1
|
Lindtke D, Lerch S, Morel I, Neuditschko M. Assessment of genome complementarity in three beef-on-dairy crossbreds reveals sire-specific effects on production traits with comparable rates of genomic inbreeding reduction. BMC Genomics 2024; 25:1118. [PMID: 39567870 PMCID: PMC11577664 DOI: 10.1186/s12864-024-11029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Crossbreeding beef bulls with dairy cows can improve the economic value and fitness of calves not entering dairy production owing to increased meat yield and heterosis. However, outcrossing might reduce the dosage of alleles that confer local adaptation or result in a higher risk of dystocia due to increased calf size. Given the clear phenotypic differences between beef breeds, the varying phylogenetic distances between beef and dairy breeds, and the genomic variations within breeds, the attainable economic and fitness gains of calves will strongly depend on the selection of sires for crossing. Thus, the aim of this study was to assess genome complementarity between Angus (AAN), Limousin (LIM), or Simmental (SIM) beef bulls and Brown Swiss (BSW) dairy cows by quantifying genomic inbreeding reduction in F1 crosses and identifying genes potentially under BSW-specific selection that might be affected by outcrossing. RESULTS Low-pass sequencing data from 181 cows, 34 bulls, and 301 of their F1 progeny, and body weight and carcass composition measurements of 248 F1s were obtained. The high genomic inbreeding levels detected in the BSW cows were substantially reduced in the crossbreds, with only minor differences between the sire breeds. In the BSW cows, 585 candidate genes under selection were identified, overrepresenting genes associated with milk, meat and carcass, and production traits. Only a few genes were strongly differentiated at nonsynonymous variants between the BSW and beef breeds, including four tightly clustered genes (FAM184B, NCAPG, DCAF16, and LCORL) nearly fixed for alternate alleles in the BSW cows but mostly heterozygous or homozygous for the reference alleles in the AAN and LIM bulls. The alternate allele dosage at these genes significantly correlated with reduced carcass weight and protein mass in F1s. CONCLUSION Some of the few genes that were highly divergent between the BSW and beef breeds at nonsynonymous variants were likely under strong selection for reduced carcass weight in the BSW breed, potentially due to trade-offs between beef and dairy productions. As alleles with opposing effects still segregate in beef cattle, marker-assisted selection of mating pairs may be used to modulate the desired phenotypes and simultaneously decrease genomic inbreeding.
Collapse
Affiliation(s)
| | - Sylvain Lerch
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | - Isabelle Morel
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | | |
Collapse
|
2
|
Wirth A, Duda J, Emmerling R, Götz KU, Birkenmaier F, Distl O. Analyzing Runs of Homozygosity Reveals Patterns of Selection in German Brown Cattle. Genes (Basel) 2024; 15:1051. [PMID: 39202411 PMCID: PMC11354284 DOI: 10.3390/genes15081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
An increasing trend in ancestral and classical inbreeding coefficients as well as inbreeding depression for longevity were found in the German Brown population. In addition, the proportion of US Brown Swiss genes is steadily increasing in German Browns. Therefore, the aim of the present study was to analyze the presence and genomic localization of runs of homozygosity (ROH) in order to evaluate their associations with the proportion of US Brown Swiss genes and survival rates of cows to higher lactations. Genotype data were sampled in 2364 German Browns from 258 herds. The final data set included 49,693 autosomal SNPs. We identified on average 35.996 ± 7.498 ROH per individual with a mean length of 8.323 ± 1.181 Mb. The genomic inbreeding coefficient FROH was 0.122 ± 0.032 and it decreased to 0.074, 0.031 and 0.006, when genomic homozygous segments > 8 Mb (FROH>8), >16 Mb (FROH>16) and >32 Mb (FROH>32) were considered. New inbreeding showed the highest correlation with FROH>32, whereas ancestral inbreeding coefficients had the lowest correlations with FROH>32. The correlation between the classical inbreeding coefficient and FROH was 0.572. We found significantly lower FROH, FROH>4, FROH>8 and FIS for US Brown Swiss proportions <60% compared to >80%. Cows surviving to the 2nd, 4th, 6th, 8th, and 10th lactation had lower genomic inbreeding for FROH and up to FROH>32, which was due to a lower number of ROH and a shorter average length of ROH. The strongest ROH island and consensus ROH shared by 50% of the animals was found on BTA 6 at 85-88 Mb. The genes located in this genomic region were associated with longevity (NPFFR2 and ADAMTS3), udder health and morphology (SLC4A4, NPFFR2, GC and RASSF6), milk production, milk protein percentage, coagulation properties of milk and milking speed (CSN3). On BTA 2, a ROH island was detected only in animals with <60% US Brown Swiss genes. Genes within this region are predominantly important for dual-purpose cattle breeds including Original Browns. For cows reaching more than 9 lactations, an exclusive ROH island was identified on BTA 7 with genes assumed to be associated with longevity. The analysis indicated that genomic homozygous regions important for Original Browns are still present and also ROH containing genes affecting longevity may have been identified. The breeding of German Browns should prevent any further increase in genomic inbreeding and run a breeding program with balanced weights on production, robustness and longevity.
Collapse
Affiliation(s)
- Anna Wirth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jürgen Duda
- Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. (LKV), 80687 München, Germany;
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Franz Birkenmaier
- Amt für Ernährung, Landwirtschaft und Forsten, 87439 Kempten, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
3
|
Dorji J, Reverter A, Alexandre PA, Chamberlain AJ, Vander-Jagt CJ, Kijas J, Porto-Neto LR. Ancestral alleles defined for 70 million cattle variants using a population-based likelihood ratio test. Genet Sel Evol 2024; 56:11. [PMID: 38321371 PMCID: PMC10848479 DOI: 10.1186/s12711-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. RESULTS Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. CONCLUSIONS Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.
Collapse
Affiliation(s)
- Jigme Dorji
- CSIRO, Agriculture & Food, St. Lucia, QLD, 4067, Australia.
| | | | | | - Amanda J Chamberlain
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Christy J Vander-Jagt
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - James Kijas
- CSIRO, Agriculture & Food, St. Lucia, QLD, 4067, Australia
| | | |
Collapse
|
4
|
Harish A, Lopes Pinto FA, Eriksson S, Johansson AM. Genetic diversity and recent ancestry based on whole-genome sequencing of endangered Swedish cattle breeds. BMC Genomics 2024; 25:89. [PMID: 38254050 PMCID: PMC10802049 DOI: 10.1186/s12864-024-09959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Several indigenous cattle breeds in Sweden are endangered. Conservation of their genetic diversity and genomic characterization is a priority.Whole-genome sequences (WGS) with a mean coverage of 25X, ranging from 14 to 41X were obtained for 30 individuals of the breeds Fjällko, Fjällnära, Bohuskulla, Rödkulla, Ringamåla, and Väneko. WGS-based genotyping revealed 22,548,028 variants in total, comprising 18,876,115 single nucleotide polymorphisms (SNPs) and 3,671,913 indels. Out of these, 1,154,779 SNPs and 304,467 indels were novel. Population stratification based on roughly 19 million SNPs showed two major groups of the breeds that correspond to northern and southern breeds. Overall, a higher genetic diversity was observed in the southern breeds compared to the northern breeds. While the population stratification was consistent with previous genome-wide SNP array-based analyses, the genealogy of the individuals inferred from WGS based estimates turned out to be more complex than expected from previous SNP-array based estimates. Polymorphisms and their predicted phenotypic consequences were associated with differences in the coat color phenotypes between the northern and southern breeds. Notably, these high-consequence polymorphisms were not represented in SNP arrays, which are used routinely for genotyping of cattle breeds.This study is the first WGS-based population genetic analysis of Swedish native cattle breeds. The genetic diversity of native breeds was found to be high. High-consequence polymorphisms were linked with desirable phenotypes using whole-genome genotyping, which highlights the pressing need for intensifying WGS-based characterization of the native breeds.
Collapse
Affiliation(s)
- Ajith Harish
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| | - Fernando A Lopes Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
5
|
Bhowmik N, Seaborn T, Ringwall KA, Dahlen CR, Swanson KC, Hulsman Hanna LL. Genetic Distinctness and Diversity of American Aberdeen Cattle Compared to Common Beef Breeds in the United States. Genes (Basel) 2023; 14:1842. [PMID: 37895190 PMCID: PMC10606367 DOI: 10.3390/genes14101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.
