1
|
Sadeesh EM, Lahamge MS, Malik A, Ampadi AN. Nuclear Genome-Encoded Mitochondrial OXPHOS Complex I Genes in Female Buffalo Show Tissue-Specific Differences. Mol Biotechnol 2025; 67:2411-2427. [PMID: 38878239 DOI: 10.1007/s12033-024-01206-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 05/07/2025]
Abstract
Buffalo physiology intricately balances energy, profoundly influencing health, productivity, and reproduction. This study explores nuclear-mitochondrial crosstalk, revealing OXPHOS Complex I gene expression variations in buffalo tissues through high-throughput RNA sequencing. Unveiling tissue-specific disparities, the research elucidates the genomic landscape of crucial energy production genes, with broader implications for veterinary and agricultural progress. Post-slaughter, tissues from post-pubertal female buffaloes underwent meticulous processing and RNA extraction using the TRIzol method. RNA-Seq library preparation and IlluminaHiSeq 2500 sequencing were performed on QC-passed samples. Data underwent stringent filtration, mapping to the Bubalus bubalis genome using HISAT2. DESeq2 facilitated differential expression gene (DEG) analysis focusing on 57 Mitocarta 3-derived genes associated with OXPHOS complex I. Nuclear-encoded mitochondrial protein transcripts of OXPHOS complex 1 exhibited tissue-specific variations, with 51 genes expressing significantly across tissues. DEG analysis emphasized tissue-specific expression patterns, highlighting a balanced OXPHOS complex I subunit expression in the kidney vs. brain. Gene Ontology (GO) enrichment showcased mitochondria-centric terms, revealing distinct proton motive force-driven mitochondrial ATP synthesis regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses emphasized Thermogenesis and OXPHOS pathways, enriching our understanding of tissue-specific energy metabolism. Noteworthy up-regulation of NDUFB10 in the heart and kidney aligned with heightened metabolic activity. Brain-specific up-regulation of NDUFAF6 indicated a focus on mitochondrial function, while variations in NDUFA11 and ACAD9 underscored pivotal roles in the heart and kidney. GO and KEGG analyses highlighted tissue-specific mitochondrial ATP synthesis and NADH dehydrogenase processes, providing molecular insights into organ-specific metabolic demands and regulatory mechanisms. Our study unveils conserved and tissue-specific nuances in nuclear-encoded mitochondrial OXPHOS complex I genes, laying a foundation for understanding diverse energy demands and potential health implications.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
- University of Bonn, Institute of Animal Sciences, Katzenburgweg 7 - 9, 53115, Bonn, Germany
| | - A N Ampadi
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Sadeesh EM, Lahamge MS, Malik A, Ampadi AN. Differential Expression of Nuclear-Encoded Mitochondrial Protein Genes of ATP Synthase Across Different Tissues of Female Buffalo. Mol Biotechnol 2025; 67:705-722. [PMID: 38305843 DOI: 10.1007/s12033-024-01085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The physiological well-being of buffaloes, encompassing phenotypic traits, reproductive health, and productivity, depends on their energy status. Mitochondria, the architects of energy production, orchestrate a nuanced interplay between nuclear and mitochondrial domains. Oxidative phosphorylation complexes and associated proteins wield significant influence over metabolic functions, energy synthesis, and organelle dynamics, often linked to tissue-specific pathologies. The unexplored role of ATP synthase in buffalo tissues prompted a hypothesis: in-depth exploration of nuclear-derived mitochondrial genes, notably ATP synthase, reveals distinctive tissue-specific diversity. RNA extraction and sequencing of buffalo tissues (kidney, heart, brain, and ovary) enabled precise quantification of nuclear-derived mitochondrial protein gene expression. The analysis unveiled 24 ATP synthase transcript variants, each with unique tissue-specific patterns. Kidney, brain, and