was similar to non-Hispanic patient samples (31/45, 70%). With a new algorithm to remove mouse contamination in multi-omics datasets including methylation data, we found PDX models faithfully reflected somatic mutations, copy-number alterations, RNA expression, gene fusions, whole-genome methylation patterns, and immunophenotypes found in primary tumor (PT) samples in the first 50 reported here. This cohort of characterized PDX childhood leukemias represents a valuable resource in that germline DNA sequencing has allowed the unambiguous determination of somatic mutations in both PT and PDX.
Collapse
Affiliation(s)
- Anna Rogojina
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Trevor Holland
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Abhik Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne-Marie Langevan
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Allison C. Grimes
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gail E. Tomlinson
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Wei J, Beebe-Dimmer J, Shi Z, Sample C, Yan G, Rifkin AS, Sadeghpour A, Gielzak M, Choi S, Moon D, Zheng SL, Helfand BT, Walsh PC, Xu J, Cooney KA, Isaacs WB. Association of rare, recurrent nonsynonymous variants in the germline of prostate cancer patients of African ancestry. Prostate 2023; 83:454-461. [PMID: 36567534 PMCID: PMC11908508 DOI: 10.1002/pros.24477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although men of African ancestry (AA) have the highest mortality rate from prostate cancer (PCa), relatively little is known about the germline variants that are associated with PCa risk in AA men. The goal of this study is to systematically evaluate rare, recurrent nonsynonymous variants across the exome for their association with PCa in AA men. METHODS Whole exome sequencing (WES) of germline DNA in two AA PCa patient cohorts of Johns Hopkins Hospital (N = 960) and Wayne State University (N = 747) was performed. All nonsynonymous variants present in both case cohorts, with a carrier rate between 0.5% and 1%, were identified. Their carrier rates were compared with rates from 8128 African/African American (AFR) control subjects from The Genome Aggregation Database (gnomAD) using Fisher's exact test. Significant variants, defined as false discovery rate (FDR) adjusted p-value ≤ 0.05, were further evaluated in AA PCa cases (N = 132) and controls (N = 1184) from the UK Biobank (UKB). RESULTS Two variants reached a pre-specified statistical significance level. The first was p.R14Q in GPRC5C (found in 0.47% of PCa cases and 0.01% of population controls); odds ratio (OR) for PCa was 37.46 (95% confidence interval CI 4.68-299.72), pexact = 7.01E-06, FDR-adjusted p-value = 0.05. The second was p.R511Q in IGF1R (found in 0.53% of PCa cases and 0.01% of population controls); OR for PCa was 21.54 (95%CI 4.65-99.76), pexact = 5.51E-06, FDR-adjusted p-value = 0.05. The mean percentage of African ancestry was similar between variant carriers and noncarriers of each variant, p > 0.05. In the UKB AA men, GPRC5C R14Q was 0.76% and 0.08% in cases and controls, respectively, OR for PCa was 9.00 (95%CI 0.56-145.23), pexact = 0.19. However, IGF1R R511Q was not found in cases or controls. CONCLUSIONS This WES study identified two rare, recurrent nonsynonymous PCa risk-associated variants in AA. Confirmation in additional large populations of AA PCa cases and controls is required.
Collapse
Affiliation(s)
- Jun Wei
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jennifer Beebe-Dimmer
- Barabara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Christopher Sample
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Guifang Yan
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew S Rifkin
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Marta Gielzak
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sodam Choi
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Moon
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
- Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Patrick C Walsh
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Kathleen A Cooney
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - William B Isaacs
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Valverde-Hernández JC, Flores-Cruz A, Chavarría-Soley G, Silva de la Fuente S, Campos-Sánchez R. Frequencies of variants in genes associated with dyslipidemias identified in Costa Rican genomes. Front Genet 2023; 14:1114774. [PMID: 37065472 PMCID: PMC10098023 DOI: 10.3389/fgene.2023.1114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Dyslipidemias are risk factors in diseases of significant importance to public health, such as atherosclerosis, a condition that contributes to the development of cardiovascular disease. Unhealthy lifestyles, the pre-existence of diseases, and the accumulation of genetic variants in some loci contribute to the development of dyslipidemia. The genetic causality behind these diseases has been studied primarily on populations with extensive European ancestry. Only some studies have explored this topic in Costa Rica, and none have focused on identifying variants that can alter blood lipid levels and quantifying their frequency. To fill this gap, this study focused on identifying variants in 69 genes involved in lipid metabolism using genomes from two studies in Costa Rica. We contrasted the allelic frequencies with those of groups reported in the 1000 Genomes Project and gnomAD and identified potential variants that could influence the development of dyslipidemias. In total, we detected 2,600 variants in the evaluated regions. However, after various filtering steps, we obtained 18 variants that have the potential to alter the function of 16 genes, nine variants have pharmacogenomic or protective implications, eight have high risk in Variant Effect Predictor, and eight were found in other Latin American genetic studies of lipid alterations and the development of dyslipidemia. Some of these variants have been linked to changes in blood lipid levels in other global studies and databases. In future studies, we propose to confirm at least 40 variants of interest from 23 genes in a larger cohort from Costa Rica and Latin American populations to determine their relevance regarding the genetic burden for dyslipidemia. Additionally, more complex studies should arise that include diverse clinical, environmental, and genetic data from patients and controls and functional validation of the variants.