Collapse
Affiliation(s)
- Nayan Bhowmik
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Travis Seaborn
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kris A. Ringwall
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND 58601, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
6
|
Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:471-479. [PMID: 37808215 PMCID: PMC10556852 DOI: 10.18699/vjgb-23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
Collapse
Affiliation(s)
- M G Smaragdov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, Pushkin, Russia
| |
Collapse
|
7
|
Gudra D, Valdovska A, Jonkus D, Galina D, Kairisa D, Ustinova M, Viksne K, Fridmanis D, Kalnina I. Genomic Characterization and Initial Insight into Mastitis-Associated SNP Profiles of Local Latvian Bos taurus Breeds. Animals (Basel) 2023; 13:2776. [PMID: 37685039 PMCID: PMC10487150 DOI: 10.3390/ani13172776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Latvia has two local Bos taurus breeds-Latvian Brown (LBG) and Latvian Blue (LZG)-characterized by a good adaptation to the local climate, longevity, and high fat and protein contents in milk. Since these are desired traits in the dairy industry, this study investigated the genetic background of the LBG and LZG breeds and identified the genetic factors associated with mastitis. Blood and semen samples were acquired, and whole genome sequencing was then performed to acquire a genomic sequence with at least 35× or 10× coverage. The heterozygosity, nucleotide diversity, and LD analysis indicated that LBG and LZG cows have similar levels of genetic diversity compared to those of other breeds. An analysis of the population structure revealed that each breed clustered together, but the overall differentiation between the breeds was small. The highest genetic variance was observed in the LZG breed compared with the LBG breed. Our results show that SNP rs721295390 is associated with mastitis in the LBG breed, and SNPs rs383806754, chr29:43998719CG>C, and rs462030680 are associated with mastitis in the LZG breed. This study shows that local Latvian LBG and LZG breeds have a pronounced genetic differentiation, with each one suggesting its own mastitis-associated SNP profile.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Anda Valdovska
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Daina Jonkus
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia (D.K.)
| | - Daiga Galina
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Daina Kairisa
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia (D.K.)
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Kristine Viksne
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| |
Collapse
|
8
|
Masharing N, Sodhi M, Chanda D, Singh I, Vivek P, Tiwari M, Kumari P, Mukesh M. ddRAD sequencing based genotyping of six indigenous dairy cattle breeds of India to infer existing genetic diversity and population structure. Sci Rep 2023; 13:9379. [PMID: 37296129 PMCID: PMC10256769 DOI: 10.1038/s41598-023-32418-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
The present investigation aimed to identify genome wide SNPs and to carry out diversity and population structure study using ddRAD-seq based genotyping of 58 individuals of six indigenous milch cattle breeds (Bos indicus) such as Sahiwal, Gir, Rathi, Tharparkar, Red Sindhi and Kankrej of India. A high percentage of reads (94.53%) were mapped to the Bos taurus (ARS-UCD1.2) reference genome assembly. Following filtration criteria, a total of 84,027 high quality SNPs were identified across the genome of 6 cattle breeds with the highest number of SNPs observed in Gir (34,743), followed by Red Sindhi (13,092), Kankrej (12,812), Sahiwal (8956), Tharparkar (7356) and Rathi (7068). Most of these SNPs were distributed in the intronic regions (53.87%) followed by intergenic regions (34.94%) while only 1.23% were located in the exonic regions. Together with analysis of nucleotide diversity (π = 0.373), Tajima's D (D value ranging from - 0.295 to 0.214), observed heterozygosity (HO ranging from 0.464 to 0.551), inbreeding coefficient (FIS ranging from - 0.253 to 0.0513) suggested for the presence of sufficient within breed diversity in the 6 major milch breeds of India. The phylogenetic based structuring, principal component and admixture analysis revealed genetic distinctness as well as purity of almost all of the 6 cattle breeds. Overall, our strategy has successfully identified thousands of high-quality genome wide SNPs that will further enrich the Bos indicus representation basic information about genetic diversity and structure of 6 major Indian milch cattle breeds which should have implications for better management and conservation of valuable indicine cattle diversity.
Collapse
Affiliation(s)
- Nampher Masharing
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Divya Chanda
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Inderpal Singh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Prince Vivek
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manish Tiwari
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Parvesh Kumari
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
- ICAR-NBAGR, Karnal, Haryana, 132001, India.
| |
Collapse
|
9
|
Li G, Luo J, Wang F, Xu D, Ahmed Z, Chen S, Li R, Ma Z. Whole-genome resequencing reveals genetic diversity, differentiation, and selection signatures of yak breeds/populations in Qinghai, China. Front Genet 2023; 13:1034094. [PMID: 36704337 PMCID: PMC9871260 DOI: 10.3389/fgene.2022.1034094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2023] Open
Abstract
The Qinghai Province of China is located in the northeast region of the Qinghai-Tibetan Plateau (QTP) and carries abundant yak genetic resources. Previous investigations of archaeological records, mitochondrial DNA, and Y chromosomal markers have suggested that Qinghai was the major center of yak domestication. In the present study, we examined the genomic diversity, differentiation, and selection signatures of 113 Qinghai yak, including 42 newly sequenced Qinghai yak and 71 publicly available individuals, from nine yak breeds/populations (wild, Datong, Huanhu, Xueduo, Yushu, Qilian, Geermu, Tongde, and Huzhu white) using high-depth whole-genome resequencing data. We observed that most of Qinghai yak breeds/populations have abundant genomic diversity based on four genomic parameters (nucleotide diversity, inbreeding coefficients, linkage disequilibrium decay, and runs of homozygosity). Population genetic structure analysis showed that Qinghai yak have two lineages with two ancestral origins and that nine yak breeds/populations are clustered into three distinct groups of wild yak, Geermu yak, and seven other domestic yak breeds/populations. F ST values showed moderate genetic differentiation between wild yak, Geermu yak, and the other Qinghai yak breeds/populations. Positive selection signals were detected in candidate genes associated with disease resistance (CDK2AP2, PLEC, and CYB5B), heat stress (NFAT5, HSF1, and SLC25A48), pigmentation (MCAM, RNF26, and BOP1), vision (C1QTNF5, MFRP, and TAX1BP3), milk quality (OPLAH and GRINA), neurodevelopment (SUSD4, INSYN1, and PPP1CA), and meat quality (ZRANB1), using the integrated PI, composite likelihood ratio (CLR), and F ST methods. These findings offer new insights into the genetic mechanisms underlying target traits in yak and provide important information for understanding the genomic characteristics of yak breeds/populations in Qinghai.
Collapse
Affiliation(s)
- Guangzhen Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Jing Luo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Fuwen Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Donghui Xu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Shengmei Chen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China,*Correspondence: Zhijie Ma,
| |
Collapse
|
10
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
11
|
Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. BIOLOGY 2022; 11:biology11121775. [PMID: 36552284 PMCID: PMC9775101 DOI: 10.3390/biology11121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Due to the geographical, cultural and environmental variability in Xiangxi, China, distinctive indigenous cattle populations have formed. Among them, Loudi cattle and Xiangxi cattle are the local cattle in Hunan, and the environment in Loudi is relatively more enclosed and humid than that in Xiangxi. To study the genome and origin of Loudi cattle in hot and humid environments, 29 individuals were collected and sequenced by whole-genome resequencing. In addition, genomic data were obtained from public databases for 96 individuals representing different cattle breeds worldwide, including 23 Xiangxi cattle from western Hunan. Genetic analysis indicated that the genetic diversity of Loudi cattle was close to that of Chinese cattle and higher than that of other breeds. Population structure and ancestral origin analysis indicated the relationship between Loudi cattle and other breeds. Loudi has four distinctive seasons, with a stereoscopic climate and extremely rich water resources. Selective sweep analysis revealed candidate genes and pathways associated with environmental adaptation and homeostasis. Our findings provide a valuable source of information on the genetic diversity of Loudi cattle and ideas for population conservation and genome-associated breeding of local cattle in today's extreme climate environment.
