1
|
Bai H, Meng F, Ke K, Fang L, Xu W, Huang H, Liang X, Li W, Zeng F, Chen C. The significance of small noncoding RNAs in the pathogenesis of cardiovascular diseases. Genes Dis 2025; 12:101342. [PMID: 40247912 PMCID: PMC12005926 DOI: 10.1016/j.gendis.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/19/2025] Open
Abstract
With the advancement of high-throughput sequencing and bioinformatics, an increasing number of overlooked small noncoding RNAs (sncRNAs) have emerged. These sncRNAs predominantly comprise transfer RNA-derived fragments (tsRNAs), PIWI-interacting RNAs (piRNAs), Ro-associated non-coding RNAs (RNYs or Y-RNAs), small nucleolar RNAs (snoRNAs), and small nuclear RNAs (snRNAs). Each of these RNA types possesses distinct biological properties and plays specific roles in both physiological and pathological processes. The differential expression of sncRNAs substantially affects the occurrence and progression of various systemic diseases. However, their roles in the cardiovascular system remain unclear. Therefore, understanding the functionality and mechanisms of sncRNAs in the cardiovascular system holds promise for identifying novel targets and strategies for the diagnosis, prevention, and treatment of cardiovascular diseases. This review examines the biological characteristics of sncRNAs and their potential roles in cardiovascular diseases.
Collapse
Affiliation(s)
- Hemanyun Bai
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Fanji Meng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Kangling Ke
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Lingyan Fang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Weize Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Haitao Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Xiao Liang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Weiyan Li
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Fengya Zeng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| |
Collapse
|
2
|
Bogard B, Bonnet H, Boyarchuk E, Tellier G, Furling D, Mouly V, Francastel C, Hubé F. Small nucleolar RNAs promote the restoration of muscle differentiation defects in cells from myotonic dystrophy type 1. Nucleic Acids Res 2025; 53:gkaf232. [PMID: 40156865 PMCID: PMC11954525 DOI: 10.1093/nar/gkaf232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Recently, the repertoire of human small nucleolar noncoding RNAs (snoRNAs) and their potential functions has expanded with the discovery of new snoRNAs and messenger RNA (mRNA) targets, for which snoRNA-guided modifications may influence their stability, translatability, and splicing. We previously identified snoRNAs that are abundant in healthy human muscle progenitor cells. In this study, we demonstrated that SNORA40 and SNORA70 loss-of-function impairs myogenic differentiation. Interestingly, gain-of-function can rescue impaired differentiation muscle progenitor cells in myotonic dystrophy type 1 (DM1). We identified cyclin D3 (CCND3) mRNA, which is partially located in the nucleolus, as a target for SNORA40 and SNORA70, which are required for its pseudouridylated status. Expression of the CCND3 protein is required for muscle progenitors to exit the cell-cycle when they are induced to differentiate. We revealed that this switch requires SNORA40/70. Finally, we observed that DM1 cells show reduced levels of SNORA40/70 and undetectable CCND3 protein. However, restoring normal levels of SNORA40/70 partially restored CCND3 protein expression, coinciding with improved cell fusion capacity in DM1 muscle progenitors. Collectively, these data suggest that this effect may stem from SNORA40/70-dependent pseudouridylation of CCND3 mRNA, emphasizing snoRNAs as key players in normal and pathological muscle differentiation.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Hélène Bonnet
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Gilles Tellier
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Claire Francastel
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Florent Hubé
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
3
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
4
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|