heart exhibited elevated gene expression compared to ovaries, with 10, 8, and 19 up-regulated genes, respectively. The kidney showed 3 and 12 down-regulated genes compared to the brain and heart. The heart-brain comparison highlighted ten highly expressed genes in ATP synthase functions. Gene ontology and pathway analyses revealed enriched functions linked to ATP synthesis and oxidative phosphorylation, offering a comprehensive understanding of energy production in buffalo tissues. This analysis enhances understanding of tissue-specific gene expression, emphasizing the influence of energy demands. Revealing intricate links between mitochondrial gene expression and tissue specialization in buffaloes, it provides nuanced insights into tissue-specific expression of nuclear-encoded mitochondrial protein genes, notably ATP synthase, advancing the comprehension of buffalo tissue biology.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - A N Ampadi
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
Brajkovic V, Pocrnic I, Kaps M, Špehar M, Cubric-Curik V, Ristov S, Novosel D, Gorjanc G, Curik I. Quantifying the effects of the mitochondrial genome on milk production traits in dairy cows: Empirical results and modeling challenges. J Dairy Sci 2025; 108:664-678. [PMID: 39414016 DOI: 10.3168/jds.2024-25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Substantial advances in livestock traits have been achieved primarily through selection strategies targeting variation in the nuclear genome, with little attention given to mitogenome variation. We analyzed the influence of the mitogenome on milk production traits of Holstein cattle in Croatia based on strategically generated next-generation sequencing data for 109 cows pedigree-linked to 7,115 milk production records (milk, fat, and protein yield) from 3,006 cows (first 5 lactations). Because little is known about the biology of the relationship between mitogenome variation and production traits, our quantitative genetic modeling was complex. Thus, the proportion of total variance explained by mitogenome inheritance was estimated using 5 different models: (1) a cytoplasmic model with maternal lineages (CYTO), (2) a haplotypic model with mitogenome sequences (HAPLO), (3) an amino acid model with unique amino acid sequences (AMINO), (4) an evolutionary model based on a phylogenetic analysis using Bayesian Evolutionary Analysis Sampling Trees phylogenetic analysis (EVOL), and (5) a mitogenome SNP model (SNPmt). The polygenic autosomal and X chromosome additive genetic effects based on pedigree were modeled, together with the effects of herd-year-season interaction, permanent environment, location, and age at first calving. The estimated proportions of phenotypic variance explained by mitogenome in 4 different models (CYTO, HAPLO, AMINO, and SNPmt) were found to be substantial given the size of mitogenome, ranging from 5% to 7% for all 3 milk traits. At the same time, a negligible proportion of the phenotypic variance was explained by mitogenome with the EVOL model. Similarly, in all models, no proportion of phenotypic variance was explained by the X chromosome. Although our results should be confirmed in other dairy cattle populations, including a large number of sequenced mitogenomes and nuclear genomes, the potential of utilizing mitogenome information in animal breeding is promising, especially as the acquisition of complete genome sequences becomes cost-effective.
Collapse
Affiliation(s)
- Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia.
| | - Ivan Pocrnic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Miroslav Kaps
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia
| | - Marija Špehar
- Croatian Agency for Agriculture and Food, Zagreb 10000, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia
| | | | - Dinko Novosel
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia; Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia; Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), 7400 Kaposvár, Hungary.
