1
|
Yuan G, Wang D, Yu C, Hua J, Yin Y, Chen T. 5-AzaCytidine Promotes Somatic Embryogenesis of Taxodium Hybrid 'Zhongshanshan' by Regulating Redox Homeostasis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1354. [PMID: 40364382 PMCID: PMC12073654 DOI: 10.3390/plants14091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
DNA methylation plays a crucial role in regulating the developmental processes of plants. Particularly, it is closely associated with the development of embryogenic cells (EC) and somatic embryos (SE). In this study, we investigated the effects of 5-azaCytidine (5-azaC) treatment on somatic embryogenesis proliferation and maturation of Taxodium hybrid 'zhongshanshan'. The results showed that the callus proliferation was inhibited when the concentration of 5-azaC exceeded 30 μM, while treatment with 5 μM 5-azaC improved the maturation rate and expedited the process of SE formation. It was also noted that 5-azaC influenced somatic embryogenesis during the second week of embryo induction, substantially enhancing the maturation rate of somatic embryos and the germination rate of Taxodium hybrid 'zhongshanshan'. Furthermore, the analysis revealed that treatment with 5-azaC resulted in elevated levels of H2O2, SOD, POD, and AsA during the cotyledonary embryo period in Taxodium hybrid 'zhongshanshan', indicating its potential to promote somatic embryogenesis by regulating redox homeostasis. This study concluded that 5-azaC could improve the efficiency of somatic embryogenesis in Taxodium hybrid 'zhongshanshan', as well as provide a solid foundation for investigating the effects of 5-azaC on somatic embryogenesis in other conifer species.
Collapse
Affiliation(s)
- Guoying Yuan
- College of Forestry and Grassland and College of Soil and Water, Nanjing Forestry University, Nanjing 210037, China;
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| | - Dan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- College of Forestry and Grassland and College of Soil and Water, Nanjing Forestry University, Nanjing 210037, China;
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| | - Tingting Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China; (D.W.); (C.Y.); (J.H.)
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
2
|
Gao Z, Cai Y, Long J, Wang B, Huang Z, Gao Y. The Complete Chloroplast Genome and the Phylogenetic Analysis of Fimbristylis littoralis (Cyperaceae) Collected in Cherry Blossom Nursery. Int J Mol Sci 2025; 26:2321. [PMID: 40076940 PMCID: PMC11901024 DOI: 10.3390/ijms26052321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Fimbristylis littoralis, also known as globe fringerush, is one of the most troublesome annual Cyperaceae weeds in dryland fields and nurseries in the Yangtze Plain, Middle and Lower in China. The chloroplast (cp) genome of F. littoralis, and even this genus, has not been studied yet. In this study, the feature of the cp genome of F. littoralis and its phylogenetic relationships has been reported for the first time. It exhibited a typical circular tetramerous structure, with 86 protein-encoding genes. There were 149 simple sequence repeats (SSRs) and 1932 long repeats (LRs) detected. The IR expansion and contraction revealed the uniqueness of F. littoralis because there is a special cross-boundary gene, rps3, located at the LSC/IRb junction. Phylogenetic and divergence time dating analysis showed the close relationship between F. littoralis and the genus Cyperus, as well as many evolutionary directions of Cyperaceae family plants. The most recommended chemical method for removing this weed from nurseries is to spray 13 g ai ha-1 (the amount of active ingredient applied per hectare) of saflufenacil before emergence or 7.5 g ai ha-1 of halosulfuron-methyl after emergence. In conclusion, this study was the first to report the complete cp genome of a plant in the genus Fimbristylis. Our findings also provided valuable biological information for studying the phylogenetic relationships and evolution among the family Cyperaceae.
Collapse
Affiliation(s)
- Zhaoliang Gao
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| | - Yutong Cai
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| | - Jiaqi Long
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.L.); (B.W.)
| | - Bo Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.L.); (B.W.)