Collapse
Affiliation(s)
| | - Andrés Flores-Cruz
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
| | - Gabriela Chavarría-Soley
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
- Escuela de Biología, University of Costa Rica, San José, Costa Rica
| | - Sandra Silva de la Fuente
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
11
|
Wang L, Zhou Z, Yang Y, Gao P, Lin X, Wu Z. A Genetic Polymorphism in the WDR72 Gene is Associated With Calcium Nephrolithiasis in the Chinese Han Population. Front Genet 2022; 13:897051. [PMID: 35910217 PMCID: PMC9333346 DOI: 10.3389/fgene.2022.897051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
A previous genome-wide association study (GWAS) reported several novel loci for nephrolithiasis in British and Japanese population, some of which were predicted to influence CaSR signaling. In this study, we aimed to evaluate the association of these loci with calcium nephrolithiasis in Chinese Han population. We performed a case-control association analysis involving 691 patients with calcium nephrolithiasis and 1008 control subjects. We were able to genotype a total of 17 single-nucleotide polymorphisms (SNPs), which were previously reported to be significantly associated with nephrolithiasis in GWAS. rs578595 at WDR72 was significantly associated with calcium nephrolithiasis in Chinese Han population (p < 0.001, OR = 0.617). Moreover, rs12654812 at SLC34A1 (p = 0.0427, OR = 1.170), rs12539707 at HIBADH (p = 0.0179, OR = 0.734), rs1037271 at DGKH (p = 0.0096, OR = 0.828) and rs12626330 at CLDN14 (p = 0.0080, OR = 1.213) indicated suggestive associations with calcium nephrolithiasis. Our results elucidated the significance of genetic variation at WDR72, DGKH, CLDN14, SLC34A1, and HIBADH in Chinese patients with nephrolithiasis. Since polymorphisms of WDR72, DGKH, and CLDN14 are predicted to influence in CaSR signaling, our results emphasized the role of abnormal calcium homeostasis in calcium nephrolithiasis.
Collapse
Affiliation(s)
- Lujia Wang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zijian Zhou
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Gao
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| | - Zhong Wu
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| |
Collapse
|
12
|
Soewito S, Wyatt R, Berenson E, Poullard N, Gessay S, Mette L, Marin E, Shelby K, Alvarez E, Choi BY, Aviles C, Pulido-Saldivar AM, Otto PM, Jatoi I, Ramamurthy C, Ignatius M, Kaklamani VG, Tomlinson GE. Disparities in Cancer Genetic Testing and Variants of Uncertain Significance in the Hispanic Population of South Texas. JCO Oncol Pract 2022; 18:e805-e813. [PMID: 35544645 PMCID: PMC10166383 DOI: 10.1200/op.22.00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Racial and ethnic disparities have included a lack of access to both genetic testing and research, resulting in poor understanding of the genomic architecture in under-represented populations. The South Texas population is primarily of Hispanic background and has been largely devoid of genetic services. We extended access to this underserved population and uncovered genetic variants previously not observed, emphasizing the need to continually improve both genomic databases and clarification of variant significance to provide meaningful patient counseling. METHODS This study consisted of a retrospective cohort review of patients seen through a cancer genetics education and service program across 24 counties in South Texas. In total, 1,595 individuals were identified as appropriate for cancer genetic counseling and 1,377 completed genetic testing. RESULTS Eighty percent of those receiving genetic counseling self-identified as Hispanic, 16% as non-Hispanic White (NHW), 3% as African American, and 1% as other race/ethnicity. Of reported variants, 18.8% were pathogenic and 13.7% were reported as a variant of uncertain significance (VUS). VUS was reported in 17.2% of the Hispanic individuals compared with 9% NHW (P = .005). CONCLUSION Individuals of Hispanic ethnicity were significantly more likely to harbor a VUS compared with NHW. The extended reach into our regional communities revealed a gap in the ability to accurately interpret genomic variation with implications for advising patients on screening, prevention, and management strategies. A higher percentage of VUS also emphasizes the challenge of continued follow-up amid existing barriers that led to disparities in access. As understanding of the variants develops, hopefully gaps in knowledge of the genomic landscape will be lessened with increased clarity to provide accurate cancer risk assessment and recommendations for implementing prevention initiatives.
