1
|
Li Y, Sun C, Yao D, Gao X, Wei X, Qi Y, Liang Y, Ye J. A review of MicroRNAs and flavonoids: New insights into plant secondary metabolism. Int J Biol Macromol 2025; 309:142518. [PMID: 40157676 DOI: 10.1016/j.ijbiomac.2025.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Flavonoids, essential plant secondary metabolites, play crucial roles in growth regulation, stress responses, and applications in medicine, agriculture, and industry. However, the complexity of their biosynthetic pathways and regulatory networks poses challenges for industrial-scale production. MicroRNAs (miRNAs), as pivotal post-transcriptional regulators, play significant roles in fine-tuning flavonoid metabolism by targeting key enzyme genes and transcription factors. This review provides a comprehensive analysis of miRNA biogenesis and their molecular mechanisms, emphasizing miRNA-mediated regulation of flavonoid biosynthesis. We introduce the concept of "miRNA-multifactorial synergistic networks", which elucidates the collaborative interactions between miRNAs, non-coding RNAs, transcription factors, and epigenetic regulators. The review explores emerging strategies, including artificial miRNA design and CRISPR/Cas technologies, to precisely manipulate miRNA activity for enhancing flavonoid production. Additionally, integrating CRISPR/Cas13, synthetic biology, and multi-omics technologies offers new opportunities to construct efficient flavonoid metabolic systems. Artificial intelligence (AI) is proposed as a powerful tool to analyze omics data, identify regulatory nodes, and simulate environmental impacts on miRNA networks, thereby optimizing metabolic pathways. By integrating these multidisciplinary approaches, this review provides a novel theoretical framework and technical roadmap for understanding and improving flavonoid metabolism. The insights presented here aim to facilitate breakthroughs in metabolic engineering, offering significant potential for practical applications in plant breeding, functional food production, and pharmaceutical development.
Collapse
Affiliation(s)
- Yang Li
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China
| | - Chang Sun
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China
| | - Danyang Yao
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xinran Gao
- College of Prataculture, Inner Mongolia Minzu University, Tongliao 028043, Inner Mongolia, China
| | - Xueping Wei
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Yaodong Qi
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Yunjiang Liang
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China.
| | - Jingxue Ye
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Y, Yan Q, Xia H, Yang J, Zeng X, Li Z, Cai X, Zou J, Chen H. Validation of suitable reference microRNAs for qRT-PCR in Osmanthus fragrans under abiotic stress, hormone and metal ion treatments. FRONTIERS IN PLANT SCIENCE 2025; 16:1517225. [PMID: 40026390 PMCID: PMC11868269 DOI: 10.3389/fpls.2025.1517225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Introduction Sweet osmanthus (Osmanthus fragrans) is a prominent woody ornamental plant extensively utilized in horticulture, the food industry, cosmetics, and traditional Chinese medicine. MicroRNAs (miRNAs) are crucial regulators of gene regulation, playing a vital role in enabling plants to adapt to environmental fluctuations. Despite their significance, research on miRNA expression in O. fragrans under adverse stress conditions remains limited. Therefore, the selection of appropriate reference miRNAs is essential to ensure accurate miRNA expression analysis. Methods In this study, qRT-PCR technology was combined with four algorithms (i.e., delta-Ct, geNorm, NormFinder, and BestKeeper) to systematically evaluate the expression stability of 14 candidate miRNAs across eleven environmental conditions, including under abiotic stress, under hormone and metal ion treatments, during flower opening and senescence, and across various tissues. Results The results revealed that under hormone treatments, ofr-miR159b-3p, novel8, and novel3 exhibited high expression stability; under abiotic stress, ofr-miR159b-3p, novel8, ofr-miR403-3p, and novel2 demonstrated considerable stability; during metal ion treatments, novel3, ofr-miR159b-3p, novel33, novel2, and ofr-miR395e were identified as stable miRNAs; in different tissues, novel2 and ofr-miR395e were relatively stable; and during flower opening and senescence, novel33 and ofr-miR395e maintained stable expression. Discussion This study represents the first comprehensive assessment of reference miRNA stability in O. fragrans, providing a reliable framework for miRNA expression analysis under diverse conditions, including flower development and senescence, abiotic stress, hormone treatments, and metal ion treatments. These findings carry significant implications for future research into the function of miRNAs.