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Gao
- Forest & Fruit Tree Research Institute, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.G.); (Y.C.)
| |
Collapse
|
3
|
Han Z, Chen Y, Dai X, Yu C, Cheng J, Li J, Mao K. The revelation of genomic breed composition using target capture sequencing: a case of Taxodium. FORESTRY RESEARCH 2024; 4:e034. [PMID: 39524421 PMCID: PMC11524225 DOI: 10.48130/forres-0024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
Taxodium plants have good flood tolerance and thus were introduced into China from North America in the early 1900s. The subsequent decades of cross-breeding experiments within Taxodium have produced many new hybrid cultivars in China while also creating confusion in the genetic background of Taxodium plants. In the present study, target capture sequencing-derived SNP markers were used to reveal the genomic composition of different species and cultivars of Taxodium. The results unraveled the phylogenetic relationship within Taxodium and suggested the possibility of recent interspecific natural hybridization events. The introduced (Chinese) population is genetically similar to the native (North American) population, thus providing genetic evidence for historical introductions of Taxodium. Hybrid categories of different cultivars of Taxodium hybrid 'Zhongshanshan' were further identified, and their differences in parentage were revealed. Collectively, the findings provide evidence for understanding the genetics and hybridization of Taxodium and shed light on the future breeding and cultivation of cultivars with great ecological and economic potential.
Collapse
Affiliation(s)
- Zhitong Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yangkang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xiaogang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, PR China
| | - Jiajin Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
4
|
Liu S, Veranso-Libalah MC, Sukhorukov AP, Sun X, Nilova MV, Kushunina M, Mamut J, Wen Z. Phylogenetic placement of the monotypic Baolia (Amaranthaceae s.l.) based on morphological and molecular evidence. BMC PLANT BIOLOGY 2024; 24:456. [PMID: 38789931 PMCID: PMC11127444 DOI: 10.1186/s12870-024-05164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Baolia H.W.Kung & G.L.Chu is a monotypic genus only known in Diebu County, Gansu Province, China. Its systematic position is contradictory, and its morphoanatomical characters deviate from all other Chenopodiaceae. Recent study has regarded Baolia as a sister group to Corispermoideae. We therefore sequenced and compared the chloroplast genomes of this species, and resolved its phylogenetic position based on both chloroplast genomes and marker sequences. RESULTS We sequenced 18 chloroplast genomes of 16 samples from two populations of Baolia bracteata and two Corispermum species. These genomes of Baolia ranged in size from 152,499 to 152,508 bp. Simple sequence repeats (SSRs) were primarily located in the LSC region of Baolia chloroplast genomes, and most of them consisted of single nucleotide A/T repeat sequences. Notably, there were differences in the types and numbers of SSRs between the two populations of B. bracteata. Our phylogenetic analysis, based on both complete chloroplast genomes from 33 species and a combination of three markers (ITS, rbcL, and matK) from 91 species, revealed that Baolia and Corispermoideae (Agriophyllum, Anthochlamys, and Corispermum) form a well-supported clade and sister to Acroglochin. According to our molecular dating results, a major divergence event between Acroglochin, Baolia, and Corispermeae occurred during the Middle Eocene, approximately 44.49 mya. Ancestral state reconstruction analysis showed that Baolia exhibited symplesiomorphies with those found in core Corispermoideae characteristics including pericarp and seed coat. CONCLUSIONS Comparing the chloroplast genomes of B. bracteata with those of eleven typical Chenopodioideae and Corispermoideae species, we observed a high overall similarity and a one notable noteworthy case of inversion of approximately 3,100 bp. of DNA segments only in two Atriplex and four Chenopodium species. We suggest that Corispermoideae should be considered in a broader sense, it includes Corispermeae (core Corispermoideae: Agriophyllum, Anthochlamys, and Corispermum), as well as two new monotypic tribes, Acroglochineae (Acroglochin) and Baolieae (Baolia).
Collapse
Affiliation(s)
- Shuai Liu
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Marie Claire Veranso-Libalah
- Biodiversität und Evolution der Pflanzen, Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 830052, München, Germany
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation.
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050,, Russian Federation.
| | - Xuegang Sun
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Maya V Nilova
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Maria Kushunina
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050,, Russian Federation
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Jannathan Mamut
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China.
- Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi, 830011, China.
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
5
|
Zhao M, Wu Y, Ren Y. Complete Chloroplast Genome Sequence Structure and Phylogenetic Analysis of Kohlrabi ( Brassica oleracea var. gongylodes L.). Genes (Basel) 2024; 15:550. [PMID: 38790180 PMCID: PMC11120933 DOI: 10.3390/genes15050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.
Collapse
Affiliation(s)
- Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Yanxun Wu
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Xining 810016, China
- Qinghai Provincial Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| |
Collapse
|
6
|
Li YL, Nie LY, Deng SW, Duan L, Wang ZF, Charboneau JLM, Ho BC, Chen HF. Characterization of Firmiana danxiaensis plastomes and comparative analysis of Firmiana: insight into its phylogeny and evolution. BMC Genomics 2024; 25:203. [PMID: 38389079 PMCID: PMC10885454 DOI: 10.1186/s12864-024-10046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Firmiana danxiaensis is a critically endangered and ecologically important tree currently only found in four locations in Danxia or Karst habitats in northern Guangdong Province, China. The specialized habitat preference makes it an ideal model species for study of adaptive evolution. Meanwhile, the phylogenetic relationships of F. danxiaensis in four locations under two landforms are unclear. Therefore, we sequenced its complete chloroplast (cp.) genomes and conducted comprehensive interspecific and intrageneric plastome studies. RESULTS The F. danxiaensis plastomes in four locations showed a typical quadripartite and circular structure that ranged from 160,832 to 161,206 bp in size, with 112 unique genes encoded. Comparative genomics showed that the plastomes of F. danxiaensis were relatively conserved with high similarity of genome organization, gene number, GC content and SSRs. While the genomes revealed higher biased codon preferences in Karst habitat than those in Danxia habitats. Eighteen and 11 divergent hotpots were identified at interspecific and intrageneric levels for species identification and further phylogenetic studies. Seven genes (clpP, accD, ccsA, ndhH, rpl20, rpoC2, and rps4) were under positive selection and may be related to adaptation. Phylogenetic analysis revealed that F. danxiaensis is sister to F. major and F. simplex. However, the interspecific relationships are not consistent with the habitat types. CONCLUSIONS The characteristics and interspecific relationship of F. danxiaensis plastomes provide new insights into further integration of geographical factors, environmental factors, and genetic variations on the genomic study of F. danxiaensis. Together, our study will contribute to the study of species identification, population genetics, and conservation biology of F. danxiaensis.
Collapse
Affiliation(s)
- Ya-Li Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Wen Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boon-Chuan Ho
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259569, Republic of Singapore
| | - Hong-Feng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Xiao F, Zhao Y, Wang X, Jian X. Characterization of the chloroplast genome of Gleditsia species and comparative analysis. Sci Rep 2024; 14:4262. [PMID: 38383559 PMCID: PMC10881578 DOI: 10.1038/s41598-024-54608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
The genus Gleditsia has significant medicinal and economic value, but information about the chloroplast genomic characteristics of Gleditsia species has been limited. Using the Illumina sequencing, we assembled and annotated the whole chloroplast genomes of seven Gleditsia species (Gleditsia sinensis, Gleditsia japonica var. delavayi (G. delavayi), G. fera, G. japonica, G. microphylla, Fructus Gleditsiae Abnormalis (Zhū Yá Zào), G. microphylla mutant). The assembled genomes revealed that Gleditsia species have a typical circular tetrad structure, with genome sizes ranging from 162,746 to 170,907 bp. Comparative genomic analysis showed that most (65.8-75.8%) of the abundant simple sequence repeats in Gleditsia and Gymnocladus species were located in the large single copy region. The Gleditsia chloroplast genome prefer T/A-ending codons and avoid C/G-ending codons, positive selection was acting on the rpoA, rpl20, atpB, ndhA and ycf4 genes, most of the chloroplast genes of Gleditsia species underwent purifying selection. Expansion and contraction of the inverted repeat (IR)/single copy (SC) region showed similar patterns within the Gleditsia genus. Polymorphism analysis revealed that coding regions were more conserved than non-coding regions, and the IR region was more conserved than the SC region. Mutational hotspots were mostly found in intergenic regions such as "rps16-trnQ", "trnT-trnL", "ndhG-ndhI", and "rpl32-trnL" in Gleditsia. Phylogenetic analysis showed that G. fera is most closely related to G. sinensis,G. japonica and G. delavayi are relatively closely related. Zhū Yá Zào can be considered a bud mutation of the G. sinensis. The albino phenotype of G. microphylla mutant is not caused by variations in the chloroplast genome, and that the occurrence of the albino phenotype may be due to mutations in chloroplast-related genes involved in splicing or localization functions. This study will help us enhance our exploration of the genetic evolution and geographical origins of the Gleditsia genus.