Collapse
|
12
|
Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie E. Animal board invited review: Genomic-based improvement of cattle in response to climate change. Animal 2022; 16:100673. [PMID: 36402112 DOI: 10.1016/j.animal.2022.100673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Climate change brings challenges to cattle production, such as the need to adapt to new climates and pressure to reduce greenhouse emissions (GHG). In general, the improvement of traits in current breeding goals is favourably correlated with the reduction of GHG. Current breeding goals and tools for increasing cattle production efficiency have reduced GHG. The same amount of production can be achieved by a much smaller number of animals. Genomic selection (GS) may offer a cost-effective way of using an efficient breeding approach, even in low- and middle-income countries. As climate change increases the intensity of heatwaves, adaptation to heat stress leads to lower efficiency of production and, thus, is unfavourable to the goal of reducing GHG. Furthermore, there is evidence that heat stress during cow pregnancy can have many generation-long lowering effects on milk production. Both adaptation and reduction of GHG are among the difficult-to-measure traits for which GS is more efficient and suitable than the traditional non-genomic breeding evaluation approach. Nevertheless, the commonly used within-breed selection may be insufficient to meet the new challenges; thus, cross-breeding based on selecting highly efficient and highly adaptive breeds may be needed. Genomic introgression offers an efficient approach for cross-breeding that is expected to provide high genetic progress with a low rate of inbreeding. However, well-adapted breeds may have a small number of animals, which is a source of concern from a genetic biodiversity point of view. Furthermore, low animal numbers also limit the efficiency of genomic introgression. Sustainable cattle production in countries that have already intensified production is likely to emphasise better health, reproduction, feed efficiency, heat stress and other adaptation traits instead of higher production. This may require the application of innovative technologies for phenotyping and further use of new big data techniques to extract information for breeding.
Collapse
Affiliation(s)
- I Strandén
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
| | - J Kantanen
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - M H Lidauer
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - T Mehtiö
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - E Negussie
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| |
Collapse
|
13
|
Runs of Homozygosity Analysis Reveals Genomic Diversity and Population Structure of an Indigenous Cattle Breed in Southwest China. Animals (Basel) 2022; 12:ani12233239. [PMID: 36496760 PMCID: PMC9737016 DOI: 10.3390/ani12233239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
In aiming to achieve sustainable development goals in the livestock industry, it is becoming increasingly necessary and important for the effective conservation of genetic resources. There are some indigenous cattle breeds in Sichuan, southwest China, for which, however, the genetic diversity and population structures still remain unknown because of the unavailability of systematic breeding programs and pedigree information. Xieka cattle are an indigenous breed locally distributed in southeastern Sichuan and have a long-term evolutionary adaptation to local environments and climates. In this study, we obtained 796,828 single nucleotide polymorphisms (SNPs) through sequencing the genomes of 30 Xieka cattle and used them for analyzing the genetic diversity and runs of homozygosity (ROH). The mean nucleotide diversity was 0.28 and 72% of SNPs were found to be in the heterozygous states. A total of 4377 ROH were detected with even distribution among all autosomes, and 74% of them were lower than 1 Mb in length. Meanwhile, only five ROH were found longer than 5 Mb. We further determined 19 significant genomic regions that were obviously enriched by ROH, in which 35 positional candidate genes were found. Some of these genes have been previously reported to be significantly associated with various production traits in cattle, such as meat quality, carcass performances, and diseases. In conclusion, the relatively high degree of genetic diversity of Xieka cattle was revealed using the genomic information, and the proposed candidate genes will help us optimize the breeding programs regarding this indigenous breed.
Collapse
|
14
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
15
|
Qiao R, Zhang M, Zhang B, Li X, Han X, Wang K, Li X, Yang F, Hu P. Population genetic structure analysis and identification of backfat thickness loci of Chinese synthetic Yunan pigs. Front Genet 2022; 13:1039838. [PMID: 36437945 PMCID: PMC9681789 DOI: 10.3389/fgene.2022.1039838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Yunan is a crossed lean meat pig breed in China. Backfat thickness is the gold standard for carcass quality grading. However, over 14 years after breed registration, the backfat of Yunan thickened and the consistency of backfat thickness decreased. Meanwhile, no genetic study has been ever performed on Yunan population. So, in this study we collected all the 120 nucleus individuals of Yunan and recorded six backfat traits of them, carried out population genetic structure analysis, selection signals analysis and genome-wide association study of Yunan pigs with the help of their founder population Duroc and Chinese native Huainan pigs, to determine the genomic loci on backfat of Yunan. Genetic diversity indexes suggested Yunan pigs had no inbreeding risk while population genetic structure showed they had few molecular pedigrees and were stratified. A total of 71 common selection signals affecting growth and fat deposition were detected by FST and XP-CLR methods. 34 significant loci associated with six backfat traits were detected, among which a 1.40 Mb region on SSC4 (20.03–21.43 Mb) were outstanding as the strong region underlying backfat. This region was common with the results of selection signature analysis, former reported QTLs for backfat and was common for different kinds of backfat traits at different development stage. ENPP2, EXT1 and SLC30A8 genes around were fat deposition related genes and were of Huainan pig’s origin, among which Type 2 diabetes related gene SLC30A8 was the most reasonable for being in a 193.21 Kb haplotype block of the 1.40 Mb region. Our results had application value for conservation, mating and breeding improvement of backfat thickness of Yunan pigs and provided evidence for a human function gene might be reproduced in pigs.
Collapse
Affiliation(s)
- Ruimin Qiao
- *Correspondence: Ruimin Qiao, ; Panyang Hu, hpy9809.@163.com
| | | | | | | | | | | | | | | | - Panyang Hu
- *Correspondence: Ruimin Qiao, ; Panyang Hu, hpy9809.@163.com
| |
Collapse
|
16
|
Naji MM, Jiang Y, Utsunomiya YT, Rosen BD, Sölkner J, Wang C, Jiang L, Zhang Q, Zhang Y, Ding X, Mészáros G. Favored single nucleotide variants identified using whole genome Re-sequencing of Austrian and Chinese cattle breeds. Front Genet 2022; 13:974787. [PMID: 36238155 PMCID: PMC9552183 DOI: 10.3389/fgene.2022.974787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cattle have been essential for the development of human civilization since their first domestication few thousand years ago. Since then, they have spread across vast geographic areas following human activities. Throughout generations, the cattle genome has been shaped with detectable signals induced by various evolutionary processes, such as natural and human selection processes and demographic events. Identifying such signals, called selection signatures, is one of the primary goals of population genetics. Previous studies used various selection signature methods and normalized the outputs score using specific windows, in kbp or based on the number of SNPs, to identify the candidate regions. The recent method of iSAFE claimed for high accuracy in pinpointing the candidate SNPs. In this study, we analyzed whole-genome resequencing (WGS) data of ten individuals from Austrian Fleckvieh (Bos taurus) and fifty individuals from 14 Chinese indigenous breeds (Bos taurus, Bos taurus indicus, and admixed). Individual WGS reads were aligned to the cattle reference genome of ARS. UCD1.2 and subsequently undergone single nucleotide variants (SNVs) calling pipeline using GATK. Using these SNVs, we examined the population structure using principal component and admixture analysis. Then we refined selection signature candidates using the iSAFE program and compared it with the classical iHS approach. Additionally, we run Fst population differentiation from these two cattle groups. We found gradual changes of taurine in north China to admixed and indicine to the south. Based on the population structure and the number of individuals, we grouped samples to Fleckvieh, three Chinese taurines (Kazakh, Mongolian, Yanbian), admixed individuals (CHBI_Med), indicine individuals (CHBI_Low), and a combination of admixed and indicine (CHBI) for performing iSAFE and iHS tests. There were more significant SNVs identified using iSAFE than the iHS for the candidate of positive selection and more detectable signals in taurine than in indicine individuals. However, combining admixed and indicine individuals decreased the iSAFE signals. From both within-population tests, significant SNVs are linked to the olfactory receptors, production, reproduction, and temperament traits in taurine cattle, while heat and parasites tolerance in the admixed individuals. Fst test suggests similar patterns of population differentiation between Fleckvieh and three Chinese taurine breeds against CHBI. Nevertheless, there are genes shared only among the Chinese taurine, such as PAX5, affecting coat color, which might drive the differences between these yellowish coated breeds, and those in the greater Far East region.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yifan Jiang
- China Agricultural University, Beijing, China
| | - Yuri T. Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, USDA‐ARS, Beltsville, MD, United States
| | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Li Jiang
- China Agricultural University, Beijing, China
| | - Qin Zhang
- China Agricultural University, Beijing, China
| | - Yi Zhang
- China Agricultural University, Beijing, China
| | - Xiangdong Ding
- China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| |
Collapse
|
17
|
Guo L, Zhang S, Xu Y, Huang Y, Luo W, Wen Q, Liu G, Huang W, Xu H, Chen B, Nie Q. A missense mutation in ISPD contributes to maintain muscle fiber stability. Poult Sci 2022; 101:102143. [PMID: 36167018 PMCID: PMC9513258 DOI: 10.1016/j.psj.2022.102143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/11/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
Abstract
Background Results Conclusion
Collapse
|
18
|
Zhang S, Yao Z, Li X, Zhang Z, Liu X, Yang P, Chen N, Xia X, Lyu S, Shi Q, Wang E, Ru B, Jiang Y, Lei C, Chen H, Huang Y. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022; 23:460. [PMID: 35729510 PMCID: PMC9215082 DOI: 10.1186/s12864-022-08645-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Collapse
Affiliation(s)
- Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zhi Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xinmiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China.
