1
|
Vielma-Puente JE, Santos-Ordóñez E, Cornejo X, Chóez-Guaranda I, Pacheco-Coello R, Villao-Uzho L, Moreno-Alvarado C, Mendoza-Samaniego N, Fonseca Y. DNA Barcode, chemical analysis, and antioxidant activity of Psidium guineense from Ecuador. PLoS One 2025; 20:e0319524. [PMID: 40106513 PMCID: PMC11922285 DOI: 10.1371/journal.pone.0319524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
This study investigates the phytochemical, genetic, and antioxidant properties of Psidium guineense, a species native to the tropical dry forests of Ecuador. Leaves were collected, preserved in recognized herbaria, and subjected to Soxhlet extraction using polar and non-polar solvents. Phytochemical screening revealed the presence of secondary metabolites, while GC-MS analysis detected chemical compounds in the extracts. Antioxidant assays demonstrated high phenolic (54.34 ± 0.49 mg GAE/g) and flavonoid (6.43 ± 0.38 mg QE/g) content, with significant antioxidant activity in DPPH (0.57 ± 0.04 mg TE/g), FRAP (105.52 ± 6.85), and ABTS (1.25 ± 0.01 mg TE/g) assays. DNA barcoding of nine loci, (seven from the chloroplast genome and two nuclear genome) using a CTAB extraction protocol and PCR, provides the first genetic characterization of this species, contributing to genetic diversity assessments and phylogenetic studies. These findings underscore the importance of P. guineense as a source of potent bioactive compounds with significant antioxidant potential, highlighting its applicability in nutritional and pharmaceutical industries. Additionally, the genetic insights gained support efforts to expand DNA barcoding databases for tropical biodiversity conservation.
Collapse
Affiliation(s)
- Joel Eduardo Vielma-Puente
- Faculty of Natural Science and Mathematics, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | - Efrén Santos-Ordóñez
- Biotechnological Research Center of Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Faculty of Life Sciences, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Perimetral, Guayaquil, Ecuador
| | - Xavier Cornejo
- Departamento de Botánica, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Guayas, Ecuador
| | - Iván Chóez-Guaranda
- Biotechnological Research Center of Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Ricardo Pacheco-Coello
- Biotechnological Research Center of Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Liliana Villao-Uzho
- Biotechnological Research Center of Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Christian Moreno-Alvarado
- Faculty of Natural Science and Mathematics, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | - Natalia Mendoza-Samaniego
- Faculty of Natural Science and Mathematics, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | - Yuraima Fonseca
- Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Mérida, Venezuela
| |
Collapse
|
2
|
Roy A, Chaurasia H, Kumar B, Kumari N, Jaiswal S, Srivastava M, Iquebal MA, Angadi UB, Kumar D. FEAtl: a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. BMC PLANT BIOLOGY 2024; 24:890. [PMID: 39343895 PMCID: PMC11440752 DOI: 10.1186/s12870-024-05595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .
Collapse
Affiliation(s)
- Anupama Roy
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Himanshushekhar Chaurasia
- Mechanical Processing Division (MPD), ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Naina Kumari
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Srivastava
- Division of Fruits and Horticultural Technology (FHT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ulavappa B Angadi
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Canal D, Dos Santos PHD, de Avelar Carpinetti P, Silva MA, Fernandes M, Brustolini OJB, Ferreira A, da Silva Ferreira MF. Exploring the versatility of sesquiterpene biosynthesis in guava plants: a comparative genome-wide analysis of two cultivars. Sci Rep 2024; 14:574. [PMID: 38182724 PMCID: PMC10770072 DOI: 10.1038/s41598-023-51007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Psidium guajava L., a fruit crop belonging to the Myrtaceae family, is highly valued for its nutritional and medicinal properties. The family exhibits a diverse chemical profile of essential oils and serves as a valuable resource due to its ecological interactions, adaptability, and dispersal capacity. The Myrtaceae family has been extensively studied for its terpenoids. Genetic studies have focused on foliar terpene yield in species from the Eucalypteae and Melaleucaceae tribes. To understand the evolutionary trends in guava breeding, this study predicted terpene synthase genes (TPS) from different cultivars. Through this analysis, 43 full-length TPS genes were identified, and approximately 77% of them exhibited relative expression in at least one of the five investigated plant tissues (root, leaf, bud, flower, and fruit) of two guava cultivars. We identified intra-species variation in the terpene profile and single nucleotide polymorphisms (SNPs) in twelve TPS genes, resulting in the clustering of 62 genotypes according to their essential oil chemotypes. The high concentration of sesquiterpenes is supported by the higher number of TPS-a genes and their expression. The expansion for TPS sub-families in P. guajava occurred after the expansion of other rosids species. Providing insight into the origin of structural diversification and expansion in each clade of the TPS gene family within Myrtaceae. This study can provide insights into the diversity of genes for specialized metabolites such as terpenes, and their regulation, which can lead to a diverse chemotype of essential oil in different tissues and genotypes. This suggests a mode of enzymatic evolution that could lead to high sesquiterpene production, act as a chemical defense and contribute to the adaptive capacity of this species to different habitats.