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji, 133002, Jilin, China
| |
Collapse
|
8
|
Yue M, Chen H, Xuan L, Yang Y, Chong X, Li M, Yu C, Lu X, Zhang F. Novel molecular markers for Taxodium breeding from the chloroplast genomes of four artificial Taxodium hybrids. Front Genet 2023; 14:1193023. [PMID: 37600666 PMCID: PMC10433758 DOI: 10.3389/fgene.2023.1193023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Taxodium "Zhongshanshan" are a group of intraspecific Taxodium hybrids with superparental dominance and high ecological and economic value in southern China. Identifying the parentage of hybrids, especially the male parent, is critically important for genetic studies. However, the large nuclear genomes of members of the genus Taxodium pose a major challenge for the development of molecular markers. Here, we developed novel molecular markers by conducting a comparative analysis of the chloroplast genomes of four artificial Taxodium hybrids and their parents. The lengths of the whole chloroplast genome ranged from 131,942 to 132,128 bp, and the total guanine (GC) content of the chloroplast genomes ranged from 34.6% to 35.81%. A total of 120 unique genes were identified, including 83 protein-coding genes, 33 transfer RNAs, and four ribosomal RNAs. There were 69-71 simple sequence repeats were detected in the four hybrids. Phylogenetic analysis revealed that these hybrids clustered with their paternal parents. Similar findings were obtained by analysis of the GC content of protein-coding genes. Molecular markers were developed using the highly variable regions of the chloroplast genomes, and polymerase chain reaction (PCR) assays revealed that these markers were effective for identifying the male parents of these hybrids. Our findings indicate for the first time that the chloroplast genomes of Taxodium are paternally inherited. Generally, these molecular markers could facilitate breeding and genetic studies of Taxodium.
Collapse
Affiliation(s)
- Minghua Yue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lei Xuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Ying Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Xinran Chong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mingzhi Li
- Guangzhou Bio&Data Technology Co., Ltd., Guangzhou, China
| | - ChaoGuang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Xiaoqing Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
9
|
Gao Y, Li S, Yuan G, Fang J, Shen G, Tian Z. Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). BIOLOGY 2023; 12:936. [PMID: 37508367 PMCID: PMC10375975 DOI: 10.3390/biology12070936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
Ammannia arenaria and A. multifloras, morphologically similar at the seedling stage, are the most common broad-leaved weeds in paddy fields. Our study showed that A. arenaria occupied more space than A. multifloras when competing with rice. However, A. multifloras germination has lower temperature adaptability. No difference in sensitivity to common herbicides between two Ammannia species was observed. Chloroplast (cp) genomes could be conducive to clarify their genetic relationship. The complete cp genome sequences of A. arenaria (158,401 bp) and A. multiflora (157,900 bp) were assembled for the first time. In A. arenaria, there were 91 simple sequence repeats, 115 long repeats, and 86 protein-encoding genes, one, sixteen, and thirty more than those in A. multiflora. Inverted repeats regions expansion and contraction and the phylogenetic tree based on cp genomes demonstrated the closely relationship between the two species. However, in A. arenaria, 20 single nucleotide polymorphisms in the CDS region were detected compared to A. multiflora, which can be used to distinguish the two species. Moreover, there was one unique gene, infA, only in A. arenaria. This study provides reliable molecular resources for future research focusing on the infrageneric taxa identification, phylogenetic resolution, population structure, and biodiversity of Ammannia species.