| |
Collapse
|
4
|
Dorji J, Chamberlain AJ, Reich CM, VanderJagt CJ, Nguyen TV, Daetwyler HD, MacLeod IM. Mitochondrial sequence variants: testing imputation accuracy and their association with dairy cattle milk traits. Genet Sel Evol 2024; 56:62. [PMID: 39266998 PMCID: PMC11391750 DOI: 10.1186/s12711-024-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Mitochondrial genomes differ from the nuclear genome and in humans it is known that mitochondrial variants contribute to genetic disorders. Prior to genomics, some livestock studies assessed the role of the mitochondrial genome but these were limited and inconclusive. Modern genome sequencing provides an opportunity to re-evaluate the potential impact of mitochondrial variation on livestock traits. This study first evaluated the empirical accuracy of mitochondrial sequence imputation and then used real and imputed mitochondrial sequence genotypes to study the role of mitochondrial variants on milk production traits of dairy cattle. RESULTS The empirical accuracy of imputation from Single Nucleotide Polymorphism (SNP) panels to mitochondrial sequence genotypes was assessed in 516 test animals of Holstein, Jersey and Red breeds using Beagle software and a sequence reference of 1883 animals. The overall accuracy estimated as the Pearson's correlation squared (R2) between all imputed and real genotypes across all animals was 0.454. The low accuracy was attributed partly to the majority of variants having low minor allele frequency (MAF < 0.005) but also due to variants in the hypervariable D-loop region showing poor imputation accuracy. Beagle software provides an internal estimate of imputation accuracy (DR2), and 10 percent of the total 1927 imputed positions showed DR2 greater than 0.9 (N = 201). There were 151 sites with empirical R2 > 0.9 (of 954 variants segregating in the test animals) and 138 of these overlapped the sites with DR2 > 0.9. This suggests that the DR2 statistic is a reasonable proxy to select sites that are imputed with higher accuracy for downstream analyses. Accordingly, in the second part of the study mitochondrial sequence variants were imputed from real mitochondrial SNP panel genotypes of 9515 Australian Holstein, Jersey and Red dairy cattle. Then, using only sites with DR2 > 0.900 and real genotypes, we undertook a genome-wide association study (GWAS) for milk, fat and protein yields. The GWAS mitochondrial SNP effects were not significant. CONCLUSION The accuracy of imputation of mitochondrial genotypes from the SNP panel to sequence was generally low. The Beagle DR2 statistic enabled selection of sites imputed with higher empirical accuracy. We recommend building larger reference populations with mitochondrial sequence to improve the accuracy of imputing less common variants and ensuring that SNP panels include common variants in the D-loop region.
Collapse
Affiliation(s)
- Jigme Dorji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Christy J VanderJagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- Global Genomics and Breeding Design Vegetable R&D, Bayer Crop Science, Bergschenhoek, The Netherlands
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
5
|
Ahn J, Hwang IS, Park MR, Hwang S, Lee K. Imprinting at the KBTBD6 locus involves species-specific maternal methylation and monoallelic expression in livestock animals. J Anim Sci Biotechnol 2023; 14:131. [PMID: 37817239 PMCID: PMC10565993 DOI: 10.1186/s40104-023-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The primary differentially methylated regions (DMRs) which are maternally hypermethylated serve as imprinting control regions (ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting. RESULTS Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter CpG island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter CpG islands were methylated in oocytes and/or allelically methylated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these CpG islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting. CONCLUSIONS In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - In-Sul Hwang
- Animal Biotechnology Division, Rural Development Administration, National Institute of Animal Science, Jeonbuk, 55365 Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA
| | - Mi-Ryung Park
- Animal Biotechnology Division, Rural Development Administration, National Institute of Animal Science, Jeonbuk, 55365 Republic of Korea
| | - Seongsoo Hwang
- Animal Welfare Research Team, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Jeollabuk-do, 55365 Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
6
|
Prowse-Wilkins CP, Wang J, Garner JB, Goddard ME, Chamberlain AJ. Allele specific binding of histone modifications and a transcription factor does not predict allele specific expression in correlated ChIP-seq peak-exon pairs. Sci Rep 2023; 13:15596. [PMID: 37730913 PMCID: PMC10511416 DOI: 10.1038/s41598-023-42637-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Allele specific expression (ASE) is widespread in many species including cows. Therefore, regulatory regions which control gene expression should show cis-regulatory variation which mirrors this differential expression within the animal. ChIP-seq peaks for histone modifications and transcription factors measure activity at functional regions and the height of some peaks have been shown to correlate across tissues with the expression of particular genes, suggesting these peaks are putative regulatory regions. In this study we identified ASE in the bovine genome in multiple tissues and investigated whether ChIP-seq peaks for four histone modifications and the transcription factor CTCF show allele specific binding (ASB) differences in the same tissues. We then investigate whether peak height and gene expression, which correlates across tissues, also correlates within the animal by investigating whether the direction of ASB in putative regulatory regions, mirrors that of the ASE in the genes they are putatively regulating. We found that ASE and ASB were widespread in the bovine genome but vary in extent between tissues. However, even when the height of a peak was positively correlated across tissues with expression of an exon, ASE of the exon and ASB of the peak were in the same direction only half the time. A likely explanation for this finding is that the correlations between peak height and exon expression do not indicate that the height of the peak causes the extent of exon expression, at least in some cases.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3821, Australia
| | - Michael E Goddard
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| |
Collapse
|
7
|
Triant DA, Walsh AT, Hartley GA, Petry B, Stegemiller MR, Nelson BM, McKendrick MM, Fuller EP, Cockett NE, Koltes JE, McKay SD, Green JA, Murdoch BM, Hagen DE, Elsik CG. AgAnimalGenomes: browsers for viewing and manually annotating farm animal genomes. Mamm Genome 2023; 34:418-436. [PMID: 37460664 PMCID: PMC10382368 DOI: 10.1007/s00335-023-10008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.