Collapse
Affiliation(s)
- Yingting Zhang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Qingyu Yan
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
| | - Hui Xia
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Xiangling Zeng
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Zeqing Li
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Xuan Cai
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jingjing Zou
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Hongguo Chen
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| |
Collapse
|
3
|
Wan Q, Lu M, Jiang G, Shao J, Chen T, Yang L, Khan IA, Deng J, Zhong S, Wang Y, Xiao Z, Fang Q, Zhao H. The characterization of OfRGA in regulation of flower size through tuning cell expansion genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1502347. [PMID: 39822961 PMCID: PMC11736142 DOI: 10.3389/fpls.2024.1502347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion. However, the specific biological function of DELLA proteins in the woody plant Osmanthus fragrans remains unclear. In this study, O. fragrans 'Sijigui' was utilized as the experimental material, and OfRGA was isolated using the PCR method. OfRGA is expressed in various tissues and is localized in the nucleus. A negative association was observed between OfRGA expression and petal size across four different Osmanthus fragrans cultivars. Transformation experiments in tobacco revealed that transgenic plants overexpressing OfRGA exhibited increased plant height, greater node spacing, shorter leaf length, and wider leaves during the vegetative phase. Notably, the flower organs of transgenic tobacco plants displayed noticeable alterations, including reduced petal size, shorter corolla tubes, pedicels, male and female stamens, and lighter petal color. Furthermore, a decrease in the length and area of petal and corolla tube cells was observed as well. DEGs were found in RNA-seq studies of OfRGA transgenic plants. Subsequent investigation revealed a considerable quantity of down-regulated genes were associated with cell wall synthesis genes and expansion genes, such as CesA1, XEH, and EXPB1, as well as genes related to anthocyanin biosynthesis. Overall, our findings suggest that OfRGA undermines tobacco petal size by influencing cell expansion. The present study offers a fundamental comprehension of the role of DELLA protein in the organ development in Osmanthus fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Mohd Zahid NII, Syed Othman SMI, Mustaffa AF, Ismail I, Che-Othman MH. Fine-tuning plant valuable secondary metabolite biosynthesis via small RNA manipulation: strategies and potential. PLANTA 2024; 260:89. [PMID: 39254898 DOI: 10.1007/s00425-024-04521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.
Collapse
Affiliation(s)
- Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Deng K, Li Z, Huang T, Huang J. Noncoding RNAs in regulation of plant secondary metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108718. [PMID: 38733939 DOI: 10.1016/j.plaphy.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.
Collapse
Affiliation(s)
- Keyin Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
7
|
Singh D, Mittal N, Verma S, Singh A, Siddiqui MH. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review. Mol Biol Rep 2023; 51:23. [PMID: 38117315 DOI: 10.1007/s11033-023-09057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus' gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Anjali Singh
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | | |
Collapse
|
8
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Kuang Z, Zhao Y, Yang X. Plant MicroRNA Identification and Annotation Using Deep Sequencing Data. Methods Mol Biol 2023; 2595:239-250. [PMID: 36441467 DOI: 10.1007/978-1-0716-2823-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs, which regulate gene expression at the post-transcriptional level. A large number of studies have revealed that they play key roles in diverse life activities, such as growth and development. In the last decade, deep sequencing technology has generated substantial small RNA sequencing (sRNA-Seq) data. Meanwhile, numerous tools have been developed to identify miRNAs from these sRNA-Seq data, resulting in a surge of miRNA annotations. Among these tools, the series of miRDeep-P and miRDeep-P2 have been widely used in plant miRNA annotation. Here, we employed miRDeep-P2 to demonstrate the plant miRNA annotation processes step by step using the deep sequencing data.