| |
Collapse
|
19
|
Trujano-Chavez MZ, Ruíz-Flores A, López-Ordaz R, Pérez-Rodríguez P. Genetic diversity in reproductive traits of Braunvieh cattle determined with SNP markers. Vet Med Sci 2022; 8:1709-1720. [PMID: 35545927 PMCID: PMC9297803 DOI: 10.1002/vms3.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Braunvieh is an important dual‐purpose breed in the Mexican tropics. The study of its genetic diversity is key to implementing genetic improvement programs. This study was conducted to determine genetic diversity of reproductive traits in a Mexican Braunvieh beef cattle population using single nucleotide polymorphisms in candidate genes. Information from 24 genes with 52 intra‐genic loci reported in literature to be associated with productive life, pregnancy rate and cow and heifer conception rate of 150 Braunvieh males and females was considered. Observed heterozygosity (Ho) revealed high genetic diversity for the studied traits, Ho = 0.42 ± 0.087, relative to that of other populations of the same breed. Cluster analyses were carried out using the Ward and K‐means algorithms. These analyses revealed high genetic diversity that was observed in the biplot of non‐metric multi‐dimensional scaling. It was found that clustering strategy allowed visualisation of distant groups by genotype but not by favourable alleles in all the loci. We found that the genes CSNK1E, DNAH11, DSC2, IBSP and OCLN affected most of the traits in our study and they were highly informative. Therefore, they represent a potential resource for selection and crossbreeding programs of the traits studied in Braunvieh. The analyses showed that the Mexican Braunvieh population has a high level of genetic diversity, arguably due to decades‐long adaptation to the Mexican tropics.
Collapse
Affiliation(s)
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Texcoco, Estado de México, Mexico
| | - Rufino López-Ordaz
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Texcoco, Estado de México, Mexico
| | - Paulino Pérez-Rodríguez
- Socio Economía Estadística e Informática, Posgrado en Producción Animal, Texcoco, Estado de México, Mexico
| |
Collapse
|
20
|
Jin L, Qu K, Hanif Q, Zhang J, Liu J, Chen N, Suolang Q, Lei C, Huang B. Whole-Genome Sequencing of Endangered Dengchuan Cattle Reveals Its Genomic Diversity and Selection Signatures. Front Genet 2022; 13:833475. [PMID: 35422847 PMCID: PMC9001881 DOI: 10.3389/fgene.2022.833475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Dengchuan cattle are the only dairy yellow cattle and endangered cattle among Yunnan native cattle breeds. However, its genetic background remains unclear. Here, we performed whole-genome sequencing of ten Dengchuan cattle. Integrating our data with the publicly available data, Dengchuan cattle were observed to be highly interbred than other cattle in the dataset. Furthermore, the positive selective signals were mainly manifested in candidate genes and pathways related to milk production, disease resistance, growth and development, and heat tolerance. Notably, five genes (KRT39, PGR, KRT40, ESR2, and PRKACB) were significantly enriched in the estrogen signaling pathway. Moreover, the missense mutation in the PGR gene (c.190T > C, p.Ser64Pro) showed a homozygous mutation pattern with higher frequency (83.3%) in Dengchuan cattle. In addition, a large number of strong candidate regions matched genes and QTLs related to milk yield and composition. Our research provides a theoretical basis for analyzing the genetic mechanism underlying Dengchuan cattle with excellent lactation and adaptability, crude feed tolerance, good immune performance, and small body size and also laid a foundation for genetic breeding research of Dengchuan cattle in the future.
Collapse
Affiliation(s)
- Liangliang Jin
- Yunnan Academy of Grassland and Animal Science, Kunming, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
21
|
de Faria DA, do Prado Paim T, Dos Santos CA, Paiva SR, Nogueira MB, McManus C. Selection signatures for heat tolerance in Brazilian horse breeds. Mol Genet Genomics 2022; 297:449-462. [PMID: 35150300 DOI: 10.1007/s00438-022-01862-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Since domestication, horse breeds have adapted to their environments and differentiated from one another. This paper uses two methods to detect selection signatures in 23 horse breeds, eight of which are Brazilian (610 animals), both cold-blooded and warm-blooded, from temperate and tropical regions. These animals were genotyped using the GGP Equine BeadChip and we analysed the data by Principal Component Analysis (PCA). The samples were separated into groups based on their geographical area of origin and PCA results studied. The genomic regions under selection were detected by hapFLK and PCAdapt methodologies, identifying six regions under selection with at least one Brazilian horse breed. These regions contain genes associated with heat tolerance, skin colour, body size, energy production/metabolism, genes involved in protein degradation/turnover/DNA repair, genes reducing the impact of oxidative stress/cellular repair, and transcriptional regulation. This work confirmed LCORL and NCAPG gene regions in previous studies associated with body size on Equine Chromosome Autosome 3 (ECA3). On the same ECA3, a region implicating genes linked to coat colour was identified, also previously related to heat stress. Regions with genes coding heat shock proteins were found on ECA1 and 2, and many candidate genes for oxidation-reduction which are a natural response to heat stress. However, a larger sample size and whole-genome SNPs are needed to understand better and identify new candidate regions as well as their functional relation with heat tolerance.