Collapse
Affiliation(s)
- Deborah A Triant
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amy T Walsh
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Petry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Benjamin M Nelson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Makenna M McKendrick
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Emily P Fuller
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Noelle E Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Sadeesh EM, Singla N, Lahamge MS, Kumari S, Ampadi AN, Anuj M. Tissue heterogeneity of mitochondrial activity, biogenesis and mitochondrial protein gene expression in buffalo. Mol Biol Rep 2023; 50:5255-5266. [PMID: 37140692 DOI: 10.1007/s11033-023-08416-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cellular metabolism is most invariant process, occurring in all living organisms, which involves mitochondrial proteins from both nuclear and mitochondrial genomes. The mitochondrial DNA (mtDNA) copy number, protein-coding genes (mtPCGs) expression, and activity vary between various tissues to fulfill specific energy demands across the tissues. METHODS AND RESULTS In present study, we investigated the OXPHOS complexes and citrate synthase activity in isolated mitochondria from various tissues of freshly slaughtered buffaloes (n = 3). Further, the evaluation of tissue-specific diversity based on the quantification of mtDNA copy numbers was performed and also comprised an expression study of 13 mtPCGs. We found that the functional activity of individual OXPHOS complex I was significantly higher in the liver compared to muscle and brain. Additionally, OXPHOS complex III and V activities was observed significantly higher levels in liver compared to heart, ovary, and brain. Similarly, CS-specific activity differs between tissues, with the ovary, kidney, and liver having significantly greater. Furthermore, we revealed the mtDNA copy number was strictly tissue-specific, with muscle and brain tissues exhibiting the highest levels. Among 13 PCGs expression analyses, mRNA abundances in all genes were differentially expressed among the different tissue. CONCLUSIONS Overall, our results indicate the existence of a tissue-specific variation in mitochondrial activity, bioenergetics, and mtPCGs expression among various types of buffalo tissues. This study serves as a critical first stage in gathering vital comparable data about the physiological function of mitochondria in energy metabolism in distinct tissues, laying the groundwork for future mitochondrial based diagnosis and research.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Nancy Singla
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sweta Kumari
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - A N Ampadi
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - M Anuj
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
9
|
Dorji J, Vander Jagt CJ, Garner JB, Marett LC, Mason BA, Reich CM, Xiang R, Clark EL, Cocks BG, Chamberlain AJ, MacLeod IM, Daetwyler HD. Correction to: Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genomics 2022; 23:315. [PMID: 35443605 PMCID: PMC9022241 DOI: 10.1186/s12864-022-08404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Leah C Marett
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
10
|
Chen J, Zhong J, Wang LL, Chen YY. Mitochondrial Transfer in Cardiovascular Disease: From Mechanisms to Therapeutic Implications. Front Cardiovasc Med 2021; 8:771298. [PMID: 34901230 PMCID: PMC8661009 DOI: 10.3389/fcvm.2021.771298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction has been proven to play a critical role in the pathogenesis of cardiovascular diseases. The phenomenon of intercellular mitochondrial transfer has been discovered in the cardiovascular system. Studies have shown that cell-to-cell mitochondrial transfer plays an essential role in regulating cardiovascular system development and maintaining normal tissue homeostasis under physiological conditions. In pathological conditions, damaged cells transfer dysfunctional mitochondria toward recipient cells to ask for help and take up exogenous functional mitochondria to alleviate injury. In this review, we summarized the mechanism of mitochondrial transfer in the cardiovascular system and outlined the fate and functional role of donor mitochondria. We also discussed the advantage and challenges of mitochondrial transfer strategies, including cell-based mitochondrial transplantation, extracellular vesicle-based mitochondrial transplantation, and naked mitochondrial transplantation, for the treatment of cardiovascular disorders. We hope this review will provide perspectives on mitochondrial-targeted therapeutics in cardiovascular diseases.