Collapse
Affiliation(s)
- Yuan Gao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shenghui Li
- College of Agriculture, Anshun University, Anshun 561000, China
| | - Guohui Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiapeng Fang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Guohui Shen
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhihui Tian
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
10
|
Yu J, Li J, Zuo Y, Qin Q, Zeng S, Rennenberg H, Deng H. Plastome variations reveal the distinct evolutionary scenarios of plastomes in the subfamily Cereoideae (Cactaceae). BMC PLANT BIOLOGY 2023; 23:132. [PMID: 36882685 PMCID: PMC9993602 DOI: 10.1186/s12870-023-04148-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The cactus family (Cactaceae) has been reported to have evolved a minimal photosynthetic plastome size, with the loss of inverted-repeat (IR) regions and NDH gene suites. However, there are very limited genomic data on the family, especially Cereoideae, the largest subfamily of cacti. RESULTS In the present study, we assembled and annotated 35 plastomes, 33 of which were representatives of Cereoideae, alongside 2 previously published plastomes. We analyzed the organelle genomes of 35 genera in the subfamily. These plastomes have variations rarely observed in those of other angiosperms, including size differences (with ~ 30 kb between the shortest and longest), dramatic dynamic changes in IR boundaries, frequent plastome inversions, and rearrangements. These results suggested that cacti have the most complex plastome evolution among angiosperms. CONCLUSION These results provide unique insight into the dynamic evolutionary history of Cereoideae plastomes and refine current knowledge of the relationships within the subfamily.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| | - Jingling Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
| | - Qiulin Qin
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Siyuan Zeng
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology, College of Resources and Environment, Southwest University, Chongqing, 400715 China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715 China
- No. 2 Tiansheng Road, Beibei District, Chongqing, 400716 China
| |
Collapse
|
11
|
Hu Q, Qian R, Zhang Y, Ma X, Ye Y, Zhang X, Lin L, Liu H, Zheng J. Complete chloroplast genome molecular structure, comparative and phylogenetic analyses of Sphaeropteris lepifera of Cyatheaceae family: a tree fern from China. Sci Rep 2023; 13:1356. [PMID: 36693990 PMCID: PMC9873718 DOI: 10.1038/s41598-023-28432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Sphaeropteris lepifera is a tree fern in the Cyatheaceae, a family that has played an important role in the evolution of plant systems. This study aimed to analyze the complete chloroplast genome of S. lepifera and compared it with previously published chloroplast genomes Cyatheaceae family. The chloroplast genome of S. lepifera comprised 162,114 bp, consisting of a large single copy (LSC) region of 86,327 bp, a small single copy (SSC) region of 27,731 bp and a pair of inverted repeats (IRa and IRb) of 24,028 bp each. The chloroplast genome encoded 129 genes, comprising 32 transfer RNAs, 8 ribosomal RNAs, and 89 protein-coding genes. Comparison of the genomes of 7 Cyatheaceae plants showed that the chloroplast genome of S. lepifera was missing the gene trnV-UAC. Expansion of the SSC region led to the difference in the chloroplast genome size of S. lepifera. Eight genes, atpI, ccsA, petA, psaB, rpl16, rpoA, rpoC1, and ycf2 have high nucleic acid diversity and can be regarded as potential molecular markers. The genes trnG-trnR and atpB were suitable for DNA barcodes between different communities of S. lepifera. The S. lepifera groups in Zhejiang Province probably diffused from Pingtan and Ningde, Fujian. The results will provide a basis for species identification, biological studies, and endangerment mechanism of S. lepifera.