Collapse
Affiliation(s)
- Danielle Assis de Faria
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Tiago do Prado Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Camila Alves Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Samuel Rezende Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Final W5 Norte, Brasília, DF, 70770-917, Brasil
| | - Marcelo Bchara Nogueira
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
22
|
Maiorano AM, Cardoso DF, Carvalheiro R, Júnior GAF, de Albuquerque LG, de Oliveira HN. Signatures of selection in Nelore cattle revealed by whole-genome sequencing data. Genomics 2022; 114:110304. [DOI: 10.1016/j.ygeno.2022.110304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
23
|
Häfliger IM, Seefried FR, Spengeler M, Drögemüller C. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants that impair reproductive success. Genet Sel Evol 2021; 53:95. [PMID: 34915862 PMCID: PMC8675516 DOI: 10.1186/s12711-021-00686-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background This study was carried out on the two Braunvieh populations reared in Switzerland, the dairy Brown Swiss (BS) and the dual-purpose Original Braunvieh (OB). We performed a genome-wide analysis of array data of trios (sire, dam, and offspring) from the routine genomic selection to identify candidate regions showing missing homozygosity and phenotypic associations with five fertility, ten birth, and nine growth-related traits. In addition, genome-wide single SNP regression studies based on 114,890 single nucleotide polymorphisms (SNPs) for each of the two populations were performed. Furthermore, whole-genome sequencing data of 430 cattle including 70 putative haplotype carriers were mined to identify potential candidate variants that were validated by genotyping the current population using a custom array. Results Using a trio-based approach, we identified 38 haplotype regions for BS and five for OB that segregated at low to moderate frequencies. For the BS population, we confirmed two known haplotypes, BH1 and BH2. Twenty-four variants that potentially explained the missing homozygosity and associated traits were detected, in addition to the previously reported TUBD1:p.His210Arg variant associated with BH2. For example, for BS we identified a stop-gain variant (p.Arg57*) in the MRPL55 gene in the haplotype region on chromosome 7. This region is associated with the ‘interval between first and last insemination’ trait in our data, and the MRPL55 gene is known to be associated with early pregnancy loss in mice. In addition, we discuss candidate missense variants in the CPT1C, MARS2, and ACSL5 genes for haplotypes mapped in BS. In OB, we highlight a haplotype region on chromosome 19, which is potentially caused by a frameshift variant (p.Lys828fs) in the LIG3 gene, which is reported to be associated with early embryonic lethality in mice. Furthermore, we propose another potential causal missense variant in the TUBGCP5 gene for a haplotype mapped in OB. Conclusions We describe, for the first time, several haplotype regions that segregate at low to moderate frequencies and provide evidence of causality by trait associations in the two populations of Swiss Braunvieh. We propose a list of six protein-changing variants as potentially causing missing homozygosity. These variants need to be functionally validated and incorporated in the breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00686-3.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
24
|
Trujano-Chavez MZ, Sánchez-Ramos R, Pérez-Rodríguez P, Ruíz-Flores A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Vet Sci 2021; 8:vetsci8120329. [PMID: 34941856 PMCID: PMC8707377 DOI: 10.3390/vetsci8120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mastitis is a disease that causes significant economic losses, since resistance to mastitis is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coefficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076) mastitis, possibly due to low selection for the immunological candidate genes that influence these traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the group distribution through the graphics of the principal component analysis. The genotypic profiles showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to 13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of the presence of genetic diversity. The results of this study constitute evidence of the genetic potential of the Mexican Braunvieh population to improve mastitis-related traits.
Collapse
Affiliation(s)
- Mitzilin Zuleica Trujano-Chavez
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
| | - Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Socio Economía Estadística e Informática-Estadística, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
- Correspondence: ; Tel.: +52-595-952-1621
| |
Collapse
|
25
|
CNGB3 Missense Variant Causes Recessive Achromatopsia in Original Braunvieh Cattle. Int J Mol Sci 2021; 22:ijms222212440. [PMID: 34830323 PMCID: PMC8620519 DOI: 10.3390/ijms222212440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sporadic occurrence of inherited eye disorders has been reported in cattle but so far pathogenic variants were found only for rare forms of cataract but not for retinopathies. The aim of this study was to characterize the phenotype and the genetic aetiology of a recessive form of congenital day-blindness observed in several cases of purebred Original Braunvieh cattle. Electroretinography in an affected calf revealed absent cone-mediated function, whereas the rods continue to function normally. Brain areas involved in vision were morphologically normal. When targeting cones by immunofluorescence, a decrease in cone number and an accumulation of beta subunits of cone cyclic-nucleotide gated channel (CNGB3) in the outer plexiform layer of affected animals was obvious. Achromatopsia is a monogenic Mendelian disease characterized by the loss of cone photoreceptor function resulting in day-blindness, total color-blindness, and decreased central visual acuity. After SNP genotyping and subsequent homozygosity mapping with twelve affected cattle, we performed whole-genome sequencing and variant calling of three cases. We identified a single missense variant in the bovine CNGB3 gene situated in a ~2.5 Mb homozygous genome region on chromosome 14 shared between all cases. All affected cattle were homozygous carriers of the p.Asp251Asn mutation that was predicted to be deleterious, affecting an evolutionary conserved residue. In conclusion, we have evidence for the occurrence of a breed-specific novel CNGB3-related form of recessively inherited achromatopsia in Original Braunvieh cattle which we have designated OH1 showing an allele frequency of the deleterious allele of ~8%. The identification of carriers will enable selection against this inherited disorder. The studied cattle might serve as an animal model to further elucidate the function of CNGB3 in mammals.
Collapse
|
26
|
Cheng H, Xu K, Li J, Abraham KJ. Optimizing Sequencing Resources in Genotyped Livestock Populations Using Linear Programming. Front Genet 2021; 12:740340. [PMID: 34745214 PMCID: PMC8570094 DOI: 10.3389/fgene.2021.740340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Low-cost genome-wide single-nucleotide polymorphisms (SNPs) are routinely used in animal breeding programs. Compared to SNP arrays, the use of whole-genome sequence data generated by the next-generation sequencing technologies (NGS) has great potential in livestock populations. However, sequencing a large number of animals to exploit the full potential of whole-genome sequence data is not feasible. Thus, novel strategies are required for the allocation of sequencing resources in genotyped livestock populations such that the entire population can be imputed, maximizing the efficiency of whole genome sequencing budgets. We present two applications of linear programming for the efficient allocation of sequencing resources. The first application is to identify the minimum number of animals for sequencing subject to the criterion that each haplotype in the population is contained in at least one of the animals selected for sequencing. The second application is the selection of animals whose haplotypes include the largest possible proportion of common haplotypes present in the population, assuming a limited sequencing budget. Both applications are available in an open source program LPChoose. In both applications, LPChoose has similar or better performance than some other methods suggesting that linear programming methods offer great potential for the efficient allocation of sequencing resources. The utility of these methods can be increased through the development of improved heuristics.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Keyu Xu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jinghui Li
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Kuruvilla Joseph Abraham
- Department of Economics, FEARP, University of São-Paulo, Ribeirão Preto, Brazil.,Department of Computer Science-ICMC, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
27
|
Zhang X, Qu K, Jia P, Zhang J, Liu J, Lei C, Huang B. Assessing Genomic Diversity and Productivity Signatures in Dianzhong Cattle by Whole-Genome Scanning. Front Genet 2021; 12:719215. [PMID: 34675962 PMCID: PMC8523829 DOI: 10.3389/fgene.2021.719215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Dianzhong cattle is a classic Chinese indigenous cattle breed with historical records dating back to 200 BC. But with its genomic differences having not been clearly elucidated, the quest for genomic characterization will be an essential step towards understanding the genomic basis of productivity and adaptation to survival under Chinese farming systems. Here we compared 10 Dianzhong cattle (four newly sequenced and six downloaded) with 29 published genomes of three underlying ancestral populations (Chinese zebu, Indian zebu, and Yanbian cattle) to characterize the genomic variations of Dianzhong cattle. Dianzhong cattle has a high nucleotide diversity (0.0034), second only to Chinese zebu. Together with analyses of linkage disequilibrium decay and runs of homozygosity, Dianzhong cattle displayed higher genomic diversity and weaker artificial selection compared with Yanbian cattle. From a selective sweep analysis by four methods (Fst, π-ratio, XP-CLR, and XP-EHH), the positive selective signals were mainly manifested in candidate genes and pathways related to heat resistance, growth and development, fat deposition, and male reproduction. Missense mutations were detected in candidate genes, SDS (c.944C > A and p.Ala315Glu), PDGFD (c.473A > G and p.Lys158Arg), and DDX4 (rs460251486, rs722912933, and rs517668236), which related to heat resistance, fat deposition, and spermatogenesis, respectively. Our findings unravel, at the genome-wide level, the unique diversity of Dianzhong cattle while emphasizing the opportunities for improvement of livestock productivity in further breeding programs.