Collapse
Affiliation(s)
- Zheng Kuang
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Yongxin Zhao
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China.
| |
Collapse
|
10
|
Cusaro CM, Grazioli C, Capelli E, Picco AM, Guarise M, Gozio E, Zarpellon P, Brusoni M. Involvement of miRNAs in Metabolic Herbicide Resistance to Bispyribac-Sodium in Echinochloa crus-galli (L.) P. Beauv. PLANTS (BASEL, SWITZERLAND) 2022; 11:3359. [PMID: 36501398 PMCID: PMC9736381 DOI: 10.3390/plants11233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Several mechanisms involved in weed herbicide resistance are unknown, particularly those acting at the epigenetic level, such as the capacity of small-non-coding RNAs (sncRNAs) to target messenger RNAs of genes involved in herbicide detoxification. The transcription of these sncRNAs is stimulated by epigenetic factors, thereby affecting gene expression. This study was carried out in order to evaluate, for the first time in Echinochloa crus-galli (L.) P. Beauv. (barnyardgrass), the capacity of miRNAs to regulate the expression of genes associated with bispyribac-sodium detoxification. The expression profiles of eight miRNAs with a high degree of complementarity (≥80%) with mRNAs of genes involved in herbicide detoxification (CYP450, GST and eIF4B) were determined by qRT-PCR before and after herbicide spraying. Five of the miRNAs studied (gra-miR7487c, gma-miR396f, gra-miR8759, osa-miR395f, ath-miR847) showed an increased expression after herbicide application in both susceptible and resistant biotypes. All the miRNAs, except gra-miR8759, were more highly expressed in the herbicide-resistant biotypes. In specimens with increased expression of miRNAs, we observed reduced expression of the target genes. The remaining three miRNAs (ata-miR166c-5p, ath-miR396b-5p and osa-miR5538) showed no over-expression after herbicide treatment, and no difference in expression was recorded between susceptible and resistant biotypes. Our results represent a first overview of the capacity of miRNAs to regulate the expression of genes involved in bispyribac-sodium detoxification in the genus Echinochloa. Further research is required to identify novel miRNAs and target genes to develop more focused and sustainable strategies of weed control.
Collapse
Affiliation(s)
- Carlo Maria Cusaro
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Carolina Grazioli
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Marta Guarise
- Agricola 2000 S.c.p.A., Via Trieste 9, 20067 Tribiano, Italy
| | - Enrico Gozio
- Agricola 2000 S.c.p.A., Via Trieste 9, 20067 Tribiano, Italy
| | | | - Maura Brusoni
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| |
Collapse
|
11
|
Zhu C, Lou Y, Yang K, Liu Y, Xiao X, Li Z, Guo D, Sun H, Gao Z. Integrative analyses of morphology, physiology, and transcriptional expression profiling reveal miRNAs involved in culm color in bamboo. FRONTIERS IN PLANT SCIENCE 2022; 13:992794. [PMID: 36164374 PMCID: PMC9508110 DOI: 10.3389/fpls.2022.992794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Culm color variation is an interesting phenomenon that contributes to the breeding of new varieties of ornamental plants during domestication. De-domesticated variation is considered ideal for identifying and interpreting the molecular mechanisms of plant mutations. However, the variation in culm color of bamboo remains unknown. In the present study, yellow and green culms generated from the same rhizome of Phyllostachys vivax cv. Aureocaulis (P. vivax) were used to elucidate the molecular mechanism of culm color formation. Phenotypic and physiological data showed that environmental suitability was higher in green culms than in yellow culms. High-throughput sequencing analysis showed 295 differentially expressed genes (DEGs) and 22 differentially expressed miRNAs (DEMs) in two different colored bamboo culms. There were 103 DEM-DEG interaction pairs, of which a representative "miRNA-mRNA" regulatory module involved in photosynthesis and pigment metabolism was formed by 14 DEM-DEG pairs. The interaction of the three key pairs was validated by qPCR and dual-luciferase assays. This study provides new insights into the molecular mechanism of miRNAs involved in P. vivax culm color formation, which provides evidence for plant de-domestication and is helpful for revealing the evolutionary mechanism of bamboo.
Collapse
Affiliation(s)
- Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Yongfeng Lou
- Jiangxi Provincial Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xiaoyan Xiao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Ziyang Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Dong Guo
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
12
|
Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. Int J Mol Sci 2022; 23:ijms23137296. [PMID: 35806310 PMCID: PMC9266715 DOI: 10.3390/ijms23137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and development at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop. However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study, we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret during inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during ray floret growth, and 607 differentially expressed target genes of these differentially expressed miRNAs were identified using psRNATarget. We performed a comprehensive analysis of the expression profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156, ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs were determined using 5′-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and anthocyanin accumulation in gerbera.
Collapse
|
13
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|