Collapse
Affiliation(s)
- Qingdi Hu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Yanjun Zhang
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang, China
| | - Xiaohua Ma
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Xule Zhang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Lin Lin
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Hongjian Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Jian Zheng
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
12
|
Comparative and phylogenetic analysis of the complete chloroplast genome sequences of Allium mongolicum. Sci Rep 2022; 12:21676. [PMID: 36522492 PMCID: PMC9755143 DOI: 10.1038/s41598-022-26354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Allium mongolicum Regel is a wild and sandy vegetable with unique flavours. In this study, a complete chloroplast (cp) genome of A. mongolicum was obtained (Genbank accession number: OM630416), and contained 153,609 base pairs with the GC ratio as 36.8%. 130 genes were annotated including 84 protein-coding genes, 38 tRNA, and 8 rRNA genes. The large single-copy (LSC) region was 82,644 bp, and a small single-copy (SSC) region was 18,049 bp, which were separated by two inverted repeats (IRs, including IRa and IRb) of 26,458 bp. Comparative genome analyses of 55 Allium species suggested that genomic structure of genus Allium was conserved, and LSC and SSC regions were outstanding with high variability. Among them, more divergent loci were in the SSC region covering ycf1-rrn4.5 and ndhF-ccsA. Phylogenetic analysis on cp genomes of 55 Allium determined that all members were clustered into 13 clades, and A. mongolicum had close relationship with A. senescens. Corresponding analyses of four protein-coding genes (ycf1, ndhF, rpl32, and ccsA) in aforementioned divergent loci confirmed that ycf1 was finally chosen as the candidate gene for species identification and evolutionary classification of genus Allium. These data provide valuable genetic resources for future research on Allium.
Collapse
|
13
|
Gao Y, Shen G, Yuan G, Tian Z. Comparative Analysis of Whole Chloroplast Genomes of Three Common Species of Echinochloa (Gramineae) in Paddy Fields. Int J Mol Sci 2022; 23:ijms232213864. [PMID: 36430336 PMCID: PMC9698722 DOI: 10.3390/ijms232213864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Echinochloa crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, morphologically similar at the seedling stage, are the most pernicious barnyard grass species in paddy fields worldwide. Chloroplast (cp) genomes could be conducive to their identification. In this study, we assembled the complete cp genome sequences of Echinochloa crus-galli var. crus-galli (139,856 bp), E. crus-galli var. zelayensis (139,874 bp), and E. glabrescens (139,874 bp), which exhibited a typical circular tetramerous structure, large and small single-copy regions, and a pair of inverted repeats. In Echinochloa crus-galli var. crus-galli, there were 136 simple sequence (SSRs) and 62 long (LRs) repeats, and in the other two species, 139 SSRs and 68 LRs. Each cp genome contains 92 protein-encoding genes. In Echinochloa crus-galli var. crus-galli and E. glabrescens, 321 and 1 single-nucleotide polymorphisms were detected compared to Echinochloa crus-galli var. zelayensis. IR expansion and contraction revealed small differences between the three species. The phylogenetic tree based on cp genomes demonstrated the phylogenetic relationship between ten barnyard grass species and other common Gramineae plants, showing new genetic relationships of the genus Echinochloa. This study provides valuable information on cp genomes, useful for identifying and classifying the genus Echinochloa and studying its phylogenetic relationships and evolution.
Collapse
|
14
|
Zheng Y, Wang D, Li X, Wang Z, Zhou Q, Fu L, Yin Y, Creech D. Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. BIOSENSORS 2021; 11:403. [PMID: 34677359 PMCID: PMC8534068 DOI: 10.3390/bios11100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
The use of electrochemical fingerprints for plant identification is an emerging application in biosensors. In this work, Taxodium ascendens, T. distichum, T. mucronatum, and 18 of their hybrid progenies were collected for this purpose. This is the first attempt to use electrochemical fingerprinting for the identification of plant hybrid progeny. Electrochemical fingerprinting in the leaves of Taxodium spp. was recorded under two conditions. The results showed that the electrochemical fingerprints of each species and progeny possessed very suitable reproducibility. These electrochemical fingerprints represent the electrochemical behavior of electrochemically active substances in leaf tissues under specific conditions. Since these species and progenies are very closely related to each other, it is challenging to identify them directly using a particular electrochemical fingerprinting. Therefore, electrochemical fingerprints measured under different conditions were used to perform pattern recognition. We can identify different species and progenies by locating the features in different pattern maps. We also performed a phylogenetic study with data from electrochemical fingerprinting. The results proved that the electrochemical classification results and the relationship between them are closely related.