Collapse
Affiliation(s)
- Xianfu Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Peng Jia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
28
|
Upadhyay M, Derks MFL, Andersson G, Medugorac I, Groenen MAM, Crooijmans RPMA. Introgression contributes to distribution of structural variations in cattle. Genomics 2021; 113:3092-3102. [PMID: 34242710 DOI: 10.1016/j.ygeno.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Structural variations (SVs) are an important source of phenotypic diversity in cattle. Here, 72 whole genome sequences representing taurine and zebu cattle were used to identify SVs. Applying multiple approaches, 16,738 SVs were identified. A comparison against the Database of Genomic Variants archives revealed that 1575 SVs were novel in our data. A novel duplication covering the entire GALNT15 gene, was observed only in N'Dama. A duplication, which was previously reported only in zebu and associated with navel length, was also observed in N'Dama. Investigation of a novel deletion located upstream of CAST13 gene and identified only in Italian cattle and zebu, revealed its introgressed origin in the former. Overall, our data highlights how the SVs distribution in cattle is also shaped by forces such as demographical differences and gene flow. The cattle SVs of this study and its meta-data can be visualized on an interactive genome browser at https://tinyurl.com/svCowArs.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Lloret-Villas A, Bhati M, Kadri NK, Fries R, Pausch H. Investigating the impact of reference assembly choice on genomic analyses in a cattle breed. BMC Genomics 2021; 22:363. [PMID: 34011274 PMCID: PMC8132449 DOI: 10.1186/s12864-021-07554-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reference-guided read alignment and variant genotyping are prone to reference allele bias, particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly continuous Angus-based assembly (UOA_Angus_1). RESULTS Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance between sequence- and array-called genotypes was high and the number of variants deviating from Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step imputation approach. The accuracy of imputation (Beagle R2) was very high (0.87) for both assemblies. Genome-wide association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced almost identical results from both assemblies. CONCLUSIONS The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused to compare the impact of reference genomes on genome analyses in various breeds, populations and species.
Collapse
Affiliation(s)
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Lindau, 8315 Switzerland
| | | | - Ruedi Fries
- Chair of Animal Breeding, TU München, Freising-Weihenstephan, 85354 Germany
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, 8315 Switzerland
| |
Collapse
|
30
|
Nosková A, Bhati M, Kadri NK, Crysnanto D, Neuenschwander S, Hofer A, Pausch H. Characterization of a haplotype-reference panel for genotyping by low-pass sequencing in Swiss Large White pigs. BMC Genomics 2021; 22:290. [PMID: 33882824 PMCID: PMC8061004 DOI: 10.1186/s12864-021-07610-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The key-ancestor approach has been frequently applied to prioritize individuals for whole-genome sequencing based on their marginal genetic contribution to current populations. Using this approach, we selected 70 key ancestors from two lines of the Swiss Large White breed that have been selected divergently for fertility and fattening traits and sequenced their genomes with short paired-end reads. RESULTS Using pedigree records, we estimated the effective population size of the dam and sire line to 72 and 44, respectively. In order to assess sequence variation in both lines, we sequenced the genomes of 70 boars at an average coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the genetic diversity of the breeding populations of the dam and sire line, respectively. Reference-guided variant discovery using the GATK revealed 26,862,369 polymorphic sites. Principal component, admixture and fixation index (FST) analyses indicated considerable genetic differentiation between the lines. Genomic inbreeding quantified using runs of homozygosity was higher in the sire than dam line (0.28 vs 0.26). Using two complementary approaches, we detected 51 signatures of selection. However, only six signatures of selection overlapped between both lines. We used the sequenced haplotypes of the 70 key ancestors as a reference panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at very low coverage (1.11-fold) using the GLIMPSE software. The genotype concordance, non-reference sensitivity and non-reference discrepancy between thus inferred and Illumina PorcineSNP60 BeadChip-called genotypes was 97.60, 98.73 and 3.24%, respectively. The low-pass sequencing-derived genomic relationship coefficients were highly correlated (r > 0.99) with those obtained from microarray genotyping. CONCLUSIONS We assessed genetic diversity within and between two lines of the Swiss Large White pig breed. Our analyses revealed considerable differentiation, even though the split into two populations occurred only few generations ago. The sequenced haplotypes of the key ancestor animals enabled us to implement genotyping by low-pass sequencing which offers an intriguing cost-effective approach to increase the variant density over current array-based genotyping by more than 350-fold.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | - Danang Crysnanto
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
31
|
Dadshani S, Mathew B, Ballvora A, Mason AS, Léon J. Detection of breeding signatures in wheat using a linkage disequilibrium-corrected mapping approach. Sci Rep 2021; 11:5527. [PMID: 33750919 PMCID: PMC7970893 DOI: 10.1038/s41598-021-85226-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Marker assisted breeding, facilitated by reference genome assemblies, can help to produce cultivars adapted to changing environmental conditions. However, anomalous linkage disequilibrium (LD), where single markers show high LD with markers on other chromosomes but low LD with adjacent markers, is a serious impediment for genetic studies. We used a LD-correction approach to overcome these drawbacks, correcting the physical position of markers derived from 15 and 135 K arrays in a diversity panel of bread wheat representing 50 years of breeding history. We detected putative mismapping of 11.7% markers and improved the physical alignment of 5.4% markers. Population analysis indicated reduced genetic diversity over time as a result of breeding efforts. By analysis of outlier loci and allele frequency change over time we traced back the 2NS/2AS translocation of Aegilops ventricosa to one cultivar, "Cardos" (registered in 1998) which was the first among the panel to contain this translocation. A "selective sweep" for this important translocation region on chromosome 2AS was found, putatively linked to plant response to biotic stress factors. Our approach helps in overcoming the drawbacks of incorrectly anchored markers on the wheat reference assembly and facilitates detection of selective sweeps for important agronomic traits.
Collapse
Affiliation(s)
- Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany.
| | - Boby Mathew
- Bayer CropScience, Monheim am Rhein, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Annaliese S Mason
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
32
|
van der Nest MA, Hlongwane N, Hadebe K, Chan WY, van der Merwe NA, De Vos L, Greyling B, Kooverjee BB, Soma P, Dzomba EF, Bradfield M, Muchadeyi FC. Breed Ancestry, Divergence, Admixture, and Selection Patterns of the Simbra Crossbreed. Front Genet 2021; 11:608650. [PMID: 33584805 PMCID: PMC7876384 DOI: 10.3389/fgene.2020.608650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated an admixed South African Simbra crossbred population, as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to understand their genetic architecture and detect genomic regions showing signatures of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K). Genomic structure analysis confirmed that the South African Simbra cattle have an admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra genome maintains favorable traits from both breeds. Genomic regions that have been targeted by selection were detected using the linkage disequilibrium-based methods iHS and Rsb. These analyses identified 10 candidate regions that are potentially under strong positive selection, containing genes implicated in cattle health and production (e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles likely contribute to the biological and cellular functions determining phenotype in the Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from the breed's original indicine and taurine ancestors. The Simbra breed thus possesses derived parental alleles that combine the superior traits of the founder Brahman and Simmental breeds. These regions and genes might represent good targets for ad-hoc physiological studies, selection of breeding material and eventually even gene editing, for improved traits in modern cattle breeds. This study represents an important step toward developing and improving strategies for selection and population breeding to ultimately contribute meaningfully to the beef production industry.
Collapse
Affiliation(s)
| | - Nompilo Hlongwane
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Wai-Yin Chan
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ben Greyling
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | | | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Edgar F Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
33
|
Meng X, Gao Z, Liang Y, Zhang C, Chen Z, Mao Y, Huang B, Kui K, Yang Z. Longissimus Dorsi Muscle Transcriptomic Analysis of Simmental and Chinese Native Cattle Differing in Meat Quality. Front Vet Sci 2020; 7:601064. [PMID: 33385016 PMCID: PMC7770222 DOI: 10.3389/fvets.2020.601064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
With the rapid development of economy, the demand for beef, with regard to quantity and quality, by consumers has been increasing in China. Chinese native cattle are characterized by their abundant genetic resources, unique origins, large breeding stocks, and robust environmental adaptability. Thus, to explore the genetic mechanisms on regulating meat quality in Chinese native cattle is of great importance to satisfy increased requirements for beef production. In this study, we investigated three breeds of cattle, namely Yunling, Wenshan, and Simmental, at the age of 12 months. Animals were classified into three groups (n = 5/breed). Growth traits including body weight and body size and plasma hormone levels were measured. Body weight of Wenshan cattle was significantly lower than that of Yunling and Simmental cattle (P < 0.05). Again, body size indexes, such as withers height, body slanting length, chest circumference, and hip and rump length, were significantly lower in Wenshan cattle than those in Yunling and Simmental cattle (P < 0.05). However, there were no significant differences in those indexes between Yunling and Simmental cattle (P > 0.05). Cattle were slaughtered at the age of 18 months and then meat color, pH, pressing losses, muscle tenderness, and cooking losses were measured at 0, 1, 2, 3, 5, and 7 days. Data revealed differences in meat quality among the three breeds analyzed. Based on transcriptomic sequencing and bioinformatic analysis, we observed 3,198 differentially expressed genes related to meat quality, of which 1,750 genes were upregulated. Moreover, we found two important signaling pathways closely linked to meat quality, namely adipocytokine signaling pathway [e.g., Leptin receptor (LEPR)] and protein processing in the endoplasmic reticulum [e.g., signal transducer and activator of transcription 3 (STAT3), heat shock protein (HSPA12A), and calpain 1 (CAPN1)]. The results of transcripts were further verified by qRT-PCR. Using correlation analysis between gene expression levels and shear force, we also identified two functional genes (e.g., HSPA12A and CAPN1) associated with meat quality. Overall, this study provides new sights into novel targets and underlying mechanisms to modulate meat quality in Chinese native cattle.