Collapse
Affiliation(s)
- Jun Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Rubenstein DR, Corvelo A, MacManes MD, Maia R, Narzisi G, Rousaki A, Vandenabeele P, Shawkey MD, Solomon J. Feather Gene Expression Elucidates the Developmental Basis of Plumage Iridescence in African Starlings. J Hered 2021; 112:417-429. [PMID: 33885791 PMCID: PMC11502951 DOI: 10.1093/jhered/esab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
- Center for Integrative Animal Behavior, Columbia University, New York, NY
| | | | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | | | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat, Ghent, Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| |
Collapse
|
12
|
Prowse-Wilkins CP, Wang J, Xiang R, Garner JB, Goddard ME, Chamberlain AJ. Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues. Front Genet 2021; 12:664379. [PMID: 34249087 PMCID: PMC8260860 DOI: 10.3389/fgene.2021.664379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, Australia
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Dorji J, MacLeod IM, Chamberlain AJ, Vander Jagt CJ, Ho PN, Khansefid M, Mason BA, Prowse-Wilkins CP, Marett LC, Wales WJ, Cocks BG, Pryce JE, Daetwyler HD. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle. J Dairy Sci 2020; 104:575-587. [PMID: 33162069 DOI: 10.3168/jds.2020-18503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Feed efficiency and energy balance are important traits underpinning profitability and environmental sustainability in animal production. They are complex traits, and our understanding of their underlying biology is currently limited. One measure of feed efficiency is residual feed intake (RFI), which is the difference between actual and predicted intake. Variation in RFI among individuals is attributable to the metabolic efficiency of energy utilization. High RFI (H_RFI) animals require more energy per unit of weight gain or milk produced compared with low RFI (L_RFI) animals. Energy balance (EB) is a closely related trait calculated very similarly to RFI. Cellular energy metabolism in mitochondria involves mitochondrial protein (MiP) encoded by both nuclear (NuMiP) and mitochondrial (MtMiP) genomes. We hypothesized that MiP genes are differentially expressed (DE) between H_RFI and L_RFI animal groups and similarly between negative and positive EB groups. Our study aimed to characterize MiP gene expression in white blood cells of H_RFI and L_RFI cows using RNA sequencing to identify genes and biological pathways associated with feed efficiency in dairy cattle. We used the top and bottom 14 cows ranked for RFI and EB out of 109 animals as H_RFI and L_RFI, and positive and negative EB groups, respectively. The gene expression counts across all nuclear and mitochondrial genes for animals in each group were used for differential gene expression analyses, weighted gene correlation network analysis, functional enrichment, and identification of hub genes. Out of 244 DE genes between RFI groups, 38 were MiP genes. The DE genes were enriched for the oxidative phosphorylation (OXPHOS) and ribosome pathways. The DE MiP genes were underexpressed in L_RFI (and negative EB) compared with the H_RFI (and positive EB) groups, suggestive of reduced mitochondrial activity in the L_RFI group. None of the MtMiP genes were among the DE MiP genes between the groups, which suggests a non-rate limiting role of MtMiP genes in feed efficiency and warrants further investigation. The role of MiP, particularly the NuMiP and OXPHOS pathways in RFI, was also supported by our gene correlation network analysis and the hub gene identification. We validated the findings in an independent data set. Overall, our study suggested that differences in feed efficiency in dairy cows may be linked to differences in cellular energy demand. This study broadens our knowledge of the biology of feed efficiency in dairy cattle.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083.
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Leah C Marett
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - William J Wales
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Jennie E Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| |
Collapse
|