Collapse
Affiliation(s)
- Drielli Canal
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Pedro Henrique Dias Dos Santos
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Paola de Avelar Carpinetti
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Matheus Alves Silva
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | | | - Adésio Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
4
|
Maan SS, Brar JS, Mittal A, Gill MIS, Arora NK, Sohi HS, Chhuneja P, Dhillon GS, Singh N, Thakur S. Construction of a genetic linkage map and QTL mapping of fruit quality traits in guava ( Psidium guajava L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1123274. [PMID: 37426984 PMCID: PMC10324979 DOI: 10.3389/fpls.2023.1123274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/08/2023] [Indexed: 07/11/2023]
Abstract
Guava (Psidium guajava L.) is an important fruit crop of the Indian sub-continent, with potential for improvements in quality and yield. The goal of the present study was to construct a genetic linkage map in an intraspecific cross between the elite cultivar 'Allahabad Safeda' and the Purple Guava landrace to identify the genomic regions responsible for important fruit quality traits, viz., total soluble solids, titratable acidity, vitamin C, and sugars. This population was phenotyped in field trials (as a winter crop) for three consecutive years, and showed moderate-to-high values of heterogeneity coefficients along with higher heritability (60.0%-97.0%) and genetic-advance-over-mean values (13.23%-31.17%), suggesting minimal environmental influence on the expression of fruit-quality traits and indicating that these traits can be improved by phenotypic selection methods. Significant correlations and strong associations were also detected among fruit physico-chemical traits in segregating progeny. The constructed linkage map consisted of 195 markers distributed across 11 chromosomes, spanning a length of 1,604.47 cM (average inter-loci distance of 8.80 markers) and with 88.00% coverage of the guava genome. Fifty-eight quantitative trait loci (QTLs) were detected in three environments with best linear unbiased prediction (BLUP) values using the composite interval mapping algorithm of the BIP (biparental populations) module. The QTLs were distributed on seven different chromosomes, explaining 10.95%-17.77% of phenotypic variance, with the highest LOD score being 5.96 for qTSS.AS.pau-6.2. Thirteen QTLs detected across multiple environments with BLUPs indicate stability and utility in a future breeding program for guava. Furthermore, seven QTL clusters with stable or common individual QTLs affecting two or more different traits were located on six linkage groups (LGs), explaining the correlation among fruit-quality traits. Thus, the multiple environmental evaluations conducted here have increased our understanding of the molecular basis of phenotypic variation, providing the basis for future high-resolution fine-mapping and paving the way for marker-assisted breeding of fruit-quality traits.