Collapse
Affiliation(s)
- Xiangren Meng
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, China.,Jiangsu Huai-yang Cuisine Engineering Center, Yangzhou University, Yangzhou, China
| | - Ziwu Gao
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, China.,Jiangsu Huai-yang Cuisine Engineering Center, Yangzhou University, Yangzhou, China
| | - Yusheng Liang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chenglong Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bizhi Huang
- Academy of Grassland and Animal Science, Yunnan, China
| | - Kaixing Kui
- Academy of Grassland and Animal Science, Yunnan, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Moscarelli A, Sardina MT, Cassandro M, Ciani E, Pilla F, Senczuk G, Portolano B, Mastrangelo S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim Genet 2020; 52:21-31. [PMID: 33174276 DOI: 10.1111/age.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST -outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual-purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.
Collapse
Affiliation(s)
- A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, 35020, Italy
| | - E Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, Bari, 70124, Italy
| | - F Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - G Senczuk
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| |
Collapse
|
35
|
Wu Q, Zang F, Xie X, Ma Y, Zheng Y, Zang D. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis. Sci Rep 2020; 10:16249. [PMID: 33004908 PMCID: PMC7530656 DOI: 10.1038/s41598-020-73289-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Populus wulianensis is an endangered species endemic to Shandong Province, China. Despite the economic and ornamental value of this species, few genomics and genetic studies have been performed. In this study, we performed a relevant analysis of the full-length transcriptome sequencing data of P. wulianensis and obtained expressed sequence tag (EST)-simple sequence repeat (SSR) markers with polymorphisms that can be used for further genetic research. In total, 8.18 Gb (3,521,665) clean reads with an average GC content of 42.12% were obtained. From the corrected 64,737 high-quality isoforms, 42,323 transcript sequences were obtained after redundancy analysis with CD-HIT. Among these transcript sequences, 41,876 sequences were annotated successfully. A total of 23,539 potential EST-SSRs were identified from 16,057 sequences. Excluding mononucleotides, the most abundant motifs were trinucleotide SSRs (47.80%), followed by di- (46.80%), tetra- (2.98%), hexa- (1.58%) and pentanucleotide SSRs (0.84%). Among the 100 designed EST-SSRs, 18 were polymorphic with high PIC values (0.721 and 0.683) and could be used for analyses of the genetic diversity and population structure of P. wulianensis. These full-length transcriptome sequencing data will facilitate gene discovery and functional genomics research in P. wulianensis, and the novel EST-SSRs developed in our study will promote molecular-assisted breeding, genetic diversity and conservation biology research in this species.
Collapse
Affiliation(s)
- Qichao Wu
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Fengqi Zang
- Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Xiaoman Xie
- Center for Forest Genetic Resources of Shandong Province, Jinan, 250014, People's Republic of China
| | - Yan Ma
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Yongqi Zheng
- Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Dekui Zang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
36
|
Pauler CM, Isselstein J, Berard J, Braunbeck T, Schneider MK. Grazing Allometry: Anatomy, Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity. Front Vet Sci 2020; 7:494. [PMID: 32923468 PMCID: PMC7457131 DOI: 10.3389/fvets.2020.00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/03/2022] Open
Abstract
Modern breeding has formed a multitude of cattle breeds ranging from undemanding, low-productive breeds to high-productive, specialized dairy, or beef cattle. The choice of breed has important implications for farm management, but its impact on pasture vegetation is underestimated. We hypothesized (i) that anatomy, movement, and foraging behavior of cattle are allometrically related on the individual level, (ii) that differences among cattle are not explained by individual variation alone but also by breed, and (iii) that anatomy, movement, and foraging behavior of a cattle breed is related to its productivity. In order to test these hypotheses, we conducted a controlled grazing experiment in which three cattle breeds simultaneously grazed three types of heterogenous, alpine pastures: low-productive Highland cattle (average weight: 358 kg); local, dual-purpose Original Braunvieh (582 kg); and high-productive Angus × Holstein crossbreed (679 kg). We measured body weight and claw base of nine cows per breed after 10 weeks of grazing alpine pastures. Over a period of 9 days, we recorded the step frequency and lying time by pedometer and space use by GPS. Moreover, we visually observed foraging behavior on three occasions per cow. Forage selectivity and quality were calculated for every cow's diet. Allometric relationships were analyzed on the individual level by fitting standardized major axes. For most parameters measured, we detected strong allometric relationships and clear differences among breeds that depended on the level of productivity. The claws of Highland cattle were relatively large compared to their body weight and thus they exerted less static pressure than other breeds. Moreover, the more productive a breed was, the higher its selectivity and step frequency were. For example, Highland cattle foraged shrubs and thistles more frequently than high-productive Angus × Holstein. The latter walked longer distances to select higher-quality forage, while Highland cattle used the space more evenly, visited steeper slopes, and moved further away from water points. Irrespective of breed, vegetation composition influenced cattle behavior: On pastures of low forage quality, animals walked more, foraged more selectively, and used space less evenly. In conclusion, the observed breed-specific differences can be used to improve pasture management and grassland conservation.
Collapse
Affiliation(s)
- Caren M Pauler
- Forage Production and Grassland Systems, Agroscope, Zurich, Switzerland.,Department of Crop Sciences, Georg-August-University, Göttingen, Germany.,Centre for Organismal Studies, Ruprecht-Karls-University, Heidelberg, Germany
| | | | - Joel Berard
- AgroVet-Strickhof, Lindau, Switzerland.,Animal Production Systems and Animal Health, Agroscope, Zurich, Switzerland
| | - Thomas Braunbeck
- Centre for Organismal Studies, Ruprecht-Karls-University, Heidelberg, Germany
| | | |
Collapse
|
37
|
Wu F, Sun H, Lu S, Gou X, Yan D, Xu Z, Zhang Z, Qadri QR, Zhang Z, Wang Z, Chen Q, Li M, Wang X, Dong X, Wang Q, Pan Y. Genetic Diversity and Selection Signatures Within Diannan Small-Ear Pigs Revealed by Next-Generation Sequencing. Front Genet 2020; 11:733. [PMID: 32849777 PMCID: PMC7406676 DOI: 10.3389/fgene.2020.00733] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic characterization of Chinese indigenous pig breeds is essential to promote scientific conservation and sustainable development of pigs. Here, we systematically surveyed the genomes of 75 unrelated Diannan small-ear (DSE) pigs from three diverse regions (Yingjiang County, Jinping County, and Sipsongpanna in Yunnan Province) to describe their population structures, genetic diversity, inbreeding coefficients, and selection signatures. First, these individuals were sequenced and genotyped using the genome reducing and sequencing (GGRS) protocol. A total of 438,038 autosomal single-nucleotide polymorphisms (SNPs) were obtained and used for subsequent statistical analysis. The results showed that these DSE pigs were clearly differentiated into three separate clades revealed by the population structure and principal component analysis, which is consistent with their geographical origins. Diannan small-ear pigs owned lower genetic diversity when compared with some other pig breeds, which demonstrated the need to strengthen the conservation strategies for DSE pigs. In addition, the inbreeding coefficients based on runs of homozygosity (ROH) length (F ROH) were calculated in each ROH length categories, respectively. And the results indicated that the ancient (up to 50 generations ago) inbreeding had greater impacts than recent (within the last five generations) inbreeding within DSE pigs. Some candidate selection signatures within the DSE pig population were detected through the ROH islands and integrated haplotype homozygosity score (iHS) methods. And genes associated with meat quality (COL15A1, RPL3L, and SLC9A3R2), body size (PALM2-AKAP2, NANS, TRAF7, and PACSIN1), adaptability (CLDN9 and E4F1), and appetite (GRM4) were identified. These findings can help to understand the genetic characteristics and provide insights into the molecular background of special phenotypes of DSE pigs to promote conservation and sustainability of the breed.