Collapse
Affiliation(s)
- Yuhong Zheng
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - Da Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Ziyang Wang
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (D.W.); (X.L.); (Q.Z.)
| | - Yunlong Yin
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (Z.W.); (Y.Y.)
| | - David Creech
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA;
| |
Collapse
|
15
|
Huang R, Xie X, Chen A, Li F, Tian E, Chao Z. The chloroplast genomes of four Bupleurum (Apiaceae) species endemic to Southwestern China, a diversity center of the genus, as well as their evolutionary implications and phylogenetic inferences. BMC Genomics 2021; 22:714. [PMID: 34600494 PMCID: PMC8487540 DOI: 10.1186/s12864-021-08008-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background As one of the largest genera in Apiaceae, Bupleurum L. is well known for its high medicinal value. The genus has frequently attracted the attention of evolutionary biologist and taxonomist for its distinctive characteristics in the Apiaceae family. Although some chloroplast genomes data have been now available, the changes in the structure of chloroplast genomes and selective pressure in the genus have not been fully understood. In addition, few of the species are endemic to Southwest China, a distribution and diversity center of Chinese Bupleurum. Endemic species are key components of biodiversity and ecosystems, and investigation of the chloroplast genomes features of endemic species in Bupleurum will be helpful to develop a better understanding of evolutionary process and phylogeny of the genus. In this study, we analyzed the sequences of whole chloroplast genomes of 4 Southwest China endemic Bupleurum species in comparison with the published data of 17 Bupleurum species to determine the evolutionary characteristics of the genus and the phylogenetic relationships of Asian Bupleurum. Results The complete chloroplast genome sequences of the 4 endemic Bupleurum species are 155,025 bp to 155,323 bp in length including a SSC and a LSC region separated by a pair of IRs. Comparative analysis revealed an identical chloroplast gene content across the 21 Bupleurum species, including a total of 114 unique genes (30 tRNA genes, 4 rRNA genes and 80 protein-coding genes). Chloroplast genomes of the 21 Bupleurum species showed no rearrangements and a high sequence identity (96.4–99.2%). They also shared a similar tendency of SDRs and SSRs, but differed in number (59–83). In spite of their high conservation, they contained some mutational hotspots, which can be potentially exploited as high-resolution DNA barcodes for species discrimination. Selective pressure analysis showed that four genes were under positive selection. Phylogenetic analysis revealed that the 21 Bupleurum formed two major clades, which are likely to correspond to their geographical distribution. Conclusions The chloroplast genome data of the four endemic Bupleurum species provide important insights into the characteristics and evolution of chloroplast genomes of this genu, and the phylogeny of Bupleurum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08008-z.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xuena Xie
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Aimin Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Enwei Tian
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China. .,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Yan Y, Wu X, Wang M, Li Z, Yuan M, Dai M, Wen Y. Complete chloroplast genomes of wild and cultivated Cryptomeria japonica var. sinensis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1932592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yadan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Xingtong Wu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Minqiu Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Zeqing Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Meiling Yuan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Minjun Dai
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| |
Collapse
|
17
|
Ren F, Wang L, Li Y, Zhuo W, Xu Z, Guo H, Liu Y, Gao R, Song J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol Evol 2021; 11:4158-4171. [PMID: 33976800 PMCID: PMC8093665 DOI: 10.1002/ece3.7312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029-190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955-42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.
Collapse
Affiliation(s)
- Fengming Ren
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | | | - Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | - Wei Zhuo
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Zhichao Xu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | | | - Yan Liu
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Ranran Gao
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
| | - Jingyuan Song
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| |
Collapse
|
18
|
Xiao S, Xu P, Deng Y, Dai X, Zhao L, Heider B, Zhang A, Zhou Z, Cao Q. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L.] Lam). BMC Genomics 2021; 22:262. [PMID: 33849443 PMCID: PMC8042981 DOI: 10.1186/s12864-021-07544-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. Results The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. Conclusions Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07544-y.