Collapse
Affiliation(s)
| | | | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Naresh Kumar Arora
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, India
| | - Harjot Singh Sohi
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Sciences University, Barnala, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Navdeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sujata Thakur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Kaur H, Sidhu GS, Mittal A, Yadav IS, Mittal M, Singla D, Singh N, Chhuneja P. Comparative transcriptomics in alternate bearing cultivar Dashehari reveals the genetic model of flowering in mango. Front Genet 2023; 13:1061168. [PMID: 36704344 PMCID: PMC9871253 DOI: 10.3389/fgene.2022.1061168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Flowering is a complex developmental process, with physiological and morphological phases influenced by a variety of external and internal factors. Interestingly, many mango cultivars tend to bear fruit biennially because of irregular flowering, and this has a negative impact on mango flowering and the subsequent yield, resulting in significant economic losses. In this article, transcriptome analysis was carried out on four tissues of mango cv. Dashehari (bearing tree leaf, shoot apex, inflorescence, and non-bearing tree leaf). De novo transcriptome assembly of RNA-seq reads of Dashehari using the Trinity pipeline generated 67,915 transcripts, with 25,776 genes identified. 85 flowering genes, represented by 179 transcripts, were differentially expressed in bearing vs. non-bearing leaf tissues. Gene set enrichment analysis of flowering genes identified significant upregulation of flowering related genes in inflorescence tissues compared to bearing leaf tissues. The flowering genes FT, CO, GI, ELF 4, FLD, FCA, AP1, LHY, and SCO1 were upregulated in the bearing leaf tissues. Pathway analysis of DEGs showed significant upregulation of phenylpropanoid and sucrose and starch pathways in non-bearing leaf tissue compared with bearing leaf tissue. The comparative transcriptome analysis performed in this study significantly increases the understanding of the molecular mechanisms driving the flowering process as well as alternative bearing in mango.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gurupkar Singh Sidhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India,*Correspondence: Gurupkar Singh Sidhu, ; Amandeep Mittal,
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India,*Correspondence: Gurupkar Singh Sidhu, ; Amandeep Mittal,
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navprem Singh
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Kumari A, Goyal M, Mittal A, Kumar R. Defensive capabilities of contrasting sorghum genotypes against Atherigona soccata (Rondani) infestation. PROTOPLASMA 2022; 259:809-822. [PMID: 34553239 DOI: 10.1007/s00709-021-01703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plants are equipped with a wide range of defensive mechanisms such as morphophysiological, biochemical, molecular, and hormonal signaling for protecting against insect-pest infestation. The infestation of a devastating pest shoot fly [Atherigona soccata (Rodani)] at seedling stage causes huge loss of sorghum crop productivity. In morphophysiological screening ICSV700, ICSV705, and IS18551 have been categorized as resistant, PSC-4 moderately resistant, SL-44 and SWARNA as susceptible. The present study focused on the role of defensive gene expression and its products viz: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), polyphenol oxidase (PPO), phenyl alanine ammonia lyase (PAL), responsive enzymes, and metabolites restoring redox status in sorghum plants against shoot fly infestation. In both leaf and stem tissue of sorghum genotypes, shoot fly infestation induced SOD, APX, DHAR, GR, PAL, and PPO activities while CAT activity was significantly declined at 15 and 21 days after emergence (DAE). IS18551 with resistant behavior showed upregulation of SOD, GR, APX, and DHAR along with accumulation of ascorbate, glutathione enhancing redox status of the plant during shoot fly infestation at later stage of infestation. While SWARNA with susceptible response exhibited enhanced activity of phenylpropanoid pathway enzymes PAL and PPO which in turn increased the levels of secondary metabolites like o-dihydroxyphenol and other phenols deterring the insect to attack the plant. The qRT-PCR data predicted that stress-responsive genes were initially unregulated in SWARNA; however, at 21 DAE, multifold higher expression of SOD, CAT, APX, and PPO (24.8-, 37.2-, 21.7-, and 17.9-fold respectively) in 1S18551 indicates the resistance behavior of this genotype against insect infestation owing to sustainable development capability.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Meenakshi Goyal
- Department of Plant Breeding, and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ravinder Kumar
- Department of Vegetable Crops, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
7
|
Paes de Melo B, Carpinetti PDA, Fraga OT, Rodrigues-Silva PL, Fioresi VS, de Camargos LF, Ferreira MFDS. Abiotic Stresses in Plants and Their Markers: A Practice View of Plant Stress Responses and Programmed Cell Death Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1100. [PMID: 35567101 PMCID: PMC9103730 DOI: 10.3390/plants11091100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/12/2023]
Abstract
Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Trait Development Department, LongPing HighTech, Cravinhos 14140-000, SP, Brazil
| | - Paola de Avelar Carpinetti
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | - Otto Teixeira Fraga
- Applied Biochemistry Program, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | | | - Vinícius Sartori Fioresi
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | | | - Marcia Flores da Silva Ferreira
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| |
Collapse
|
8
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci 2022; 23:2671. [PMID: 35269811 PMCID: PMC8910360 DOI: 10.3390/ijms23052671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes are a rich resource to examine the genomic variation observed within a species or genera, supporting population genetics studies, with applications for the improvement of crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.), and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the discovery of valuable genes associated with disease resistance and yield components. However, pangenome data are not available for many less prominent crop species that are currently under-utilised. Despite many under-utilised species being important food sources in regional populations, the scarcity of genomic data for these species hinders their improvement. Here, we assess several under-utilised crops and review the pangenome approaches that could be used to build resources for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid environments, suggesting that novel genes related to drought tolerance may be identified and used for introgression into related major crop species. In addition, we discuss how previously collected data could be used to enrich pangenome functional analysis in genome-wide association studies (GWAS) based on studies in major crops. Considering the technological advances in genome sequencing, pangenome references for under-utilised species are becoming more obtainable, offering the opportunity to identify novel genes related to agro-morphological traits in these species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (C.G.T.F.); (B.J.N.); (M.F.D.); (M.G.); (J.P.); (P.E.B.); (P.M.F.); (J.B.)