Collapse
Affiliation(s)
| | - Rachel Wyatt
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
| | - Emily Berenson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
| | | | - Shawn Gessay
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Present address: PreventionGenetics, Marshfield, WI
| | - Lindsey Mette
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Present address: Invitae, San Francisco, CA
| | - Elena Marin
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Kristin Shelby
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Elise Alvarez
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
| | - Byeong Yeob Choi
- Department of Population Health Sciences, UT Health San Antonio TX, San Antonio, TX
| | - Clarissa Aviles
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Anna Maria Pulido-Saldivar
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
- UT Laredo Campus, UT Health San Antonio, Laredo, TX
| | - Pamela M. Otto
- Department of Radiology, UT Health San Antonio, San Antonio, TX
| | - Ismail Jatoi
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Department of Surgical Oncology, UT Health San Antonio, San Antonio, TX
| | | | - Myron Ignatius
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | | | - Gail E. Tomlinson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| |
Collapse
|
13
|
Genetic Ancestry Inference and Its Application for the Genetic Mapping of Human Diseases. Int J Mol Sci 2021; 22:ijms22136962. [PMID: 34203440 PMCID: PMC8269095 DOI: 10.3390/ijms22136962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Admixed populations arise when two or more ancestral populations interbreed. As a result of this admixture, the genome of admixed populations is defined by tracts of variable size inherited from these parental groups and has particular genetic features that provide valuable information about their demographic history. Diverse methods can be used to derive the ancestry apportionment of admixed individuals, and such inferences can be leveraged for the discovery of genetic loci associated with diseases and traits, therefore having important biomedical implications. In this review article, we summarize the most common methods of global and local genetic ancestry estimation and discuss the use of admixture mapping studies in human diseases.
Collapse
|
14
|
Sybouts EH, Brown AD, Falcon-Cantrill MG, Thomas MH, DeNapoli T, Voeller J, Chen Y, Tomlinson GE, Bishop AJR. Bloom syndrome in a Mexican American family with rhabdomyosarcoma: evidence of a Mexican founder mutation. Cold Spring Harb Mol Case Stud 2021; 7:a005751. [PMID: 33832920 PMCID: PMC8040734 DOI: 10.1101/mcs.a005751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bloom syndrome is a rare autosomal recessive disorder with less than 300 cases reported in the literature. Bloom syndrome is characterized by chromosome instability, physical stigmata, growth deficiency, immunodeficiency, and a predisposition to cancer, most commonly leukemias, although solid tumors are reported as well. Bloom syndrome occurs in multiple ethnic groups with a higher incidence in persons of Ashkenazi Jewish origin. Few patients of Hispanic ethnicity have been reported. We report here a Mexican American family with a BLM pathogenic variant, c.2506_2507delAG, previously reported in a single patient from Mexico. In this family of four siblings, three have phenotypic features of Bloom syndrome, and BLM gene mutation was homozygous in these affected individuals. Our proband developed a rhabdomyosarcoma. Analysis of surrounding markers in the germline DNA revealed a common haplotype, suggesting a previously unrecognized founder mutation in the Hispanic population of Mexican origin.