Collapse
Affiliation(s)
- Fen Wu
- Department of Animal Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxiong Lu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiao Gou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyang Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qamar Raza Qadri
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Animal Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingli Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyi Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Crysnanto D, Pausch H. Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery. Genome Biol 2020; 21:184. [PMID: 32718320 PMCID: PMC7385871 DOI: 10.1186/s13059-020-02105-0%0a%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The current bovine genomic reference sequence was assembled from a Hereford cow. The resulting linear assembly lacks diversity because it does not contain allelic variation, a drawback of linear references that causes reference allele bias. High nucleotide diversity and the separation of individuals by hundreds of breeds make cattle ideally suited to investigate the optimal composition of variation-aware references. RESULTS We augment the bovine linear reference sequence (ARS-UCD1.2) with variants filtered for allele frequency in dairy (Brown Swiss, Holstein) and dual-purpose (Fleckvieh, Original Braunvieh) cattle breeds to construct either breed-specific or pan-genome reference graphs using the vg toolkit. We find that read mapping is more accurate to variation-aware than linear references if pre-selected variants are used to construct the genome graphs. Graphs that contain random variants do not improve read mapping over the linear reference sequence. Breed-specific augmented and pan-genome graphs enable almost similar mapping accuracy improvements over the linear reference. We construct a whole-genome graph that contains the Hereford-based reference sequence and 14 million alleles that have alternate allele frequency greater than 0.03 in the Brown Swiss cattle breed. Our novel variation-aware reference facilitates accurate read mapping and unbiased sequence variant genotyping for SNPs and Indels. CONCLUSIONS We develop the first variation-aware reference graph for an agricultural animal ( https://doi.org/10.5281/zenodo.3759712 ). Our novel reference structure improves sequence read mapping and variant genotyping over the linear reference. Our work is a first step towards the transition from linear to variation-aware reference structures in species with high genetic diversity and many sub-populations.
Collapse
|
39
|
Crysnanto D, Pausch H. Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery. Genome Biol 2020; 21:184. [PMID: 32718320 PMCID: PMC7385871 DOI: 10.1186/s13059-020-02105-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The current bovine genomic reference sequence was assembled from a Hereford cow. The resulting linear assembly lacks diversity because it does not contain allelic variation, a drawback of linear references that causes reference allele bias. High nucleotide diversity and the separation of individuals by hundreds of breeds make cattle ideally suited to investigate the optimal composition of variation-aware references. RESULTS We augment the bovine linear reference sequence (ARS-UCD1.2) with variants filtered for allele frequency in dairy (Brown Swiss, Holstein) and dual-purpose (Fleckvieh, Original Braunvieh) cattle breeds to construct either breed-specific or pan-genome reference graphs using the vg toolkit. We find that read mapping is more accurate to variation-aware than linear references if pre-selected variants are used to construct the genome graphs. Graphs that contain random variants do not improve read mapping over the linear reference sequence. Breed-specific augmented and pan-genome graphs enable almost similar mapping accuracy improvements over the linear reference. We construct a whole-genome graph that contains the Hereford-based reference sequence and 14 million alleles that have alternate allele frequency greater than 0.03 in the Brown Swiss cattle breed. Our novel variation-aware reference facilitates accurate read mapping and unbiased sequence variant genotyping for SNPs and Indels. CONCLUSIONS We develop the first variation-aware reference graph for an agricultural animal ( https://doi.org/10.5281/zenodo.3759712 ). Our novel reference structure improves sequence read mapping and variant genotyping over the linear reference. Our work is a first step towards the transition from linear to variation-aware reference structures in species with high genetic diversity and many sub-populations.
Collapse
|
40
|
Agradi S, Curone G, Negroni D, Vigo D, Brecchia G, Bronzo V, Panseri S, Chiesa LM, Peric T, Danes D, Menchetti L. Determination of Fatty Acids Profile in Original Brown Cows Dairy Products and Relationship with Alpine Pasture Farming System. Animals (Basel) 2020; 10:E1231. [PMID: 32698365 PMCID: PMC7401626 DOI: 10.3390/ani10071231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to evaluate the relationships between fatty acids and the pattern that most contributes to discriminate between two farming systems, in which the main difference was the practice, or not, of alpine summer-grazing. Milk and cheese were sampled every month in two farms of Original Brown cows identical under geographical location and management during no grazing season point of view in the 2018 season. Fatty acids concentrations were determined by gas chromatography. The principal component analysis extracted three components (PCs). Mammary gland de novo synthetized fatty acids (C14:0, C14:1 n9, and C16:0) and saturated and monosaturated C18 fatty acids (C18:0, C18:1 n9c) were inversely associated in the PC1; PC2 included polyunsaturated C18 fatty acids (C18:2 n6c, C18:3 n3) and C15:0 while conjugated linoleic acid (CLA n9c, n11t) and fatty acids containing 20 or more carbon atoms (C21:0, C20:5 n3) were associated in the PC3. The processes of rumen fermentation and de novo synthesis in mammary gland that are, in turn, influenced by diet, could explain the relationships between fatty acids within each PC. The discriminant analyses showed that the PC2 included the fatty acids profile that best discriminated between the two farming systems, followed by PC3 and, lastly, PC1. This model, if validated, could be an important tool to the dairy industry.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Daniele Negroni
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Valerio Bronzo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.N.); (D.V.); (G.B.); (V.B.)
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via Celoria 10, 20133 Milan, Italy; (S.P.); (L.M.C.)
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via Celoria 10, 20133 Milan, Italy; (S.P.); (L.M.C.)
| | - Tanja Peric
- DI4A—Dipartimento di Scienze Agroalimentari Ambientali e Animali/Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/B, 33100 Udine, Italy;
| | - Doina Danes
- Facultaty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Splaiul Independentei 105, 050097 Bucharest, Romania;
| | - Laura Menchetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
41
|
Hiltpold M, Niu G, Kadri NK, Crysnanto D, Fang ZH, Spengeler M, Schmitz-Hsu F, Fuerst C, Schwarzenbacher H, Seefried FR, Seehusen F, Witschi U, Schnieke A, Fries R, Bollwein H, Flisikowski K, Pausch H. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet 2020; 16:e1008804. [PMID: 32407316 PMCID: PMC7252675 DOI: 10.1371/journal.pgen.1008804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10−27), head (P = 2.0 x 10−44) and tail anomalies (P = 7.2 x 10−49) and insemination success (P = 9.9 x 10−13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle. In cattle farming, artificial insemination is the most common method of breeding. To ensure high fertilization rates, ejaculate quality and insemination success are closely monitored in artificial insemination bulls. We analyse semen quality, insemination success and microarray-called genotypes at more than 600,000 genome-wide SNP markers of 794 bulls to identify a recessive allele that compromises semen quality. We take advantage of whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encoding WD repeat-containing protein 19 that activates a novel exonic splice site. Our results indicate that cryptic splicing in WDR19 is associated with reduced male reproductive performance. This is the first report of a variant that contributes to quantitative variation in bovine semen quality.
Collapse
Affiliation(s)
| | - Guanglin Niu
- Livestock Biotechnology, TU München, Freising, Germany
| | | | | | - Zih-Hua Fang
- Animal Genomics, ETH Zürich, Lindau, Switzerland
| | | | | | | | | | | | - Frauke Seehusen
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Ruedi Fries
- Animal Breeding, TU München, Freising, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, University of Zurich, Zürich, Switzerland
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, Switzerland
- * E-mail:
| |
Collapse
|