| |
Collapse
|
9
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
10
|
Thakur S, Yadav IS, Jindal M, Sharma PK, Dhillon GS, Boora RS, Arora NK, Gill MIS, Chhuneja P, Mittal A. Development of Genome-Wide Functional Markers Using Draft Genome Assembly of Guava ( Psidium guajava L.) cv. Allahabad Safeda to Expedite Molecular Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:708332. [PMID: 34630458 PMCID: PMC8494772 DOI: 10.3389/fpls.2021.708332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Guava (Psidium guajava L.), a rich source of nutrients, is an important tropical and subtropical fruit of the Myrtaceae family and exhibits magnificent diversity. Genetic diversity analysis is the first step toward the identification of parents for hybridization, genetic mapping, and molecular breeding in any crop species. A diversity analysis based on whole-genome functional markers increases the chances of identifying genetic associations with agronomically important traits. Therefore, here, we sequenced the genome of guava cv. Allahabad Safeda on an Illumina platform and generated a draft assembly of ~304 MB. The assembly of the Allahabad Safeda genome constituted >37.95% repeat sequences, gene prediction with RNA-seq data as evidence identified 14,115 genes, and BLAST n/r, Interproscan, PfamScan, BLAST2GO, and KEGG annotated 13,957 genes. A comparative protein transcript analysis of tree species revealed the close relatedness of guava with Eucalyptus. Comparative transcriptomics-based SSR/InDel/SNP-PCR ready genome-wide markers in greenish-yellow skinned and white fleshed-Allahabad Safeda to four contrasting cultivars viz apple-color-skinned and white-fleshed-Lalima, greenish-yellow-skinned and pink-fleshed-Punjab Pink, purple-black-skinned and purple-fleshed-Purple Local and widely used rootstock-Lucknow-49 were developed. The molecular markers developed here revealed a high level of individual heterozygosity within genotypes in 22 phenotypically diverse guava cultivars. Principal coordinate, STRUCTURE clustering, and neighbor-joining-based genetic diversity analysis identified distinct clusters associated with fruit skin and flesh color. The genome sequencing of guava, functional annotation, comparative transcriptomics-based genome-wide markers, and genetic diversity analysis will expand the knowledge of genomes of climacteric fruits, facilitating trait-based molecular breeding and diversifying the nutritional basket.
Collapse
Affiliation(s)
- Sujata Thakur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Manish Jindal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Parva Kumar Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Rajbir Singh Boora
- Fruit Research Sub-Station, Punjab Agricultural University, Bahadurgarh, India
| | - Naresh Kumar Arora
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, India
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
11
|
Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, Yadav I. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110823. [PMID: 33568312 DOI: 10.1016/j.plantsci.2021.110823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 05/25/2023]
Abstract
Waterlogging stress in maize is one of the emerging abiotic stresses in the current climate change scenario. To gain insights in transcriptional reprogramming during late hours of waterlogging stress under field conditions, we aimed to elucidate the transcriptional and anatomical changes in two contrasting maize inbreds viz. I110 (susceptible) and I172 (tolerant). Waterlogging stress reduced dry matter translocations from leaves and stems to ears, resulting in a lack of sink capacity and inadequate grain filling in I110, thus decreased the grain yield drastically. The development of aerenchyma cells within 48 h in I172 enabled hypoxia tolerance. The upregulation of alanine aminotransferase, ubiquitin activating enzyme E1, putative mitogen activated protein kinase and pyruvate kinase in I172 suggested that genes involved in protein degradation, signal transduction and carbon metabolism provided adaptive mechanisms during waterlogging. Overexpression of alcohol dehydrogenase, sucrose synthase, aspartate aminotransferase, NADP dependent malic enzyme and many miRNA targets in I110 indicated that more oxygen and energy consumption might have shortened plant survival during long-term waterlogging exposure. To the best of our knowledge, this is the first report of transcript profiling at late stage (24-96 h) of waterlogging stress under field conditions and provides new visions to understand the molecular basis of waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Loveleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Department of Nanoscience, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Dasmeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|