Collapse
Affiliation(s)
- Erin H Sybouts
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
- Departments of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas 78229, USA
| | - Adam D Brown
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
- Departments of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas 78229, USA
| | | | - Martha H Thomas
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
| | - Thomas DeNapoli
- CHRISTUS Health, San Antonio, Texas 78251, USA
- Children's Hospital of San Antonio, San Antonio, Texas 78207, USA
| | - Julie Voeller
- Children's Hospital of San Antonio, San Antonio, Texas 78207, USA
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
- Population Health Sciences, UT Health San Antonio, San Antonio, Texas 78229, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
- Pediatrics, UT Health San Antonio, San Antonio, Texas 78229, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas 78229, USA
- Departments of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
15
|
Grimes AC, Chen Y, Bansal H, Aguilar C, Perez Prado L, Quezada G, Estrada J, Tomlinson GE. Genetic markers for treatment-related pancreatitis in a cohort of Hispanic children with acute lymphoblastic leukemia. Support Care Cancer 2020; 29:725-731. [PMID: 32447501 DOI: 10.1007/s00520-020-05530-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Treatment-related pancreatitis (TRP) is a serious complication occurring in children with acute lymphoblastic leukemia (ALL). Those affected are at high risk for severe organ toxicity and treatment delays that can impact outcomes. TRP is associated with asparaginase, a standard therapeutic agent in childhood ALL. Native American ancestry, older age, high-risk leukemia, and increased use of asparaginase are linked to pancreatitis risk. However, dedicated genetic studies evaluating pancreatitis in childhood ALL include few Hispanics. Thus, the genetic basis for higher risk of pancreatitis among Hispanic children with ALL remains unknown. METHODS Cases of children with ALL treated in from 1994 through 2013 were reviewed and identified 14, all Hispanic, who developed pancreatitis related to asparaginase therapy. Forty-six controls consisting of Hispanic children treated on the same regimens without pancreatitis were selected for comparison. Total DNA isolated from whole blood was used for targeted DNA sequencing of 23 selected genes, including genes associated with pancreatitis without ALL and genes involved in asparagine metabolism. RESULTS Non-synonymous polymorphisms and frameshift deletions were detected in 15 genes. Most children with TRP had variants in ABAT, ASNS, and CFTR. Notably, children with TRP harbored many more CFTR variants (71.4%) compared with controls (39.1%). Among these, V470M (rs213950) was most frequent (OR 4.27, p = 0.025). CONCLUSIONS This is the first study of genetic factors in treatment-related pancreatitis in Hispanic children with ALL. Identifying correlative variants in ethnically vulnerable populations may improve screening to identify which patients with ALL are at greatest risk for pancreatitis.
Collapse
Affiliation(s)
- Allison C Grimes
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Hima Bansal
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Christine Aguilar
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Gerardo Quezada
- Methodist Children's Hospital, San Antonio, TX, USA
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | | | - Gail E Tomlinson
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Mathé E, Zhang C, Wang K, Ning X, Guo Y, Zhao Z. The International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019): conference summary and innovations in genomics. BMC Genomics 2019; 20:1005. [PMID: 31888451 PMCID: PMC6936133 DOI: 10.1186/s12864-019-6326-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The goal of this editorial is to summarize the 2019 International Conference on Intelligent Biology and Medicine (ICIBM 2019) conference that took place on June 9–11, 2019 in The Ohio State University, Columbus, OH, and to provide an introductory summary of the seven articles presented in this supplement issue. ICIBM 2019 hosted four keynote speakers, four eminent scholar speakers, five tutorials and workshops, twelve concurrent sessions and a poster session, totaling 23 posters, spanning state-of-the-art developments in bioinformatics, genomics, next-generation sequencing (NGS) analysis, scientific databases, cancer and medical genomics, and computational drug discovery. A total of 105 original manuscripts were submitted to ICIBM 2019, and after careful review, seven were selected for this supplement issue. These articles cover methods and applications for functional annotations of miRNA targeting, clonal evolution of bacterial cells, gene co-expression networks that describe a given phenotype, functional binding site analysis of RNA-binding proteins, normalization of genome architecture mapping data, sample predictions based on multiple NGS data types, and prediction of an individual’s genetic admixture given exonic single nucleotide polymorphisms data.
Collapse
Affiliation(s)
- Ewy Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA.
| | - Chi Zhang
- Department of Medical & Molecular Genetics, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xia Ning
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA
| | - Yan Guo
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|