Collapse
Affiliation(s)
- Shizhuo Xiao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Pan Xu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yitong Deng
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Xibin Dai
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Lukuan Zhao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Bettina Heider
- International Potato Center, Av.La Molina 1895, La Molina, Lima, Peru
| | - An Zhang
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Zhilin Zhou
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Qinghe Cao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China.
| |
Collapse
|
19
|
Zhang F, Xuan L, Zhou Y, Yin Y, Lu X. The complete chloroplast genome sequence of Taxodium ascendens × T. mucronatum hybrid (Cupressaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1110-1111. [PMID: 33796756 PMCID: PMC7995817 DOI: 10.1080/23802359.2021.1899868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Taxodium 'Zhongshanshan 401' is an important economic plant with ornamental and ecological values, and has been widely planted in southeastern China. In this study, the complete chloroplast (cp) genome of T. 'Zhongshanshan 401' was sequenced and illustrated to add the more genetic information. The entire cp genome of T. 'Zhongshanshan 401' was 132,037 bp in length with 35.3% overall GC content. The cp genome contained 120 genes, including 83 protein-coding genes, 33 tRNA genes, and four rRNA genes. Fifteen genes contain two exons and two contains three exons. Phylogenetic analysis based on whole cp genome sequences showed that T. 'Zhongshanshan 401' was more closely related to T. mucronatum.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, PR China
| | - Lei Xuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, PR China
| | - Yanwei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, PR China
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, PR China
| | - Xiaoqing Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, PR China
| |
Collapse
|
20
|
Zhuang W, Shu X, Zhang H, Wang T, Zhang F, Wang N, Wang Z. Complete chloroplast genome sequence and phylogenetic analysis of Populus deltoides Caihong. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:389-390. [PMID: 33659687 PMCID: PMC7872566 DOI: 10.1080/23802359.2020.1869612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Colored-leaf plants are increasingly popular, which has higher ecological, economic and social benefits. Caihong poplar, one of colored-leaf plants from Populus deltoides, has been widely used in courtyard embellishment, road greening, garden set King and so on. In this study, the complete chloroplast genome of Caihong poplar was evaluated, and the total chloroplast genome size of which is 156,957 bp in length with 36.69% GC content, including large single-copy region (LSC) of 85,096 bp, a pair of inverted repeat regions (IRs) of 27,649 bp each, and a small single-copy region (SSC) of 16,563 bp. There were 22 tRNA genes, 83 protein-coding genes, and four rRNA genes. The phylogenetic analysis with 22 species indicated that Caihong poplar was closely clustered with Populus deltoides Zhonglin 2025. In conclusion, the complete chloroplast genomes of Caihong poplar in this study provided valuable genomic resources for further phylogeny and species identification in the Populus family.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Hui Zhang
- Forestry Scientific and Technical Extension Center, Lianshui, PR China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| |
Collapse
|
21
|
Zhuang W, Shu X, Zhang M, Wang T, Zhang F, Wang N, Wang Z. Characterization of the complete chloroplast genome of Populus deltoides Zhonglin 2025. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3723-3724. [PMID: 33367076 PMCID: PMC7671709 DOI: 10.1080/23802359.2020.1833773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete chloroplast genome of Populus deltoides was characterized by reference-based assembly using whole-genome sequencing data. The total chloroplast genome size of Populus deltoides included a pair of inverted repeat regions (IRs) of 27,649 bp each, a small single-copy region (SSC) of 16,563 bp, and large single-copy region (LSC) of 85,096 bp, which was 156,957 bp in length. A total of 109 genes were predicted from the chloroplast genome, including 83 protein-coding genes, 22 tRNA genes, and four rRNA genes. The GC content of chloroplast genome for Populus deltoides was 36.68%. The phylogenetic analysis based on the reported chloroplast genomes of Populus showed that the chloroplast of the Populus deltoides is most closely related to the Populus fremontii. The complete chloroplast genome of Populus deltoides provides new insights into Populus evolutionary and genomic studies.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Ming Zhang
- Jiangsu Forest Resources Inspect Center, Nanjing, PR China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, PR China
| |
Collapse
|